豆科植物LATHYROIDES基因的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在植物器官发育过程中,有很多重要的调控因子参与其中,在不同的物种中,这些调控因子发挥保守的功能来控制植物器官的属性以及决定器官形状和大小。最令人感兴趣的是,在长期的进化过程中,这些因子是否获得了物种特异的功能,并且被整合到不同的分子途径中去,从而产生了自然界丰富多样的植物形态。本研究在豆科植物豌豆和百脉根中筛选了一个等位的基因座,发现这个基因座与豌豆经典遗传学中发现的一个位点LATHYROIDES (LATH)等位,lath突变以后会造成多效性的表型,影响器官中侧轴向的发育。通过比较基因组学方法克隆了LATH基因,它编码了一个含有同源异型蛋白模指的转录调控因子,其氨基酸序列与拟南芥中的WOX1高度同源;利用遗传学、细胞生物学和分子生物学等技术对LATH的功能进行研究,结果表明:LATH可以与多个发育途径的因子相互作用,参与了背部花瓣和复叶的发育。
     1.在豌豆和百脉根基因组中鉴别lath突变位点
     在豌豆快中子诱变群体中得到6个等位突变体,其表型与经典的lathyroide突变体表型类似,遗传学研究表明,它们与lath属于同一个基因座。在百脉根EMS诱变群体中得到narrow organ1(nao1)突变体。lath和nao1突变体的花瓣和叶片变窄,最明显的表型是背部花瓣变为一窄条形、失去大部分的裂片组织和细胞,且突变体雌性不育。遗传分析结果表明nao1与lath都受隐性单基因控制。
     2.比较基因组学克隆LATH/NAO1
     通过精细定位,把NAO1基因锚定在百脉根4号染色体长臂末端CM0042重叠群250K的区域。比较基因组学分析发现,该区域与蒺藜苜蓿的第4号染色体AC174277和AC137078所在区域有着非常好的微共线性,而且豌豆LATH基因也被定位到对应的共线性区域。生物信息学分析发现,共线性区域内有一个WOX1(WUSCHEL RELATEDHOMEOBOX1)同源基因,在nao1突变体中,LjWOX1发生一个核苷酸的替换导致蛋白翻译提前终止,在豌豆6个lath等位突变体中,PsWOX1基因均发生突变。
     3.LATH基因表达模式
     RT-PCR分析发现,LATH基因在豌豆地上器官均有表达,且在花苞中表达量最高,但在根中没有检测到LATH基因表达。原位杂交结果显示,LATH基因在托叶和小叶的中央维管束及两侧区域,花瓣和早期雄蕊两端及心皮的背部融合处表达;在顶端分生组织没有检测到LATH表达。
     4.LATH与PsCYCs在花型发育中的相互作用
     由于lath有强烈的背部花瓣的表型,我们在lath遗传背景下,引入了调控背部花瓣和侧部花瓣发育TCP基因(PsCYC2和PsCYC3)的突变(lst和k)构建了一系列双突变体,研究LATH与PsCYCs之间的相互作用。lath k双突变体表现为叠加的表型,lath lst双突变背部花瓣呈现lst抑制lath的表型,而侧部和腹部花瓣呈现lath突变体表型。细胞生物学分析发现:lath突变体背部花瓣缺失了典型花瓣裂片细胞区域,lst1-2突变体背部花瓣呈现侧部花瓣属性,而lath1-2lst1-2双突变体背花瓣呈现出具有背部属性的花瓣裂片细胞区。上述结果说明在豌豆花发育中,LATH与PsCYC2的遗传互作对于花瓣的背部属性有决定性作用。
     通过定量PCR的方法检测发现LATH与PsCYC在转录水平没有直接的调控关系。在酵母双杂交实验中也未检测到LATH与PsCYC2之间有相互作用。上述结果提示:LATH与PsCYC2的互作应该发生在转录后,但LATH与PsCYC2之间可能不发生直接的蛋白与蛋白间的相互作用。
     5.LATH基因参与豌豆复叶的发育
     LATH基因突变后,复叶中的卷须属性发生改变,与豌豆tendril-less(tl)突变体表型(小叶取代卷须)非常类似。定量PCR分析发现,lath等位突变体中Tl基因表达量均显著下调,表明:LATH基因可以通过调控TL表达,影响卷须属性和参与复叶发育的分子调控。
During organ development, many key regulators have been identified in plantgenomes, which play conserved role among plant species to control the organidentities and/or determine the organ size and shape. It is intriguing thatwhether these key regulators can acquire diverse function and be integratedinto different molecular pathways among different species, giving rise to theimmense diversity of organ forms in nature. In this study, we havecharacterized and cloned LATHYROIDES (LATH), a classical locus in pea,whose mutation displays pleiotropic alteration of lateral growth of organs andpredominant effects on tendril and dorsal petal development. LATH encodesa WUSCHEL-related homeobox1(WOX1) transcription factor, which has aconserved function in determining organ lateral growth among different plant species. Furthermore, we studied the function of LATH by genetics, cellbiology and molecular biology methods and found that LATH interplay withmultiple developmental factors to regulate development of flower andcompound leaf.
