拟南芥转录因子WRKY71对花和分枝发育的调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在长期的进化过程中,植物形成了一套完整的机制,用于调节自身的生长发育以适应或抵御外界生物和非生物胁迫,在这些进程中转录因子(WRKY、DREB、NAC、MYB等)发挥了重要的调控作用。
     WRKY转录因子家族是近十几年来发现的一类植物特有的转录因子,它们在植物体内是非组成型表达的,受生物及非生物胁迫(水杨酸、病原诱导子、高盐、干旱、低温等)诱导,主要参与生物与非生物胁迫应答和植物衰老,有关对植物发育的调控研究报道很少,仅见参与调控了种子和表皮毛的发育。迄今为止,尚未见它们参与调控植物开花和分枝发育的报道。
     植物开花是植物从营养生长到生殖生长转折的关键,具有很强的可塑性。在各种外界环境和内部因子的影响下,植物会选择在适当的时机开花进而获得生殖的成功。植物开花是一个涉及多因子相互作用的复杂系统。目前,在拟南芥中主要存在4条调控植物开花的途径:光周期途径,春化途径,自主途径和赤霉素途径。研究表明,其它一些因子也参与了开花调控,比如蔗糖和非生物胁迫因子。一些外界胁迫因子(干旱、紫外线和病原菌)能够促进植物开花,这是植物逃避逆境的一种适应机制。通常情况下,高盐胁迫会抑制拟南芥开花,其调控机制已有-些研究。但尚未见有关高盐胁迫促进植物开花的报道。
     植物的分枝是从茎顶端分生组织衍生出的腋生分生组织中分化出来的,包含两个关键的发育过程:腋生分生组织在叶腋部位的形成和腋生分生组织的生长发育(腋/侧芽的生长)。它决定着植物地上部分的株型,与作物的产量密切相关。植物的分枝发育受到各种外界环境条件、遗传因素和植物激素的影响。目前,多个调控植物分枝发育的基因已被发掘。迄今,有关WRKY转录因子调控植物分枝发育的研究尚未见报道。
     本研究从拟南芥激活标签突变体库中筛选得到了一株较Co1-0开花早、花器官大、植株矮小、分枝多的突变体D27。Tail-PCR和RT-PCR分析推测,该表型可能由WRKY转录因子基因WRKY71的过表达引起。遗传分析发现,该突变体的表型稳定。在此基础上,利用Col-0、D27 (WRKY71-1D)及其敲除系wrky71-1研究了WRKY71在正常条件和高盐胁迫下对拟南芥开花的作用,揭示了WRKY71介导高盐诱导拟南芥开花提前的分子机制,分析了WRKY71对拟南芥分枝发育的贡献及其可能机制,为进一步阐明拟南芥开花和分枝发育的分子调控机制奠定了基础。
     主要研究过程及实验结果包括:
     1.WRKY71转录因子的分离鉴定及其功能初探
     1.1突变体的筛选和基因分离鉴定
     从拟南芥激活标签突变体库中,筛选得到了一株突变体D27,与野生型Col-0相比,该突变体植株矮小、开花早、花器官增大、分枝多。Tail-PCR和RT-PCR分析推测,该突变体的表型可能是由WRKY71的过表达引起。购买并筛选获得了wrky71-1敲除系。
     1.2 WRKY71的表达模式
     时空表达模式:Real time-PCR分析发现,WRKY71在拟南芥Col-0生长的前三周内表达逐步上调,随后逐步下降;其在各个组织器官中均有表达,其中在角果中表达量最高。进一步的GUS染色分析发现,WRKY71亦在各组织器官中表达,在根、表皮毛及托叶中表达显著。亚细胞定位发现,WRKY71定位于洋葱表皮细胞和拟南芥原生质体的细胞核中。转录激活活性实验证实了该基因具有转录激活活性。
     对非生物胁迫和激素的应答模式:Real time-PCR分析发现,WKRY71受高盐和ABA的诱导而高表达,其由ABA依赖的途径受高盐诱导。
     1.3 WRKY71介导盐胁迫下拟南芥的早开花
     以200mM NaCl处理在土壤中生长的Col-0、WRKY71-1D和wrky71-1植株(7天和10天各浇灌1L 200mM NaCl),发现WRKY71-1D在第23天开花,仅比正常条件下延迟1天,而Col-0和wrky71-1在第35天开花,比正常条件下延迟1周,说明WRKY71-1D的开花进程对高盐不敏感。
     2. WRKY71调控拟南芥花发育的分子机制研究
     2.1 WRKY71促进拟南芥开花的确定
     WRKY71过表达植株35S::WRKY71的表型与WRKY71-1D一致,佐证了WRKY71-1D的表型是由WRKY71过表达引起的。
     2.2 WRKY71在花序分生组织、花原基及花器官原基中表达
     RNA原位杂交发现WRKY71在15天的花序分生组织和花原基中表达,在17天的花序分生组织和花器官原基中表达。表明WRKY71可能参与了顶端花序分生组织的形成以及花的发育。
     2.3 WRKY71促进开花转折
     组织学纵向切片观察发现花原基出现(开花转折)的时间分别为:100%的WRKY71-1D在第11天、90.4±5.7%的Col-0在第15天、而仅有37.6±3.3%的wrky71-1在第15天。扫描电镜结果同该结果一致,表明WRKY71具有促进拟南芥开花转折的作用。
     2.4高盐胁迫下WRKY71亦促进开花转折
     组织学纵向切片分析发现高盐胁迫下花原基出现的时间分别为:100%的WRKY71-1D在第12天,32.7±3.3%的Col-0在第17天,而仅有21.6±2.9%的wrky71-1在17天,表明WRKY71-1D的开花起始几乎不受到高盐的抑制。可见,WRKY71在高盐胁迫下亦促进开花转折。
     综上所述,WRKY71受高盐的诱导,WRKY71的过表达促进拟南芥的开花,因此,推断WRKY71介导了高盐诱导拟南芥开花提前。
     2.5 WRKY71不参与四条主要开花途径
     Col-0、WRKY71-1D和wrky71-1均能正常应答日照长度(长日照和短日照)、低温和GA信号,在处理条件下,WRKY71-1D的开花时间依然早于Col-0和wrky71-1。四条途径中的一些相关基因在三系中表达水平相近,而WRKY71在一些开花突变体(gi-2、co、ft、fve-4、Id-1、fld-1、fca-9)中的表达变化亦不明显,表明WRKY71可能不参与上述4条途径。
     2.6 WRKY71通过影响蔗糖运输而促进拟南芥开花
     RT-PCR分析发现蔗糖合成代谢和信号转导的相关基因在三系中的表达差异不明显,表明WRKY71可能不影响拟南芥蔗糖的合成代谢和信号转导。蔗糖转运子基因SUC8和SUC9在WRKY71-1D中表达下调,EMSA实验证明WRKY71与SUC8和SUC9启动子区的W-box结合,表明WRKY71通过直接抑制SUC8和SUC9的表达,促进胞外蔗糖运输到茎顶端以促进拟南芥的开花。
     2.7 WRKY71促进花分生组织决定基因表达
     Real time-PCR分析发现在非盐胁迫和盐胁迫条件下,花分生组织决定基因LFY、API、CAL和FUL在WRKY71-1D中均上调表达。这与WRKY71-1D在非盐胁迫和盐胁迫条件下开花早的表型一致。
     2.8 WRKY71结合LFY启动子的W-box
     EMSA实验证明WRKY71能强烈地结合在LFY启动子的W-box上,微弱地结合在CAL启动子的W-box上,不能与AP1启动子的W-box结合;ChIP实验亦证明了WRKY71能结合在LFY启动子的W-box上,而不能与CAL结合,表明WRKY71通过直接上调LFY表达而促进拟南芥开花。
     2.9杂交互补验证
     对(?)WRKY71-1D×LFY::GUS杂交种和LFY::GUS进行GUS染色分析发现,前者的GUS活性高于后者,表明WRKY71可提高LFY的翻译水平。
     WRKY71-1D×lfy植株与WRKY71-1D表型相似,但是不能开花结实,表明LFY的缺失阻断了WRKY71-1D的开花,从而证实了WRKY71是通过调控上调LFY表达来促进拟南芥的开花。
     2.10 WRKY71促进拟南芥花器官的发育
     WRKY71-1D的萼片、花瓣、雄蕊和心皮均比Col-0和wrky71-1的大,其花器官发育快速。Real time-PCR分析发现,花器官发育相关基因AP1、AP3和AG,花器官大小的基因UFO和干细胞维持和分化相关基因WUS和CLV3在WRKY71-1D中表达上调。ChIP和EMSA实验证明WRKY71仅能与AP3启动子的W-box结合,而不能与UFO和WUS结合,表明WRKY71通过直接或间接地上调上述基因引起花器官发育提前和花器官增大。
     总之,拟南芥WRKY71通过直接上调LFY,间接上调AP1、CAL和FUL来促进开花起始;通过直接上调AP3,间接上调AP1和AG而促进花器官发育;间接上调UFO而促进花器官增大;间接上调WUS和CLV3而提高顶端分生组织活性而加快茎顶端分生组织干细胞的增殖和分化。
     3.WRKY71调控拟南芥分枝发育的功能研究
     3.1 WRKY71-1D突变体分枝数目增多
     对长日照下生长7周的Col-0、WRKY71-1D和wrky71-1进行了株高、角果数、分枝数目和附着枝数目统计,发现:三者的平均株高分别为34.2±3.4、9.1±0.6、34.7±2.8cm;平均结荚率分别为128.7±30.2、62.5±18.8、129.6±32.2个;分枝总数分别为55.1±6.1、27.3±2.3、25.3±3.6个;附着枝数分别为22.6±5.3、1.1±0.8、1.2±0.4个。
     3.2 WRKY71-1D的腋芽不休眠
     组织学纵向切片分析发现,WRKY71-1D植株腋芽出现在13天,15天时已膨大,而Col-0和wrky71-1在15天还未见腋芽发生。扫描电镜观察发现,WRKY71-1D莲座叶腋芽在21天已见花原基,而Col-0仅分化出叶子,wrky71-1仅见叶原基。生长至32天时,WRKY71-1D腋芽生长发育成侧枝,而Col-0和wrky71-1侧芽仍处于休眠状态,表明WRKY71参与调控了拟南芥侧枝的形成和发育过程。
     3.3 WRKY71在叶腋处表达
     通过RNA原位杂交分析发现,WRKY71在Col-0的叶腋处表达,进一步表明WRKY71参与了拟南芥侧枝的形成进程。
     3.4 WRKY71促进分枝基因的表达
     调控分枝发育相关基因的表达分析发现,WRKY71-1D中RAX2表达明显的上调,LAS表达微弱的上调。EMSA实验证明,WRKY71与RAX2启动子的W-box结合,表明WRKY71通过直接上调RAX2而引起拟南芥的多分枝。
     3.5 WRKY71-1D维管束发育缺陷
     对Col-0、WRKY71-1D和wrky71-1茎的横切面结构的观察发现,WRKY71-1D茎很细,仅有6个维管束,比Col-0少两个;其束间形成层细胞层数比Col-0多1-2层,表明WRKY71-1D的茎维管束系统发育有缺陷。已知拟南芥维管束发育与生长素的功能密切相关,尤其是生长素运输能力对维管束发育影响大,因此,推测WRKY71可能参与了生长素运输的调控。
     3.6 WRKY71促进生长素的运输
     离体节点实验分别将带有腋芽的Col-0、WRKY71-1D和wrky71-1茎段上端插入含有1μM 2,4-D的1/2MS培养基中,下端插入不含2,4-D的1/2MS培养基中,腋芽朝上培养7天,发现Col-0和wrky71-1腋芽有一定程度的伸长生长,而WRKY71-1D腋芽未见生长,推测在WRKY71-1D中侧芽生长的抑制可能与其生长素运输能力的增强有关。
     生长素运输基因表达生长素运输相关基因的表达分析发现,PIN1在WRKY71-1D中上调表达,表明WRKY71可能通过提高生长素运输能力对分枝发育起作用。
     3.7 WRKY71不影响生长素的生物合成
     分析生长素合成相关基因表达水平发现,NIT4和CYP79B3在WRKY71-1D中下调表达。但HPLC分析发现,Col-0、WRKY71-1D和wrky71-1中自由IAA含量相近,表明WRKY71不影响拟南芥体内生长素的合成。
     3.8 WRKY71不影响生长素的信号转导
     将生长4天的Col-0、WRKY71-1D和wrky71-1转入含10nM和1μM的IAA的1/2MS培养基上生长至14天,发现三系的主根、侧根数目及其长度变化不大,表明WRKY71-1D能正常的响应生长素信号。RT-PCR分析发现,生长素信号转导相关基因在三系中表达差异不明显,表明WRKY71可能不参与生长素的信号转导。
     结论,WRKY71通过直接上调RAX2引起了拟南芥分枝增多,通过提高生长素的运输能力对分枝发育起作用。
In the long process of evolution, plants have formed a set of mechanisms for regulating their own growth and development to adapt to and resist external biotic and abiotic stresses, in which transcription factors (WRKY, DREB, NAC, MYB, etc.) played important roles.