     1. Isolation and characterization of lath and nao1mutants from pea andLotus
     One narrow organ1(nao1) and6allelic mutants (lath) similar tolathyroide mutant were isolated from EMS mutagenesis in Lotus and fastneutron mutagenesis in pea respectively. Both nao1and lath had pleiotropiceffect including narrower leaves and flowers especially dorsal petal from abig petal to a narrow strip, and all the mutants except the weaker allelelath1-6were female sterile. Genetic analysis showed that nao1and lath wereboth controlled by single recessive locus.
     2. Molecular cloning the LATH/NAO1gene
     We fine mapped NAO1to a250K region in the end of the long arm inchromosome4of Lotus. This region covered three BACs which overlappedto form CM0042contig and shared microsynteny with AC174277andAC137078in the end of chromosome4of Medicago truncatula. LATHexactly was primarily mapped to the counterpart of the region.Bioinformatics analysis found that there was a WUSCHEL RELATED HOMEOBOX1(WOX1) homologous gene in the region. Squences analysisshowed that nao1mutant carried a single base substitution in LjWOX1which putatively resulted in forming a truncated protein and PsWOX1mutated in all the six allelic mutants in pea.
     3. LATH expression pattern
     RT-PCR analysis showed that LATH expressed in aerial organs andshowed the most high expression level in floral buds. But strikingly, therewas almost no or very low expression level in roots even with high cycles ofamplification. RNA in situ hybridization analysis showed that LATH mainlyexpressed in central vascular bundle in stipules and leaflets, and in the marginof leaflets and tendrils. As in floral development, LATH mainly expressed inlateral parts of five petals and early stage stamens. LATH also expressed inthe dorsal fusion region of the carpal. LATH showed no expression pattern inshoot apical meristerm (SAM).
     4. Genetic interaction among LATH and PsCYCs
     In order to investigate the interaction between LATH and PsCYCs, wecarried out a series of genetic cross. lath k double mutant showed an additivephenotype. the lath lst double mutant showed an unexpected phenotype inthat the dorsal petal of the double mutant bore partially developed blade, andwas somewhat similar to the lst single mutant. These results suggested that LATH genetic interact with LST to regulate petal development. Narroweddorsal petal of lath losed subdomain with dorsalized epidermal cell, andlobed dorsal petal of lst altered dorsal identity with lateralized epidermal cell.However dorsal petal of lath lst somehow reaquired dorsal identiy as judgedby appearance of the dorsalized epidermal cell types.
     Fluorescence real-time PCR analysis showed that there was noregulation between LATH and LST in transcription level. Yeast two hybridassay also showed there was no direct interaction between LATH and LST inyeast.
     5. LATH regulated Tendril-less to affect tendril development in pea
     The distal part of the compound leaves showed a tendril converting tonarrow leaflets phenotype in lath mutant which reminiscent of tendril-lessmutant which also showed increased leaflets but not change the complexityof the compound leaves. Fluorescence real-time PCR analysis showed thatTL was downregulated in lath mutants. This showed that LATH controlledtendril development through regulating TL gene.
引文
[1] Lewis GP, Schrire B, Mackinder B, et al., Legumes of the World. Richmond, UK,2005, KewPublishing.
    [2] Choi HK, Mun JH, Kim DJ, et al., Estimating genome conservation between crop and modellegume species. Proc. Natl. Acad. Sci. U S A,2004,101(43):15289-15294.
    [3] Doyle JJ, Luckow MA, The rest of the iceberg. Legume diversity and evolution in a phylogeneticcontext. Plant Physiol.,2003,131(3):900-910.