     WRKY transcription factor family has been identified specifically in plants within the last decade. Their expressions are non-constitutive and induced by biotic and abiotic stress (salicylic acid, pathogen elicitors, high salinity, drought, low temperature etc.) They are mainly involved in biotic and abiotic stress responses and senescence, while barely involved in the regulation of plant development except seed and trichome development. However, their roles in regulating plant flower and branch development have not been demonstrated.
     Flowering, which is plastic, is the key point for plant to transit from vegetative to reproductive phase. Affected by various external and internal cues, plants will choose to flower at an appropriate time to achieve reproductive success. Flowering is a complex process and multiple factors are involved in this system. So far, there are four major pathways controlling flowering time in Arabidopsis:the photoperiod, vernalization, autonomous and GA pathways. Studies have shown that other factors are also involved in flowering regulation, such as sucrose and abiotic stress factors. Some external stress factors (drought, UV and pathogens) are able to promote flowering, which is a kind of adaptive mechanisms to avoid stress for plants. Typically, high salinity stress will inhibit flowering, and the related mechanism has been reported. However, there is no report about high salinity stress promoting flowering.
     Shoot branching is from the axillary meristem (AM) which derived from shoot apical meristem, and has two key processes:formation of AM in the axils of leaves and the outgrowth of AM (Growth of lateral bud). Branching determines the aerial architecture of plant and is closely related with crop yields. Branch development is affected by various external environmental conditions, genetic factors and plant hormones. Currently, a number of genes regulating plant branch development have been identified. So far, there is no report about the WRKY transcription factors regulating plant branch development.
     In this study, from a collection of several thousand independent activation tagging Arabidopsis lines, we screened one line, D27, which was early flowering and dwarf, and had bigger floral organs and more branches compared with Col-0. Using RT-PCR and Tail-PCR, we indicated that the phenotype of D27 was caused by the activation of WRKY71. Genetic analysis showed that the mutant phenotype was stable. On this basis, using Col-0, D27 (WRKY71-1D) and the knockout mutant wrky71-1, we studied the function of WRKY71 on Arabidopsis flowering under normal and high salinity stress conditions, revealed the molecular mechanisms that WRKY71 mediated salinity-inducible early flowering in Arabidopsis, analyzed the contribution of WRKY71 to the branch development of Arabidopsis and its possible mechanism, and provided the basis for further clarification of the molecular mechanism of flower and branch development.
     The main process and results of this research were as follows:
     1. Identity of WRKY71 transcription factor and preliminary analysis of its function
     1.1 Mutant selection and gene identity
     From a collection of several thousand independent activation tagging Arabidopsis lines, we screened one line, D27, which was dwarf and early flowering, and had bigger floral organs and more branches compared with wild type Col-0. Using RT-PCR and Tail-PCR, we indicated that the phenotype of D27 was caused by the activation of WRKY71. In addition, we obtained a homozygous wrky71-1 knockout mutant.
     1.2 Expression pattern of WRKY71
     Temporal and special expression pattern:Real time-PCR analysis indicated that WRKY71 was gradually up-regulated within the first three weeks in Col-0 and then down-regulated. WRKY71 was expressed in all tissues, especially in silique. GUS staining showed that WRKY71 was also expressed in all tissues, especially in root, trichome and stipule. The sub-cellular localization of WRKY71 gene product was limited to the nucleus of the onion epidermal cells and Arabidopsis protoplasts. WRKY71 possessed transcriptional activation activity.
     Response to abiotic stress and hormone:Real time-PCR analysis indicated that WRKY71 was induced by high salinity and ABA. The high salinity induction of WRKY71 appeared to operate via an ABA-dependent pathway.
     1.3 WRKY71 mediates salt-inducible early flowering in Arabidopsis
     One-week old Col-0, WRKY71-1D and wrky71-1 plants grown in soil were watered twice with 1L 200mM NaCl (at 7th and 10th day). Under this conditions, WRKY71-1D bolted at 23rd day, which was only delayed by one day compared to under non-stressed conditions, while both Col-0 and wrky71-1 bolted at 35th day, which was delayed by one week compared to under non-stressed conditions, indicating that the flowering of WRKY71-1D was insensitive to high salinity.
     2. The molecular mechanism of WRKY71 in regulating flower development
     2.1 WRKY71 promotes flowering in Arabidopsis
     The WRKY71-overexpression lines showed similar phenotype with WRKY71-1D, which confirmed that the phenotype of WRKY71-1D was caused by the activation of WRKY71.
     2.2 WRKY71 is expressed in inflorescence meristem, flower and flower organ primordia
     In situ hybridization showed that WRKY71 was expressed in inflorescence meristem and flower primordia of 15-day-old Col-0 and in inflorescence meristem and flower organ primordia of 17-day-old Col-0, indicating that WRKY71 may be involved in the formation of inflorescence meristem and flower development.