    [4] Graham PH, Vance CP, Legumes: importance and constraints to greater use. Plant Physiol.,2003,131(3):872-877.
    [5] Sato S, Nakamura Y, Kaneko T, et al., Genome structure of the legume, Lotus japonicus. DNARes.,2008,15(4):227-329.
    [6] Schmutz J, Cannon SB, Schlueter J, et al., Genome sequence of the palaeopolyploid soybean.Nature,2010,463(7278):178-183.
    [7] Young ND, Debellé F, Oldroyd GE, et al., The Medicago genome provides insight into theevolution of rhizobial symbioses. Nature,2011,480(7378):520-524.
    [8] Varshney RK, Chen W, Li Y, et al., Draft genome sequence of pigeonpea (Cajanus cajan), anorphan legume crop of resource-poor farmers. Nat Biotechnol.,2011,30(1):83-89.
    [9] Young ND, Cannon SB, Sato S, et al., Sequencing the genespaces of Medicago truncatula andLotus japonicus. Plant Physiol.,2005,137(4):1174-1181.
    [10] Varshney RK, Penmetsa RV, Dutta S, et al., Pigeonpea genomics initiative (PGI): aninternational effort to improve crop productivity of pigeonpea (Cajanus cajan L.). Mol Breed,2010,26(3):393-408
    [11] Bohra A, Dubey A, Saxena RK, et al., Analysis of BAC-end sequences (BESs) and developmentof BES-SSR markers for genetic mapping and hybrid purity assessment in pigeonpea (Cajanus spp.).BMC Plant Biol.,2011,11(1):56-70
    [12] Varshney RK, Nayak SN, May GD, et al., Next generation sequencing technologies and theirimplications for crop genetics and breeding. Trends Biotechnol.,2009,27:522-530.
    [13] Franssen SU, Shrestha RP, Br utigam A, et al., Comprehensive transcriptome analysis of thehighly complex Pisum sativum genome using next generation sequencing. BMC Genomics,2011,12:227.
    [14] Kaur S, Pembleton LW, Cogan NO, et al., Transcriptome sequencing of field pea and faba beanfor discovery and validation of SSR genetic markers. BMC Genomics,2012,13:104.
    [15] Kudapa H, Bharti AK, Cannon SB, et al., A Comprehensive Transcriptome Assembly ofPigeonpea (Cajanus cajan L.) using Sanger and Second-Generation Sequencing Platforms. Mol Plant,2012,[Epub ahead of print].
    [16] Wang TL, Welham TJ, et al., A TILLING reverse genetics tool and a web-accessible collectionof mutants of the legume Lotus japonicus. Plant Physiol.,2003,131(3):866-871.
    [17] Hoffmann D, Jiang Q, Men A, et al., Nodulation deficiency caused by fast neutron mutagenesisof the model legume Lotus japonicus. J. Plant Physiol.,2007,164(4):460-469.
    [18] Urbański DF, Ma olepszy A, Stougaard J, et al., Genome-wide LORE1retrotransposonmutagenesis and high-throughput insertion detection in Lotus japonicus. Plant J.2012,69(4):731-741.
    [19] Fukai E, Soyano T, Umehara Y, et al., Establishment of a Lotus japonicus gene taggingpopulation using the exon-targeting endogenous retrotransposon LORE1. Plant J.2012,69(4):720-730.
    [20] Tadege M, Wen J, He J, et al., Large-scale insertional mutagenesis using the Tnt1retrotransposon in the model legume Medicago truncatula. Plant J.,2008,54(2):335-347.
    [21] Cheng X, Wen J, Tadege M, et al., Reverse genetics in medicago truncatula using Tnt1insertionmutants. Methods Mol. Biol.,2011,678:179-90.
    [22] Revalska M, Vassileva V, Goormachtig S, et al., Recent Progress in Development of Tnt1Functional Genomics Platform for Medicago truncatula and Lotus japonicus in Bulgaria. CurrGenomics.2011,12(2):147-152.
    [23] Dalmais M, Schmidt J, Le Signor C, et al., UTILLdb, a Pisum sativum in silico forward andreverse genetics tool. Genome Biol.,2008,9(2): R43.
    [24] Constantin GD, Krath BN, MacFarlane SA, et al., Virus-induced gene silencing as a tool forfunctional genomics in a legume species. Plant J.,2004,40(4):622-631.
    [25] Gr nlund M, Constantin G, Piednoir E, et al., Virus-induced gene silencing in Medicagotruncatula and Lathyrus odorata. Virus Res.,2008,135(2):345-349.
    [26] Constantin GD, Gr nlund M, Johansen IE, et al., Virus-induced gene silencing (VIGS) as areverse genetic tool to study development of symbiotic root nodules. Mol. Plant Microbe Interact,2008,21(6):720-727.
    [27] Zhu H, Choi HK, Cook DR, et al., Bridging model and crop legumes through comparativegenomics. Plant Physiol.,2005,137(4):1189-1196.
    [28] Kaló P, Seres A, Taylor SA, et al., Comparative mapping between Medicago sativa and Pisumsativum. Mol. Genet. Genomics,2004,272(3):235-246.
    [29] Choi HK, Kim D, Uhm T, et al., A sequence-based genetic map of Medicago truncatula andcomparison of marker colinearity with M. sativa. Genetics,2004,166(3):1463-1502.
    [30] Muchero W, Diop NN, Bhat PR, et al., A consensus genetic map of cowpea [Vigna unguiculata(L) Walp.] and synteny based on EST-derived SNPs. Proc. Natl. Acad. Sci. U S A.,2009,106(43):18159-64.
    [31] Cannon SB, Sterck L, Rombauts S, et al., Legume genome evolution viewed through theMedicago truncatula and Lotus japonicus genomes. Proc. Natl. Acad. Sci. U S A,2006,103(40):14959-14964.
    [32] Cannon SB, May GD, Jackson SA, Three sequenced legume genomes and many crop species:rich opportunities for translational genomics. Plant Physiol.,2009,151(3):970-977.
    [33] Young ND and Udvardi M, Translating Medicago truncatula genomics to crop legumes. CurrOpin Plant Biol.,2009,12(2):193-201.
    [34] Li J, Dai X, Liu T, et al., LegumeIP: an integrative database for comparative genomics andtranscriptomics of model legumes. Nucleic Acids Res.,2012,40(Database issue): D1221-1229.
    [35] Endre G, Kaló P, Kevei Z, et al., Genetic mapping of the non-nodulation phenotype of themutant MN-1008in tetraploid alfalfa (Medicago sativa). Mol. Genet. Genomics,2002,266(6):1012-1019
    [36] Gualtieri G, Kulikova O, Limpens E, et al., Microsynteny between pea and Medicago truncatulain the SYM2region. Plant Mol. Biol.,2002,50(2):225-235.
    [37] Searle IR, Men AE, Laniya TS, et al., Long-distance signaling in nodulation directed by aCLAVATA1-like receptor kinase. Science,2003,299(5603):109-112.
    [38] Riely B., Ane JM., Penmetsa RV, et al., Genetic analysis in model legumes bring Nod-factorsignaling to center stage. Curr. Opin. Plant Biol.,2004,7(4):408-413.
    [39] Endress PK, Evolution of floral symmetry. Curr. Opin. Plant Biol.,2001,(1):86-91.
    [40] Jabbour F, Nadot S, Damerval C, Evolution of floral symmetry: a state of the art. C. R. Biol.,2009,332(2-3):219-231.
    [41] Endress PK, Symmetry in flowers: diversity and evolution. Int. J. Plant Sci.,1999,160(S6):S3-S23.
    [42] Stebbins GL, Flowering Plants: Evolution Above the Species Level. Harvard University Press,1974.
    [43] Sargent RD, Floral symmetry affects speciation rates in angiosperms. Proc. Biol. Sci.,2004,271(1539):603-608.
    [44] Cubas P, Floral zygomorphy, the recurring evolution of a successful trait. Bioessays,2004,26(11):1175-1184.
    [45] Preston JC, Martinez CC, Hileman LC, Gradual disintegration of the floral symmetry genenetwork is implicated in the evolution of a wind-pollination syndrome. Proc. Natl. Acad. Sci. U S A.,2011,108(6):2343-8
    [46] Zhang W, Kramer EM, Davis CC, Floral symmetry genes and the origin and maintenance ofzygomorphy in a plant-pollinator mutualism. Proc. Natl. Acad. Sci. U S A.,2010,107(14):6388-93
    [47] Luo D, Carpenter R, Vincent C, et al., Origin of floral asymmetry in Antirrhinum. Nature,1996,383(6603):794-799.