     2.3 WRKY71 promotes floral transition
     Histology section showed that the floral transition of Col-0, WRKY71-1D and wrky71-1 was as follows:all WRKY71-1D initiated at 11th day,90.4±5.7% of Col-0 initiated at 15th day, while only 37.6±3.3% of the wrky71-1 mutant initiated at 15th day. Observation by using SEM confirmed this result, suggesting that WRKY71 promoted floral transition of Arabidopsis.
     2.4 WRKY71 promotes floral transition under high salinity stress condition
     Histology section showed that the floral transition of Col-0, WRKY71-1D and wrky71-1 under high salinity stress condition was as follows:all WRKY71-1D initiated at 12nd day,32.7±3.3% of Col-0 initiated at 17th day, while only 21.6±2.9% of the wrky71-1 mutant initiated at 17th day, indicating that the floral transition of WRKY71-1D was insensitive to high salinity. Thus WRKY71 also promoted floral transition of Arabidopsis under high salinity stress condition.
     In conclusion, WRKY71 is induced by high salinity, the overexpression of WRKY71 promotes floral transition in Arabidopsis. Therefore, WRKY71 mediates salt-inducible early flowering in Arabidopsis.
     2.5 WRKY71 may be not involved in four major flowering pathways
     Col-0, WRKY71-1D and wrky71-1 were all responded normally to day-length changes, prolonged vernalization treatment and GA application. Under these conditions, the flowering time of WRKY71-1D was still earlier than that of Col-0 and wrky71-1. The expression of genes involved in the four major pathways was unaltered in WRKY71-1D, as was the expression of WRKY71 in any of flowering mutants (gi2, co,ft,fve-4, ld-1, fld-1,fca-9). Thus, WRKY71 may be not involved in four major flowering pathways.
     2.6 WRKY71 promotes flowering of Arabidopsis via affecting sucrose transport
     RT-PCR analysis indicated that the expression of genes related with sucrose biosynthesis and signaling transduction was similar in Col-0, WRKY71-1D and wrky71-1, indicating that WRKY71 may be not involved in sucrose biosynthesis and signaling transduction. Sucrose transporter genes SUC8 and SUC9 were down-regulated in WRKY71-1D, EMSA experiment showed that WRKY71 was able to interact with the W-boxes of SUC8 and SUC9 promoter, suggesting that WRKY71 repressed SUC8 and SUC9 directly, and increased the extracellular sucrose level to promote flowering.
     2.7 WRKY71 promotes floral identity genes
     Real time-PCR analysis indicated that under both control and salinity-stressed conditions, floral identity genes LFY, API, CAL and FUL were up-regulated in WRKY71-1D, consistent with the early flowering phenotype under both control and salinity-stressed conditions.
     2.8 WRKY71 binds to LFY promoter W-box
     EMSA experiment showed that WRKY71 was able to strongly interact with the LFY promoter W-box, weakly interact with the CAL promoter W-box, not able to interact with the API promoter W-box. ChIP experiment also showed that WRKY71 was able to strongly interact with the LFY promoter W-box, while not able to interact with the CAL promoter W-box, indicating that WRKY71 accelerated flowering of Arabidopsis via up-regulating LFY directly.
     2.9 Cross complementary
     GUS staining of WRKY71-1D×LFY::GUS and LFY::GUS showed that the GUS activity of the former was higher than that of the latter, suggesting that WRKY71 was able to promote the translation level of LFY.
     WRKY71-1D×lfy showed similar phenotype with WRKY71-1D, but did not flower and produce fruits. These results suggested that the loss of LFY arrested the flowering of WRKY71-1D, which confirmed that WRKY71 promoted flowering via up-regulating LFY directly.
     2.10 WRKY71 promotes floral organ development
     The sepal, petal, stamen and carpel of WRKY71-1D were all bigger than that of Col-0 and wrky71-1, and developed rapidly. Real time-PCR analysis showed that floral organ development related genes AP1, AP3 and AG, floral organ size related gene UFO and stem cell maintenance and differentiation related genes WUS and CLV3 were up-regulated in WRKY71-1D. ChIP and EMSA experiments also showed that WRKY71 was only able to interact with the AP3 promoter W-box, but not UFO and WUS, suggesting that WRKY71 accelerated floral organ development and increases floral organ size via directly or indirectly up-regulating the above genes.
     In all, WRKY71 promotes flowering via directly up-regulating LFY, indirectly up-regulating API, CAL and FUL, and directly down-regulating SUC8 and SUC9; promotes floral organ development via directly up-regulating AP3, indirectly up-regulating API and AG; increases floral organ size via indirectly up-regulating UFO; activates shoot apical meristem to accelerate the proliferation and differentiation of the stem cells via indirectly up-regulating WUS and CLV3.
     3. The roles of WRKY71 in regulating branch development of Arabidopsis
     3.1 WRKY71-1D has more branches
     Plant height and the number of silique, branch and accessory paraclade of 7-week-old Col-0, WRKY71-1D and wrky71-1 were as follows:their average height was 34.2±3.4,9.1±0.6 and 34.7±2.8 cm respectively; the number of their average silique was 128.7±30.2,62.5±18.8 and 129.6±32.2 respectively; the number of their average branch was 55.1±6.1,27.3±2.3 and 25.3±3.6 respectively; the number of their average branch was respectively 22.6±5.3, 1.1±0.8 and 1.2±0.4.
     3.2 Axillary buds of WRKY71-1D are not dormant
     Histology section showed that the axillary buds of WRKY71-1D formed at 13rd day and expanded at 15th day, while that of Col-0 and wrky71-1 had not yet formed. Observation by using SEM showed that at 21st day, axillary buds of WRKY71-1D developed floral primordia, that of Col-0 developed leaf, and that of wrky71-1 only developed leaf primordia. At 32nd day, axillary buds of WRKY71-1D outgrew and developed into branches, while that of Col-0 and wrky71-1 were still dormant. These results suggesting that WRKY71 may be involved in the formation and development of Arabidopsis branches.
     3.3 WRKY71 is expressed in the axils
     In situ hybridization showed that WRKY71 was expressed in the axils of Col-0, further indicating that WRKY71 may be involved in the formation of Arabidopsis branches.
     3.4 WRKY71 promotes genes related with branch development
     Analysis the expression of genes related with branch development showed that RAX2 was significantly up-regulated in WRKY71-1D, LAS was slightly up-regulated in WRKY71-1D. EMS A experiment showed that WRKY71 was able to strongly interact with the RAX2 promoter W-box, suggesting that WRKY71 increased Arabidopsis branches via up-regulating RAX2 directly.
     3.5 The vascular bundle of WRKY71-1D is deficient
     Histology section showed that the stem of WRKY71-1D was thin, and had only 6 vascular bundles which was two less than that of Col-0; its cell layers of interfascicular cambium was one or two less than that of Col-0, indicating that the vascular bundle of WRKY71-1D was deficient. According to the present knowledge, the function of auxin is closely related with vascular bundle development, especially the auxin transport. Thus, WRKY71 may be involved in regulating the auxin transport.
     3.6 WRKY71 promotes auxin transport
     Exciting node assay:The the upper part of Col-0, WRKY71-1D and wrky71-1 stems with axillary buds were inserted into the 1/2MS medium containing 1μM 2,4-D and the bottom part into the 1/2MS medium, The stems were cultured for 7 days with the buds upward. The axillary bud of Col-0 and wrky71-1 outgrew to some extent, while that of WRKY71-1D did not outgrow, suggesting that the inhibition of the axillary bud in WRKY71-1D was probably related with the enhance of auxin transport.
     3.7 WRKY71 does not affect the biosynthesis of auxin
     Analysis the expression of genes related with auxin biosynthesis showed that N1T4 and CYP79B3 were down-regulated in WRKY71-1D. However, HPLC analysis indicated that the content of free IAA in Col-0, WRKY71-1D and wrky71-1 was similar, suggesting that WRKY71 did not affect the biosynthesis of auxin.
     3.8 WRKY71 does not affect the transduction of auxin signaling Four-day-old Col-0, WRKY71-1D and wrky71-1 were transferred to the 1/2MS medium containing 10nM or 1μM IAA and continued growing to 14th day, the primary root and the number and length of lateral root were similar in three lines, indicating that WRKY71-1D responded normally to auxin signaling. RT-PCR analysis showed that the expression of genes related with transduction of auxin signaling was similar in in three lines, suggesting that WRKY71 may be not involved in the transduction of auxin signaling.
     Expression of genes related with auxin transport:Analysis of the expression of genes related with auxin transport showed that PIN1 was up-regulated in WRKY71-1D, suggesting that WRKY71 may promote auxin transport to act on branch development.
     In conclusion, WRKY71 is able to increase Arabidopsis branches via directly up-regulating RAX2, promote auxin transport to act on branch development.
引文
1. Achard P, Baghour M, Chapple A, Hedden P, Van Der Straeten D, Genschik P, Moritz T, Harberd NP. (2007) The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem identity genes. Proc Natl Acad Sci USA 104:6484-6489.
    2. Achard P, et al. (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91-94.
    3. Aida M, Tasaka M. (2006). Morphogenesis and patterning at the organ boundaries in the higher plant shoot apex. Plant Mol Biol 60:915-928.
    4. Alvarez-Buylla ER, Garcia-Ponce B, Garay-Arroyo A. (2006) Unique and redundant functional domains of APETALA1 and CAULIFLOWER, two recently duplicated Arabidopsis thaliana floral MADS-box genes. J Exp Bot 57:3099-3107.
    5. Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SJ, Burgeff C, Ditta GS. Vergara F, Yanofsky MF. (2000). MADS-box gene evolution beyond fl owers:expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24:457-466.
    6. Alvarez-Buylla et al. (2010) Flower Development. The Arabidopsis book
    7. Amador V, Monte E, Garcia-Martinez J, et al. (2001) Gibberellins signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to Drosophila armadillo. Cell 106:343-354.
    8. Aubert D, Chen L, Moon YH, Martin D, Castle LA, Yang CH, Sung ZR. (2001) EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis. Plant Cell 13:1865-1875.
    9. Aubert D, Chen L, Moon YH, Martin D, Castle LA, Yang CH, Sung ZR. (2001) EMF1, a novel protein involved in the control of shoot architecture and fl owering in Arabidopsis. Plant Cell 13:1865-1875.
    10. Ay, N. et al. (2009) Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana. Plant J 58:333-346.
    11. Azpiroz R, Wu Y, LoCascio JC, Feldmann KA. (1998) An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell 10:219-230.
    12. Bao X, Franks RG, Levin JZ, Liu Z. (2004) Repression of AGAMOUS by BELLRINGER in floral and infl orescence meristems. Plant Cell 16:1478-1489.
    13. Bennett T, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O. (2006) The Arabidopsis MAX Pathway Controls Shoot Branching by Regulating Auxin Transport. Curr Biol 16:553-563.
    14. Bernier G, Havelange A, Houssa C, Petitjean A, Lejeune P. (1993) Physiological Signals That Induce Flowering. Plant Cell 5:1147-1155.
    15. Blakeslee JJ, Peer WA, Murphy AS, (2005) Auxin transport. Curr Opin Plant Biol 8:494-500.
    16. Blazquez MA, Ferrandiz C, Madueno F, Parcy F. (2006) How floral meristems are built. Plant Mol Biol 60:855-870.
    17. Blazquez MA, Green R, Nilsson O, Sussman MR, Weigel D. (1998) Gibberellins Promote Flowering of Arabidopsis by Activating the LEAFY Promoter. Plant Cell 10:791-800.
    18. Blazquez MA, Koornneef M, Putterill J. (2001) Flowering on time: genes that regulate the floral transition. EMBO Rep 2:1078-1082.
    19. Blazquez MA, Soowal LN, Lee I, Weigel D. (1997) LEAFY expression and flower initiation in Arabidopsis. Development 124:3835-3844.
    20. Blazquez MA, Weigel D. (2000) Integration of floral inductive signals in Arabidopsis. Nature 404:889-892.
    21. Booker J, et al.(2004) MAX3/CCD7 is a Carotenoid Cleavage Cioxygenase Required for the Synthesis of a Novel Plant Signaling Molecule. Curr Biol 27:1232-1238.
    22. Boss PK, Bastow RM, Mylne JS, Dean C. (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. The Plant Cell 16:S18-S31.
    23. Bossinger G, Smyth DR. (1996) Initiation patterns of flower and floral organ development in Arabidopsis thaliana. Development 122:1093-1102.
    24. Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR. (1993) Control of flower development in Arabidopsis thaliana by APETALAl and interacting genes. Development 119:721-743.
    25. Bowman JL, Eshed Y. (2000) Formation and maintenance of the shoot apical meristem. Trends Plant Sci 5:110-115.
    26. Bowman JL, Smyth DR. Meyerowitz EM. (1991) Genetic interactions among fl oral homeotic genes of Arabidopsis. Development 112:1-20.
    27. Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E. (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80-83.
    28. Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R. (2000) Dependence of stem cell fate in Arabidopsis a feedback loop regulated by CLV3 activity. Science 289:617-619.
    29. Breuil-Broyer S, Morel P, de Almeida-Engler J, Coustham V, Negrotiu I, Trehin C. (2004) High-resolution boundary analysis during Arabidopsis thaliana flower development. Plant J 38:182-192.
    30. Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA. (2000) ASYMMETRIC LEAVES 1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408:967-971.
    31. Byrne ME, Simorowski J, Martienssen RA. (2002). ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis. Development 129:1957-1965.
    32. Carles CC, Lertpiriyapong K, Reville K, Fletcher JC. (2004) The ULTRAPETALA1 gene functions early in Arabidopsis development to restrict shoot apical meristem activity and acts through WUSCHEL to regulate floral meristem determinacy. Genetics 167:1893-1903.
    33. Chae E, Tan QK, Hill TA, and Irish VF. (2008) An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate fl oral development. Development 135:1235-1245.
    34. Chaudhury AM, Letham S, Craig S, Dennis ES. (1993) ampl: A mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering. Plant J 4:907-916.
    35. Chen L, Cheng J, Castle L, Sung ZR. (1997) EMF genes regulate Arabidopsis inflorescence development. Plant Cell 9:2011-2024.
    36. Chen X. (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022-2025.
    37. Chen Y, Li L, Xu Q, Kong Y, Wang H, Wu WH. (2009)The WRKY6 Transcription Factor Modulates PHOSPHATE1 Expression in Response to Low Pi Stress in Arabidopsis. Plant Cell 21:3554-3566.
    38. Cheng Y, Kato N, Wang W, Li J, Chen X. (2003) Two RNA binding proteins, HEN4 and HUA1, act in the processing of AGAMOUS pre-mRNA in Arabidopsis thaliana. Dev Cell 4:53-66.
    39. Chory J, Nagpal P, Peto CA. (1991) Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell 3:445-459.
    40. Chujo T, Takai R, Akimoto-Tomiyama C, Ando S, Minami E, Nagamura Y, Kaku H, Shibuya N, Yasuda M, Nakashita H, et al. (2007) Involvement of the licitor-induced gene OsWRKY53 in the expression of defense related genes in rice. Biochim Biophys Acta 1769:497-505.
    41. Clark SE, Running MP, Meyerowitz EM. (1993) CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119:397-418.
    42. Clark SE, Running MP, Meyerowitz EM. (1995) CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 121:2057-2067.
    43. Clark SE. (2001) Cell signalling at the shoot meristem. Nat Rev Mol Cell Biol 2:276-284.
    44. Clark SE. (2001) Meristems:start your signaling. Curr Opin Plant Biol 4:28-32.
    45. Clarke JH, Dean C. (1994) Mapping FRI, a locus controlling flowering time and vernalization response in Arabidopsis thaliana. Mol Gen Genet 242:81-89.
    46. Coen ES, Meyerowitz EM. (1991). The war of the whorls:genetic interactions controlling flower development. Nature 353:31-37.
    47. Conti L, Bradley D. (2007) TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture. Plant Cell 19:767-778.
    48. Crawford S, et al. (2010) Strigolactones enhance competition between shoot branches by dampening auxin transport. Development 137:2905-2913.
    49. Crone W, Lord EM. (1994) Floral organ initiation and development in wild-type Arabidopsis thaliana (Brassicaceae) and in the organ identity mutants apetala2-l and agamous-1. Can JBot 72:384-401.
    50. Dai Y, Fu Z, Li J. (2003) Isolation and Characterization of an Arabidopsis Bushy and Dwarf Mutant植物学报45:621-625.
    51. Dai Y, Wang H, Li B, Huang J, Liu X, Zhou Y, Mou Z, Li J. (2006) Increased expression of MAP KINASE KINASE7 causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis. Plant Cell 18:308-20.
    52. Das P, Ito T, Wellmer F, Vernoux T, Dedieu A, Traas J, Meyerowitz EM. (2009) Floral stem cell termination involves the direct regulation of AGAMOUS by PERIANTHIA. Development 136:1605-1611.
    53. de Pater S, Greco V, Pham K, et al. (1996) Characterization of a zinc-dependent transcriptional activator from Arabidopsis. Nucleic Acids Res 24:4624-31.
    54. Deshaies RJ. (1999) SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Bi 15:435-467.
    55. Deslandes L, Olivier J, Peeters N, et al. (2003) Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA 100:8024-29.
    56. Deslandes L, Olivier J, Theulie'res T, Hirsch J, Feng DX, Bittner-Eddy P, Beynon J, Marco Y. (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci USA 99:2404-2409.
    57. Devaiah BN, Karthikeyan AS, Raghothama KG. (2007) WRKY75 Transcription Factor Is a Modulator of Phosphate Acquisition and Root Development in Arabidopsis. Plant Physiol 143(4):1789-801.
    58. DeYoung BJ, Bickle KL, Schrage KJ, Muskett P, Patel K, Clark SE. (2006) The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. Plant J 45:1-16.
    59. DeYoung BJ, Clark SE. (2008) BAM receptors regulate stem cell specification and organ development through complex interactions with CLAVATA signaling. Genetics 180:895-904.