    [48] Luo D, Carpenter R, Copsey L, et al., Control of organ asymmetry in flowers of Antirrhinum.Cell,1999,99(4):367-376.
    [49] Galego L and Almeida J, Role of DIVARICATA in the control of dorsoventral asymmetry inAntirrhinum flowers. Genes Dev.,2002,16(7):880-891.
    [50] Corley SB, Carpenter R, Copsey L, et al., Floral asymmetry involves an interplay between TCPand MYB transcription factors in Antirrhinum. Proc. Natl. Acad. Sci. U S A,2005,102(14):5068-5073.
    [51] Preston JC and Hileman LC, Developmental genetics of floral symmetry evolution. Trends PlantSci.,2009,14(3):147-154
    [52] Keck E, McSteen P, Carpenter R, et al., Separation of genetic functions controlling organidentity in flowers. EMBO J.,2003,22(5):1058-1066
    [53] Cubas P, Lauter N, Doebley J, et al., The TCP domain: a motif found in proteins regulating plantgrowth and development. Plant J.,1999,18(2):215-222
    [54] Almeida J, Rocheta M, Galego L, Genetic control of flower shape in Antirrhinum majus.Development,1997,124(7):1387-1392
    [55] Almeida J and Galego L, Flower symmetry and shape in Antirrhinum. Int. J. Dev. Biol.,2005,49(5-6):527-537
    [56] Tucker SC, Floral development in legumes. Plant Physiol.,2003,131(3):911-926.
    [57] Citerne HL, Luo D, Pennington RT, et al., A phylogenomic investigation of CYCLOIDEA-likeTCP genes in the Leguminosae. Plant Physiol.,2003,131(3):1042-1053.
    [58] Fukuda T, Yokoyama J, Maki M, Molecular evolution of cycloidea-like genes in Fabaceae. J.Mol. Evol.,2003,57(5):588-597
    [59] Ree RH, Citerne HL, Lavin M, et al., Heterogeneous selection on LEGCYC paralogs in relationto flower morphology and the phylogeny of Lupinus (Leguminosae). Mol. Biol. Evol.,2004,21(2):321-331.
    [60] Feng X, Zhao Z, Tian Z, et al., Control of petal shape and floral zygomorphy in Lotus japonicus,Proc. Natl. Acad. Sci. U S A,2006,103(13):4970-4975.
    [61] Wang Z, Luo Y, Li X, et al., Genetic control of floral zygomorphy in pea (Pisum sativum L.).Proc. Natl. Acad. Sci. U S A,2008,105(30):10414-10419.
    [62] Cronk QC, Legume flowers bear fruit. Proc. Natl. Acad. Sci. U S A,2006,103(13):4801-4802.
    [63] Citerne HL, Pennington RT, Cronk QC, An apparent reversal in floral symmetry in the legumeCadia is a homeotic transformation. Proc. Natl. Acad. Sci. U S A,2006,103(32):12017-12020.
    [64] Cubas P, Vincent C, Coen E, An epigenetic mutation responsible for natural variation in floralsymmetry. Nature,1999,401(6749):157-161.
    [65] Hileman LC, Kramer EM, Baum DA, Differential regulation of symmetry genes and theevolution of floral morphologies. Proc. Natl. Acad. Sci. U S A,2003,100(22):12814-12819.
    [66] Cubas P, Coen E, Zapater JM, Ancient asymmetries in the evolution of flowers. Curr. Biol.,2001,11(13):1050-1052.
    [67] Busch A and Zachgo S, Control of corolla monosymmetry in the Brassicaceae Iberis amara,Proc. Natl. Acad. Sci. U S A,2007,104(42):16714-16719.
    [68] Broholm SK, T htiharju S, Laitinen RA, et al., A TCP transcription factor controls flowers typespecification along the radial axis of the Gerbera (Asteraceae) inflorescence. Proc. Natl. Acad. Sci. U SA,2008,105(26):9117-9122.
    [69] Kim M, Cui ML, Cubas P, et al., Regulatory genes control a key morphological and ecologicaltrait transferred between species. Science,2008,322(5904):1116-1169.
    [70] Yuan Z, Gao S, Xue DW et al., RETARDED PALEA1controls palea development and floralzygomorphy in rice. Plant Physiol.,2009,149(1):235-244.