    60. Ditta G, Pnyopich A, Robles P, Pelaz S, Yanofsky MF. (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14:1935-1940.
    61. Domagalska MA, Schomburg FM, Amasino RM, Vierstra RD, Nagy F, Davis SJ. (2007) Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Development 134:2841-2850.
    62. Dong J, Chen C, Chen Z. (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21-37.
    63. Drews GN, Bowman JL, Meyerowitz EM. (1991) Negative regulation of the Arabidopsis homeotic gene AGAMOUS by APETALA2 product. Cell 65:991-1002.
    64. Elliott RC, et al. (1996). AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155-168
    65. Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla E. (2004) A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell 6:2923-2939.
    66. Eulgem T, Rushton PJ, Robatzek S, et al. (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199-206.
    67. Ferguson BJ, Beveridge CA. (2009) Roles for auxin, cytokinin and strigolactone in regulating shoot Branching. Plant Physiol 149:1929-44.
    68. Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM. (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911-1914.
    69. Foo E, et al. (2005) The Branching Gene RAMOSUS1 Mediates Interactions Among Two Novel Signals and Auxin in Pea. Plant Cell 17:464-474.
    70. Fukuda Y. (1997) Interaction of tobacco nuclear protein with an elicitor-responsive element in the promoter of a basic class I chitinase gene. Plant Mol Bio 34:81-7.
    71. Galweiler L, et al. (1998) Regulation of polar auxin transport by AtPINl in Arabidopsis vascular tissue. Science 282:2226-2230.
    72. Gendall AR, Levy YY, Wilson A, et al. (2001) The VERNALIZATIONS gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107(4): 525-535.
    73. Gomez-Roldan V, et al. (2008) Strigolactone inhibition of shoot branching. Nature 455:189-194.
    74. Grandjean O, Vernoux T, Laufs P, Belcram K, Mizukami Y, Traas J. (2004) In vivo analysis of cell division, cell growth, and differentiation at the shoot apical meristem in Arabidopsis. Plant Cell 16:74-87.
    75. Greb T, et al. (2003) Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev 17:1175-1187.
    76. Gregersen PL, Holm PB. (2007) Transcriptome analysis of senescence in the flag leaf of wheat(Triticum aestivum L.). Plant Biotechnol J 5:192-206.
    77. Grunewald W, Karimi M, Wieczorek K, Van de Cappelle E, Wischnitzki E, Grundler F, Inze D, Beeckman T, Gheysen G. (2008) A role for AtWRKY23 in feeding site establishment of plant-parasitic nematodes. Plant Physiol 148:358-368.
    78. Gu Q, Ferrandiz C, Yanofsky MF, Martienssen R. (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125:1509-1517.
    79. Han P, Garcia-Ponce B, Fonseca-Salazar G, Alvarez-Buylla ER, Yu H. (2008) AGAMOUS-LIKE 17, a novel flowering promoter, acts in a FT-independent photoperiod pathway. Plant J 55:253-265.
    80. Hara K, Yagi M, Kusano T, et al. (2000) Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding. Mol Gen Genet 263:30-7.
    81. Hara K, Yagi M, Kusano T, Sano H. (2000) Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding. Molecular Genetics and Genomics 263:30-37.
    82. Hayward A, Stirnberg P, Beveridge C, Leyser O. (2009) Interactions between auxin and strigolactone in shoot branching control. Plant Physiol 151:400-412.
    83. He Y, Doyle MR, Amasino RM. (2004) PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis. Genes Dev 18(22):2774-84.
    84. He Y, Michaels SD, Amasino RM. (2003) Regulation of flowering time by histone acetylation in Arabidopsis. Science 302:1751-1754.
    85. Hempel FD, Feldman LJ. (1995) Specification of chimeric flowering shoots in wild-type Arabidopsis. Plant J 8:725-731.
    86. Hempel FD, Weigel D, Mandel MA, Ditta G, Zambryski PC, Feldman LJ, Yanofsky MF. (1997) Floral determination and expression of floral regulatory genes in Arabidopsis. Development 124:3845-3853.
    87. Hepworth SR, Klenz, JE, Haughn GW. (2006) UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression. Planta 223:769-778.
    88. Higashi K, Ishiga Y, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y. (2008) Modulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thaliana. Mol Genet Genomics 279:303-312.
    89. Hill TA, Day CD, Zondlo SC, Thackeray AG, Irish VF. (1998) Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis fl oral homeotic gene APETALA3. Development 125:1711-1721.
    90. Hinderhofer K, Zentgraf U. (2001) Identification of a transcription factor specifically expressed at the onset of leaf senescence. Planta 213:469-73.
    91. Honma T, Goto K. (2000) The Arabidopsis fl oral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals. Development 127:2021-2030.
    92. Hu J, Barlet X, Deslandes L, et al. (2008) Transcriptional Responses of Arabidopsis thaliana during Wilt Disease Caused by the Soil-Borne phytopathogenic Bacterium, Ralstonia solanacearum. PloS ONE 3:e2589.
    93. Hu Y, Xie Q, Chua NH. (2003) The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell 15:1951-1961.
    94. Huala E, Sussex IM. (1992) LEAFY interacts with floral homeotic genes to regulate Arabidopsis floral development. Plant Cell 4:901-903.
    95. Huala E, Sussex IM. (1992) LEAFY interacts with floral homeotic genes to regulate Arabidopsis fl oral development. Plant Cell 4:901-903.
    96. Huang T, Bohlenius H, Eriksson S, Parcy F, Nilsson O. (2005) The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309:1694-6.
    97. Huang T, Duman JG. (2002) Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNA-binding activity from winter bittersweet nightshade, Solanum dulcamara. Plant Mol Biol 48:339-50.
    98. Hwang EW, Kim KA, Park SC, et al. (2005) Expression profiles of hot pepper (Capsicum annuum) genes under cold stress conditions. JBiosci,30(5):657-67.
    99. Irish VF, Sussex IM. (1990) Function of the apetala-1 gene during Arabidopsis fl oral development. Plant Cell 2:741-53.
    100.Ishida T, Hattori S, Sano R, et al. (2007) Arabidopsis TRANSPARENT TESTA GLABRA2 Is Directly Regulated by R2R3 MYB Transcription Factors and Is Involved in Regulation of GLABRA2 Transcription in Epidermal Differentiation. Plant Cell 19:2531-43.
    101.Ishiguro S, Nakamura K. (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5'upstream regions of genes codingfor sporamin and beta-amylase from sweet potato. Mol Gen Genet 244:563-71.
    102.Ishiguro S, Nakamura K. (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5'upstream regions of genes codingfor sporamin and beta-amylase from sweet potato. Mol Gen Genet 244:563-71.
    103.Jacob Y, Mongkolsiriwatana C, Veley KM, Kim SY, Michaels SD. (2007) The nuclear pore protein AtTPR is required for RNA homeostasis, flowering time, and auxin signaling. Plant Physiol 144:1383-1390.
    104.Jenik PD, Irish V. (2000) Regulation of cell proliferation patterns by homeotic genes during Arabidopsis floral development. Development 127:1267-1276.
    105.Jeong S, Trotochaud AE, Clark SE. (1999) The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11:1925-1934.
    106.Jiang Y, Deyholos MK. (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol 6:25.
    107.Jiang Y, Deyholos MK. (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 69:91-105.
    108.Jin H, Martin C. (1999) Mutifunctionality and diversity within the plant MYB gene family. Plant Mol Biol 41:577-585.
    109.Jing, S. et al. (2009) Heterologous expression of OsWRKY23 gene enhances pathogen defense and dark-induced leaf senescence in Arabidopsis. Plant Growth Regul 58:181-190.
    110.Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK. (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211-1225.
    111.Johnson CS, Kolevski B, Smyth DR. (2002) TRANSPARENT TESTA GLABRA2, a Trichome and Seed Coat Development Gene of Arabidopsis, Encodes a WRKY Transcription Factor. Plant Cell 14:1359-75.
    112.Journot-Catalino N, Somssich IE, Roby D, et al. (2006) The Transcription Factors WRKY11 and WRKY17 Act as Negative Regulators of Basal Resistance in Arabidopsis thaliana. Plant Cell 8:3289-302.
    113.Jung JH, Seo YH, Seo PJ, Reyes JL, Yun J, Chua NH, Park CM. (2007) The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19(9):2736-48.
    114.Kardailsky I, et al. (1999) Activation tagging of the floral inducer FT. Science 286:1962-1965.
    115.Kato N. et al. (2007) Identification of a WRKY protein as a transcriptional regulator of benzylisoquinoline alkaloid biosynthesis in Coptis japonica. Plant Cell Physiol.48:8-18.
    116.Kayes JM, and Clark SE. (1998) CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development 125:3843-3851.
    117.Keller T, Abbott J, Moritz T, et al. (2006) Arabidopsis regulator of axillary meristemsl controls a leaf axil stem cell niche and modulates vegetative development. Plant Cell 18:598-611.
    118.Kempin SA, Savidge B, Yanofsky MF. (1995) Molecular basis of cauliflower phenotype in Arabidopsis. Science 267:522-525.
    119.Kim KC, Lai Z, Fan B, et al. Arabidopsis WRKY38 and WRKY62 Transcription Factors Interact with Histone Deacetylase 19 in Basal Defense. Plant Cell 20:2357-71.
    120.Kim SG, Kim SY, Park CM. (2007) A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 226:647-654.
    121.Klucher KM, Chow H, Reiser L, Fischer RL. (1996) The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 8:137-153.
    122.Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T. (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960-1962.
    123.Kobayashi Y, Wei gel D. (2007) Move on up, it's time for change--mobile signals controlling photoperiod-dependent flowering. Genes Dev 21(19):2371-84.
    124.Kohlen W, et al. (2011) Strigolactones Are Transported through the Xylem and Play a Key Role in Shoot Architectural Response to Phosphate Deficiency in Nonarbuscular Mycorrhizal Host Arabidopsis. Plant Physiol 155:974-987.
    125.Komatsu K, Maekawa M, Ujiie S, et al. (2003) LAX and SPA: major regulators of shoot branching in rice. Proc Natl Acad Sci USA 100:11765-11770.
    126.Korves TM, Bergelson J. (2003) A developmental response to pathogen infection in Arabidopsis. Plant Physiol 133:339-347.
    127.Krizek BA, Fletcher JC. (2005). Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6:688-698.
    128.Krizek BA, Prost V, Macias A. (2000) AINTEGUMENTA promotes petal identity and acts as a negative regulator of AGAMOUS. Plant Cell 12:1357-1366.
    129.Krizek BA. (1999) Ectopic expression of AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs. Dev Genet 25:224-236.
    130.Kwiatkowska D. (2006) Flower primordium formation at the Arabidopsis shoot apex:quantitative analysis of surface geometry and growth. J Exp Bot 57:571-80.
    131.Kwiatkowska D. (2008) Flowering and apical meristem growth dynamics. J Exp Bot 59:187-201.
    132.Lagace M, Matton, DP. (2004) Characterization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense. Planta 219:185-189.
    133.Lai Z, Vinod K, Zheng Z, et al. (2008) Roles of Arabidopsis WRKY3 and WRKY4 Transcription Factors in Plant Responses to Pathogens. BMC Plant Biol 8:68.
    134.Lamb RS, Hill TA, Tan QK, Irish VF. (2002) Regulation of APETALA3 floral homeotic gene expression by meristem identity genes. Development 129:2079-2086.
    135.Laufs P, Peaucelle A, Morin H, Traas J. (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131:4311-4322
    136.Laux T, Mayer KFX, Berger J, Jurgens G. (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87-96.
    137.Lee H, et al. (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev 14:2366-2376.
    138.Lee I, Wolfe DS, Nilsson O, Weigel D. (1997) A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS. Curr Biol 7:95-104.
    139.Lee I, Aukerman MJ, Gore SL, Lohman KN, Michaeis SD, Weaver LM, John MC, Feldmann KA, Amasino RM. (1994) Isolation of LUMINIDEPENDENS:a gene involved in the control of flowering time in Arabidopsis. Plant Cell 6:75-83.
    140.Levy YY, Dean C. (1998) The transition to flowering. The Plant Cell 10:1973-1989.
    141.Li J, Brader G, Palva ET. (2004) The WRKY70 Transcription Factor: A Node of Convergence for Jasmonate-Mediated and Salicylate-Mediated Signals in Plant Defense. Plant Cell 16:319-331.
    142.Li K, Wang Y, Han C, Zhang W, Jia H, Li X. (2007) GA signaling and CO/FT regulatory module mediate salt-induced late flowering in Arabidopsis thaliana. Plant Growth Regul 53:195-206.
    143.Li S, et al. (2009) Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Rep 28:683-693.
    144.Li X, et al. (2003) Control of tillering in rice. Nature 10:618-21.
    145.Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky MF. (1999) Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11:1007-1018.
    146.Lim MH, Kim YS, Chung KS, Seo YH, Lee I, Kim J, Hong CB, Kim HJ, Park CM. (2004) A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. Plant Cell 16:731-740.
    147.Lin H, et al. (2009) DWARF27, an Iron-Containing Protein Required for the Biosynthesis of Strigolactones, Regulates Rice Tiller Bud Outgrowth. Plant Cell 21:1512-1525.
    148.Lin R, Wang H. (2005) Two Homologous ATP-Binding Cassette Transporter Proteins, AtMDR1 and AtPGP1, Regulate Arabidopsis Photomorphogenesis and Root Development by Mediating Polar Auxin Transport. Plant Physiol 138:949-964.
    149.Liu C, Chen H, Er HL, Soo HM, Kumar PP, Han JH, Liou YC, Yu H. (2008) Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135:1481-1491.
    150.Liu L, White MJ, MacRae TH. (1999) Transcription factors and their genes in higher plants-functional domains, evolution and regulation. European Journal of Biochemistry 262:247-257.
    151.Liu X, Bai X, Wang X, et al. (2007) OsWRKY71, a rice transcription factor, is involved in rice defense response. J Plant Physiol 164:969-79.
    152.Lohmann JU, Hong RL, Hobe M, Busch MA, Parcy F, Simon R, Weigel D. (2001) A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105:793-803.
    153.Long J, Barton MK. (2000) Initiation of axillary and floral meristenm in Arabidopsis. Dev Biol 218:341-353.
    154.Long JA, Barton MK. (2000) Initiation of axillary and fl oral meristems in Arabidopsis. dev Biol 218:4311-4322.
    155.Long JA, Moan El, Medford JI, Barton MK. (1996). A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66-69.
    156.Luo, M. et al. (2005) MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci U S A 102:17531-17536.
    157.Maier AT, et al. (2009) Dual roles of the bZIP transcription factor PERIANTHIA in the control of fl oral architecture and homeotic gene expression. Development 136:1613-1620.
    158.Mandel MA, Yanofsky MF. (1995) A gene triggering flower formation in Arabidopsis. Nature 377:522-524.
    159.Mandel MA, Yanofsky MF. (1995) The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell 7:1763-1771.
    160.Mao P, Duan M, Wei C, et al. (2007) WRKY62 Transcription Factor Acts Downstream of Cytosolic NPR1 and Negatively Regulates Jasmonate-Responsive Gene Expression. Plant Cell Physiol 48:833-42.
    161.Marchive C, Mzid R, Deluc L, Barrieu F, Pirrello J, Gauthier A, Corio-Costet MF, Regad F, Cailleteau B, Hamdi S, et al. (2007) Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants. JExp Bot 58:1999-2010.
    162.Mare C, Mazzucotelli E, Crosatti C, et al. (2004) Hv-WRKY38:a new transcription factor involved in cold-and drought-response in barley. Plant Mol Biol 55:399-416.
    163.Martinez C, Pons E, Prats G, Leon J. (2004) Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J 37:209-217.
    164.Martinez C, Pons E, Prats G, Leon J. (2004) Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J 37:209-217.
    165.Martinez-Castilla LP, Alvarez-Buylla ER. (2003) Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny. Proc Natl Acad Sci USA 100:13407-13412.
    166.Mayer KF, et al. (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805-815.
    167.McConnell JR, Barton MK. (1998) Leaf polarity and meristem formation in Arabidopsis. Development 125:2935-2942.
    168.McGonigle B, Bouhidel K, Irish VF. (1996) Nuclear localization of the Arabidopsis APETALA3 and PISTILLATA homeotic gene products depends on their simultaneous expression. Genes Dev 10:1812-1821.
    169.Miao Y, Laun T, Zimmermann P, et al. (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55:853-67.
    170.Michaels SD, He Y, Scortecci K C, et al. (2003) Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc Natl Acad Sci USA 100 (17):10102-07.
    171.Miguel A, Green R, Nilsson O, Michael R, Weigel D. (1998) Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 10:791-800.
    172.Minakuchi K, et al. (2010) FINE CULM1 (FC1) Works Downstream of trigolactones to Inhibit the Outgrowth of Axillary Buds in Rice. Plant Cell Physiol 51:1127-1135.
    173.Mizukami Y, Fischer RL. (2000) Plant organ size control:AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci USA 97:942-947.
    174.Mizukami Y, Ma H. (1997) Determination of Arabidopsis floral meristem identity by AGAMOUS. Plant Cell 9:393-408.
    175.Mizukami Y. (2001) A matter of size:developmental control of organ size in plants. Curr Opin Plant Biol 4:533-539.
    176.Moon Y, Chen L, Long PR, Chang H, Zhu T, Maffeo M, Sung ZR. (2003) EMF genes maintain vegetative development by repressing the flower program in Arabidopsis. Plant Cell 15:681-693.
    177.Mouradov A, Cremer F, Coupland G. (2002) Control of flowering time:interacting pathways as a basis for diversity. The Plant Cell 14:S111-S130.
    178.Muller D, Schmitz G, Theres K. (2006) Blind Homologous R2R3 MYB Genes Control the Pattern of Lateral Meristem Initiation in Arabidopsis. Plant Cell 18:586-597.