    [71] Laux T, Mayer KF, Berger J, et al., The WUSCHEL gene is required for shoot and floralmeristem integrity in Arabidopsis. Development,1996,122(1):87-96.
    [72] Gehring WJ, Müller M, Affolter M, et al., The structure of the homeodomain and its functionalimplications. Trends Genet.,1990,6(10):323-9.
    [73] Mayer KF, Schoof H, Haecker A, et al., Role of WUSCHEL in regulating stem cell fate in theArabidopsis shoot meristem. Cell,1998,95(6):805-15.
    [74] Mukherjee K, Brocchieri L, Bürglin TR. A comprehensive classification and evolutionaryanalysis of plant homeobox genes. Mol. Biol. Evol.,2009,26(12):2775-2794.
    [75] Zhang X, Zong J, Liu J, et al., Genome-wide analysis of WOX gene family in rice, sorghum,maize, Arabidopsis and poplar. J. Integr. Plant Biol.,2010,52(11):1016-1026.
    [76] Gehring WJ, Qian YQ, Billeter M, et al., Homeodomain-DNA recognition. Cell,1994,78:211-223.
    [77] Gehring WJ, Exploring the homeobox. Gene,1993,135:215-221.
    [78] Haecker A, Gross-Hardt R, Geiges B, et al., Expression dynamics of WOX genes mark cell fatedecisions during early embryonic patterning in Arabidopsis thaliana. Development,2004,131:657-668.
    [79] Van der Graaff E, Laux T, Rensing SA, The WUS homeobox-containing (WOX) protein family.Genome Biol.,2009,10(12):248-256.
    [80] Richardt S, Lang D, Frank W, et al., PlanTAPDB: a phylogeny-based resource of planttranscription associated proteins. Plant Physiol.,2007,143:1452-1466.
    [81] Palovaara J, Hakman I, Conifer WOX-related homeodomain transcription factors,developmental consideration and expression dynamic of WOX2during Picea abies somaticembryogenesis. Plant Mol. Biol.,2008,66:533-549.
    [82] Deveaux Y, Toffano-Nioche C, Claisse G, et al., Genes of the most conserved WOX clade inplants affect root and flower development in Arabidopsis. BMC Evol. Biol.,2008,8:29
    [83] Nardmann J, Reisewitz P, Werr W, Discrete shoot and root stem cell-promoting WUS/WOX5functions are an evolutionary innovation of angiosperms. Mol Biol Evol.,2009,26:1745-1755.
    [84] Pfam: Family: Homeobox (PF00046)[http://pfam.sanger.ac.uk/family?Homeobox
    [85] Ikeda M, Mitsuda N, Ohme-Takagi M, Arabidopsis WUSCHEL is a bifunctional transcriptionfactor that acts as a repressor in stem cell regulation and as an activator in floral patterning. Plant Cell,2009,6:6.
    [86] Nakai K, Horton P, Computational prediction of subcellular localization. Methods Mol. Biol.,2007,390:429–466.
    [87] Nair R, Rost B, LOCnet and LOCtarget: sub-cellular localization for structural genomics targets.Nucleic Acids Res.,2004,32: W517–W521.
    [88] Park SO, Zheng Z, Oppenheimer DG, The PRETTY FEW SEEDS2gene encodes an Arabidopsishomeo domain protein that regulates ovule development. Development,2005;132:841–849.
    [89] Zhao Y, Hu Y, Dai M, et al., The WUSCHEL-related homeobox gene WOX11is required toactivate shoot-borne crown root development in rice. Plant Cell,2009,21:736–748.
    [90] Vandenbussche M, Horstman A, Zethof J, et al., Differential recruitment of WOX transcriptionfactors for lateral development and organ fusion in Petunia and Arabidopsis. Plant Cell,2009,21(8):2269-83.
    [91] Sarkar AK, Luijten M, Miyashima S, et al., Conserved factors regulate signalling in Arabidopsisthaliana shoot and root stem cell organizers. Nature,2007,446:811-814.
    [92] Kamiya N, Nagasaki H, Morikami A, et al., Isolation and characterization of a riceWUSCHEL-type homeobox gene that is specifically expressed in the central cells of a quiescent centerin the root apical meristem. Plant J.,2003,35:429-441.