    179.Mukhtar MS, Deslandes L, Auriac MC, et al. (2008) The Arabidopsis transcription factor WRKY27 influences wilt disease symptom development caused by Ralstonia solanacearum. Plant J 56:935-47.
    180.Murray SL, Ingle RA, Petersen LN, et al. (2007) Basal Resistance Against Pseudomonas syringae in Arabidopsis Involves WRKY53 and a Protein with Homology to a Nematode Resistance Protein. MPMI 20:1431-8.
    181.Mzid R, Marchive C, Blancard D, Deluc L, Barrieu F, Corio-Costet MF, Drira N, Hamdi S, Lauvergeat V. (2007) Overexpression of VvWRKY2 in tobacco enhances broad resistance to necrotrophic fungal pathogens. Physiol Plant 131:434-447.
    182.Nakagawa H, et al. (2005) Overexpression of a petunia zinc-finger gene alters cytokinin metabolism and plant forms. Plant J 41:512-523.
    183.Napoli C. (1996) Highly Branched phenotype of the petunia dadl-1 mutant is reversed by grafting. Plant Physiol 111:27-37.
    184.Ni J, Clark SE. (2006) Evidence for functional conservation, sufficiency, and proteolytic processing of the CLAVATA3 CLE domain. Plant Physiol 140:726-733.
    185.Ni WM, Xie DX, Hobbie L, Feng BM, Zhao DZ, Akkara J, Ma H. (2004) Regulation of flower development in Arabidopsis by SCF complexes. Plant Physiol 134:1574-1585.
    186.Nilsson O, Lee I, Blazquez MA, Weigel D. (1998) Flowering-time genes modulate the response to LFAFY activity. Genetics 150:403-410.
    187.Niwa Y, Ito S, Nakamichi N, Mizoguchi T, Niinuma K, Yamashino T, Mizuno T. (2007) Genetic Linkages of the Circadian Clock-Associated Genes, TOC1, CCA1 and LHY, in the Photoperiodic Control of Flowering Time in Arabidopsis. thaliana.Plant Cell Physiol 48 (7):925-937.
    188.Oh SK, Baek KH, Park JM, et al. (2008) Capsicum annuum WRKY protein CaWRKYl is a negative regulator of pathogen defense. New Phytol 177:977-89.
    189.Oh SK, Baek KH, Park JM, Yi SY, Yu SH, Kamoun S, Choi D. (2008) Capsicum annuum WRKY protein CaWRKYl is a negative regulator of pathogen defense. New Phytol 177:977-989.
    190.Ohshima S, Murata M, Sakamoto W, Ogura Y, Motoyoshi F. (1997) Cloning and molecular analysis of the Arabidopsis gene TERMINAL FLOWER 1. Mol Gen Genet 254:186-194.
    191.Okamuro JK, denBoer BGW, LotysPrass C, Szeto, W, Jofuku KD. (1996) Flowers into shoots:Photo and hormonal control of a meristem identity switch in Arabidopsis. Proc Natl Acad Sci USA 93:13831-13836.
    192.Pandey SP, Somssich IE. (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648-1655.
    193.Parcy F, Nilsson O, Busch MA, Lee I, Weigel D. (1998) A genetic framework for floral patterning. Nature 395:561-566.
    194.Parenicova L, et al. (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis:new openings to the MADS world. Plant Cell 15:1538-1551.
    195.Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200-203.
    196.Pelaz S, Tapia-Lopez R, Alvarez-Buylla ER, Yanofsky MF. (2001) Conversion of leaves into petals in Arabidopsis. Curr Biol 11:182-184.
    197.Pnueli L, Hallak-Herr E, Rozenberg M, et al. (2002) Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. Plant J 31:319-30.
    198.Putterill J, Laurie R, Macknight, R. (2004) It's time to flower: the genetic control of flowering. BioEssays 26:363-373.
    199.Putterill J. (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80: 821-824.
    200.Qiu D, Xiao J, Ding X, et al. (2007) OsWRKY13 Mediates Rice Disease Resistance by Regulating Defense-Related Genes in Salicylate-and Jasmonate-Dependent Signaling. MPMI 20:492-99.
    201.Qiu Y, Yu D. (2009) Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environmental and Experimental Botany 65:35-47.
    202.Quail PH. (2002) Phytochrome photosensory signalling networks. Nature Reviews Molecular Cell Biology 3:85-93.
    203.Quesada V, Macknight R, Dean C, Simpson GG. (2003) Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO J 22:3142-3152.
    204.Ratcliffe OJ, Bradley DJ, Coen ES. (1999) Separation of shoot and fl oral identity in Arabidopsis. Development 126:1109-1120.
    205.Reddy GV, Heisler MG, Ehrhardt DW, Meyerowitz EM. (2004) Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development 131:4225-4237.
    206.Riechmann JL, Meyerowitz EM. (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633-646.
    207.Rizhsky L, Liang H, Mittler R. (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143-51.
    208.Robatzek S, Somssich IE. (2001) A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence-and defence-related processes. Plant J 28:123-33.
    209.Robatzek S, Somssich IE. (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 16:1139-49.
    210.Robles P, Pelaz S. (2005) Flower and fruit development in Arabidopsis thaliana. Int JDev Biol 49:633-643.
    211.Roldan M, Gomez-Mena C, Ruiz-Garcia L, Salinas J, Martinez-Zapater JM. (1999) Sucrose availability on the aerial part of the plant promotes morphogenesis and flowering of Arabidopsis in the dark. Plant J 20:581-590.
    212.Rushton PJ, Macdonald H, Huttly AK, et al. (1995) Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of alpha-Amy2 genes. Plant Mol Biol 29:691-702.
    213.Rushton PJ, Torres JT, Parniske M, et al. (1996) Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15:5690-700.
    214.Sablowski R. (2007) Flowering and determinacy in Arabidopsis. J Exp Bot 58:899-907.
    215.Saddic LA, et al. (2006). The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of CAULIFLOWER. Development 133:1673-1682.
    216.Samach A, et al. (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613-1616.
    217.Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G. (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 2000 288(5471):1613-6.
    218.Sauer N, Ludwig A, Knoblauch A, Rothe P, Gahrtz M, Franz K. (2004) AtSUC8 and AtSUC9 encode functional sucrose transporters, but the closely related AtSUC6 and AtSUC7 genes encode aberrant proteins in different Arabidopsis ecotypes. Plant J 40:120-130.
    219.Schomburg FM, Patton DA, Meinke DW, Amasino RM. (2001) FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell 13:1427-1436.
    220.Schoof H, Lenhard M, Haecker A, Mayer KFX, Jurgens G, Laux T. (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635-644.
    221.Schroeder JI, Kuhn JM. (2006) Abscisic acid in bloom. Nature 439:227-228.
    222.Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ 3rd. (2002) ETDB1:a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatin genes by KRAB zinc-finger proteins. Genes Dev 16:919-932.
    223.Schultz EA, Haughn GW. (1993) Genetic analysis of the floral initiation process (FLIP) in Arabidopsis. Development 119:745-765.
    224.Schulze S, Schafer BN, Parizotto EA, Voinnet O, Theres K. (2010) LOST MERISTEMS genes regulate cell differentiation ofcentral zone descendants in Arabidopsis shoot meristems. Plant J 64:668-678.
    225.Schwartz SH, Tan BC, Gage DA, Zeevaart JA, McCarty DR. (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872-4.
    226.Shannon S, Meeks-Wagner DR. (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3:877-892.
    227.Shannon S, Meeks-Wagner DR. (1993) Genetic interactions that regulate inflorescence development in Arabidopsis. Plant Cell 5:639-655.
    228.Shannon S, Meeks-Wagner DR. (1993) Genetic interactions that regulate infl orescence development in Arabidopsis. Plant Cell 5:639-655.
    229.Shen QH, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich IE, Schulze-Lefert P. (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 315:1098-1103.
    230.Shen QH, Schulze-Lefert, P. (2007) Rumble in the nuclear jungle: compartmentalization, trafficking, and nuclear action of plant immune receptors. EMBOJ 26:4293-4301.
    231.Shimizu-Sato S, Tanaka M, Mori Hi. (2009) Auxin-cytokinin interactions in the control of shoot branching. Plant Mol Biol 69:429-435.
    232.Shimizu-Sato S, Mori H. (2001) Control of Outgrowth and Dormancy in Axillary Buds. Plant Physiol 127:1405-1413.
    233.Simpson GG, Gendall AR, Dean C. (1999) When to switch to flowering. Annu Rev Cell Dev Bi 99:519-550.
    234.Simpson GG, Dijkwel PP, Quesada V, Henderson I, Dean C. (2003) FY is an RNA 3'end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113:777-787.
    235.Simpson GG. (2004) The autonomous pathway: epigenetic and post-transctriptional gene regulation in the control of Arabidopsis flowering time. Curr Opin in Plant Biol 7:570-574.
    236.Simpson, GG, Dean C. (2002) Arabidopsis, the rosetta stone of flowering time? Science 296:285-289.
    237.Skibbe M, Qu N, Galis I, et al. (2008) Induced Plant Defenses in the Natural Environment:Nicotiana attenuata WRKY3 and WRKY6 Coordinate Responses to Herbivory. Plant Cell 20:1984-2000.
    238.Smyth DR, Bowman JL, Meyerowitz EM. (1990) Early fl owerdevelopment in Arabidopsis. Plant Cell 2:755-767.
    239.Sorefan K, et al. (2003) MAX4 and RMS1 Are Orthologous Dioxygenase-like Genes That Regulate Shoot Branching in Arabidopsis and Pea. Genes Dev 17:1469-1474.
    240.Sridhar VV, Surendrarao A, and Liu Z. (2006) APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development. Development 133:3159-3166.
    241.Steeves TA, Sussex IM. (1989) Patterns in Plant Development,2nd ed. (Cambridge, UK:Cambridge University Press).
    242.Stirnberg P, Chatfield SP, Leyser O. (1999) AXR1 Acts after Lateral Bud Formation to Inhibit Lateral Bud Growth in Arabidopsis. Plant Physiol 121:839-847.
    243.Stirnberg P, Furner IJ, Leyser O. (2007) MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J 50:80-94.
    244.Sivitz AB, Reinders A, Johnson ME, Krentz AD, Grof CPL, Perroux JM, Ward JM. (2007) Arabidopsis Sucrose Transporter AtSUC9, High-affinity Transport Activity, Intragenic Control of Expression, and Early Flowering Mutant Phenotype. Plant Physiol 143:188-198.
    245.Suarez-L6pez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116-20.
    246.Sun B, Xu Y, Ng KH, Ito T. (2009) A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes Dev 23:1791-1804.
    247.Sun C, Palmqvist S, Olsson H, et al. (2003) A Novel WRKY Transcription Factor, SUSIBA2, Participates in Sugar Signaling in Barley by Binding to the Sugar-Responsive Elements of the isol Promoter. Plant Cell 15:2076-92.
    248.Sun TP, Kamiya Y. (1994) The Arabidopsis gal locus encodes the cyciase ent-kaurene synthetase of gibberellin biosynthesis. Plant Cell 6:1509-1518.
    249.Sundstrom JF, Nakayama N, Glimelius K, Irish VF. (2006) Direct regulation of the fl oral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis. Plant J 46:593-600.
    250.Sung S, Amkasimo RM. (2004) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427:159-164.
    251.Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C. (2003) The Os-TBl gene negatively regulates lateral branching in rice. Plant J 33:513-520.
    252.Tilly JJ, Allen DW, Jack T. (1998) The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development 125:1647-1657.
    253.Traas J, Doonan J. (2003) Separables roles of UFO during floral development revealed by conditional restoration of gene function. Development 130:785-796.
    254.Trotochaud AE, Hao T, Wu G, Yang Z, Clark SE. (1999) The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell 11:393-406.
    255.Turnbull CG, Booker JP, Leyser O. (2002) Micrografting techniques for testing long-distance signalling in Arabidopsis. Plant J 32:255-262.
    256.Ulker B, Shahid Mukhtar M, et al. (2007) The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta 226(1):125-37.
    257.Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G. (2004) Photoreceptor Regulation of CONSTANS Protein in Photoperiodic Flowering. Science 303(5660):1003-6.
    258.Vaughan JG (1952) Structure of the angiosperm apex. Nature 169:458-459.
    259.Wagner D, Sablowski RW, Meyerowitz EM. (1999) Transcriptional activation of APETALA1 by LEAFY. Science 285:582-584.
    260.Wagner D, Wellmer F, Dilks K, William D, Smith MR, Kumar PP, Riechmann JL, Greenland AJ, Meyerowitz EM. (2004) Floral induction in tissue culture:a system for the analysis of LEAFY dependent gene regulation. Plant J 39:273-282.
    261.Wang D, Amornsiripanitch N, Dong X. (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2:e123.
    262.Wang D, Amornsiripanitch N, Dong X. (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2:e123.
    263.Wei W, Zhang Y, Han L, et al. (2008) A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco. Plant Cell Rep 27:795-803.
    264.Weigel D, Alvarez J, Smyth D, Yanofsky MF, Meyerowitz EM. (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843-859.
    265.Weigel D, Nilsson O. (1995) A developmental switch sufficient for flower initiation in diverse plant. Nature 377:495-500.
    266.Weiss J, Delgado-Benarroch L, Egea-Cortines M. (2005) Genetic control of floral size and proportions. Int J Dev Biol 49:513-525.
    267.Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D. (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056-1059.
    268.William DA, Su Y, Smith MR, Lu M, Baldwin DA, Wagner D. (2004) Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci USA 101:1775-1780.
    269.Wu X, Shiroto Y, Kishitani S, et al. (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28:21-30.
    270.Xie Z, Zhang ZL, Zou X, et al. (2006) Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells. Plant J 46:231-42.
    271.Xing DH, Lai ZB, Zheng ZY, Vinod KM, Fan BF, Chen ZX. (2008) Stress and pathogen-induced Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense. Mol Plant 1:459-470.
    272.Xu X, Chen C, Fan B, et al. (2006) Physical and Functional Interactions between Pathogen-Induced Arabidopsis WRKY18, WRKY40, and WRKY60 Transcription Factors. Plant Cell 18:1310-26.
    273.Xu YH, Wang JW, Wang S, et al. (2004) Characterization of GaWRKYl, a Cotton Transcription Factor That Regulates the Sesquiterpene Synthase Gene (+)-delta-Cadinene Synthase-A. Plant Physiol 135:507-15.
    274.Yang C, Chen L, Sung ZR. (1995) Genetic regulation of shoot development in Arabidopsis:role of the EMF genes. Dev Biol 169:421-435.
    275.Yang P, Wang Z, Fan B, et al. (1999) A pathogen-and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element of the tobacco class I chitinase gene promoter. Plant J 18:141-149.
    276.Yoda H, Ogawa M, Yamaguchi Y, et al. (2002) Identification of early-responsive genes associated with the hypersensitive response to tobacco mosaic virus and characterization of a WRKY-type transcription factor in tobacco plants. Mol Genet Genomics 267:154-61.
    277.Yoshida N, Yanai Y, Chen L, Kato Y, Hiratsuka J, Miwa T, Sung ZR, Takahashi S. (2001) EMBRYONIC FLOWER2, a novel Polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis. Plant Cell 13:2471-2481.
    278.Yu D, Chen C, Chen Z. (2001) Evidence for an important Role of WRKY DNA Binding Proteins in the Regulation of NPR1 Gene Expression. Plant Cell 13:1527-40.
    279.Yu H, Ito T, Wellmer F, Meyerowitz EM. (2004) Repression of AGAMOUS-LIKE24 is a crucial step in promoting flower development. Nat Genet 36:157-161.
    280.Yu X, Michaels SD. (2010) The Arabidopsis Paflc Complex Component CDC73 Participates in the Modification of FLOWERING LOCUS C Chromatin. Plant Physiol 153:1074-1084.
    281.Zhang J, Peng Y, Guo Z. (2008) Constitutive expression of pathogen inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Cell Res 18:508-521.
    282.Zhang ZL, Xie Z, Zou X, et al. (2004) A Rice WRKY Gene Encodes a Transcriptional Repressor of the Gibberellin Signaling Pathway in Aleurone Cells. Plant Physiol 134:1500-13.
    283.Zhao L, Kim Y, Dinh TT, Chen X. (2007) miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems. Plant J 51:840-849.
    284.Zheng Z, Mosher S, Fan B, Klessig D, Chen Z. (2007) Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol 7:2.
    285.Zheng Z, Qamar SA, Chen Z, et al. (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:592-605.
    286.Zhou QY, et al. (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6:486-503.
    287.Zhu JK. (2001) Plant salt tolerance. Trends Plant Sci 6:66-71.
    288.Zik M, Irish VF. (2003) Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action. Plant Cell 15:207-222.
    289.陈彩艳,邹军煌,张淑英,朱立煌.(2009)独角金内酯能抑制植物的分枝并介导植物与枞枝真菌及寄生植物间的相互作用.中国科学C辑:生命科学39:525-533.
    290.李亚栋,张芊,孙学辉,路铁刚.(2009)植物分枝发育的调控机制.中国农业科发导报11:1-9.
    291.樊丽娜,邓海华,齐永文.(2008)植物CO基因研究进展.西北植物学报28:11281-1287.
    292.夏玉凤,夏桂雪.(2007)影响植物分枝的一些基因及其分子机制.河北师范大学学报(自然科学版)31:671-675.
    293.雍伟东,种康,许智宏等.(2000)高等植物开花时间决定的基因调控研究.群学通报45(5):455-466.
    294.袁进成,刘颖慧.(2007)高等植物侧芽、侧枝的发生及调控.河北方学院学报(自然科学版)23:18-23.
    295.曾群,赵仲华,赵淑清。(2006)植物开花时间调控的信号途径.遗传28:1031-1036.
    296.Taiz L, Zeiger E. (2009) Plant Physiology.宋纯鹏,王学路等译.植物生理学(第四版).科学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700