    [93] Ditengou FA, Teale WD, Kochersperger P, et al., Mechanical induction of lateral root initiationin Arabidopsis thaliana. Proc. Natl.Acad. Sci. USA.,2008,105:18818-18823.
    [94] Kieffer M, Stern Y, Cook H, et al., Analysis of the transcription factor WUSCHEL and itsfunctional homologue in Antirrhinum reveals a potential mechanism for their roles in meristemmaintenance. Plant Cell,2006,18:560-573.
    [95] Gross-Hardt R, Lenhard M, Laux T, WUSCHEL signaling functions in interregionalcommunication during Arabidopsis ovule development. Genes Dev.,2002,16:1129-1138.
    [96] Deyhle F, Sarkar AK, Tucker EJ, et al., WUSCHEL regulates cell differentiation during antherdevelopment. Dev. Biol.,2007,302:154–159.
    [97] Nardmann J, Werr W, The shoot stem cell niche in angiosperms: expression patterns of WUSorthologues in rice and maize imply major modifications in the course of mono-and dicot evolution.Mo.l Biol. Evol.2006,23:2492-2504.
    [98] Shimizu R, Ji J, Kelsey E, et al., Tissue specificity and evolution of meristematic WOX3function. Plant Physiol.,2009,149:841–850.
    [99] Ji J, Strable J, Shimizu R, et al., WOX4promotes procambial development. Plant Physiol.,2010,152(3):1346-56.
    [100] Hirakawa Y, Kondo Y, Fukuda H. TDIF peptide signaling regulates vascular stem cell proliferationvia the WOX4homeobox gene in Arabidopsis. Plant Cell,2010,22(8):2618-29
    [101] Zhu J, Shi H, Lee BH, et al., An Arabidopsis homeodomain transcription factor gene, HOS9,mediates cold tolerance through a CBF-independent pathway. Proc. Natl.Acad. Sci. USA.,2004,101:9873-9878.
    [102] Breuninger H, Rikirsch E, Hermann M, et al., Differential expression of WOX genes mediatesapical-basal axis formation in the Arabidopsis embryo. Dev. Cell.,2008,14:867-876.
    [103] Wu X, Chory J, Weigel D. Combinations of WOX activities regulate tissue proliferation duringArabidopsis embryonic development. Dev. Biol.,2007,309:306-316.
    [104] Palovaara J, Hakman I. WOX2and polar auxin transport during spruce embryo patternformation. Plant Signal Behav.,2009,4:153-155.
    [105] Tadege M, Lin H, Bedair M, et al., STENOFOLIA regulates blade outgrowth and leaf vascularpatterning in Medicago truncatula and Nicotiana sylvestris. Plant Cell,2011,23(6):2125–2142.
    [106] Wu X, Dabi T, Weigel D, Requirement of homeobox gene STIMPY/WOX9for Arabidopsismeristem growth and maintenance. Curr. Biol.,2005,15:436-440.
    [107] Lippman ZB, Cohen O, Alvarez JP, et al., The making of a compound inflorescence in tomatoand related nightshades. PLoS Biol.,2008,6: e288.
    [108] Rebocho AB, Bliek M, Kusters E, et al., Role of EVERGREEN in the development of thecymose petunia inflorescence. Dev. Cell,2008,15:437-447.
    [109] Malik MR, Wang F, Dirpaul JM, et al., Transcript profiling and identification of molecularmarkers for early microspore embryogenesis in Brassica napus. Plant Physiol.,2007,144:134-154.
    [110] Deveaux Y, Toffano-Nioche C, Claisse G, et al., Genes of the most conserved WOX clade inplants affect root and flower development in Arabidopsis. BMC Evol. Biol.,2008,8:291.
    [111] Schoof H, Lenhard M, Haecker A, et al., The stem cell population of Arabidopsis shootmeristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell,2000,100:635-644.
    [112] Lenhard M, Bohnert A, Jurgens G, et al., Termination of stem cell maintenance in Arabidopsisfloral meristems by interactions between WUSCHEL and AGAMOUS. Cell,2001,105:805-814.
    [113] Lohmann JU, Hong RL, Hobe M, et al., A molecular link between stem cell regulation andfloral patterning in Arabidopsis. Cell,2001,105:793-803.
    [114] Stahl Y, Wink RH, Ingram GC, et al., A signaling module controlling the stem cell niche inArabidopsis root meristems. Curr. Biol.,2009,19:909-914.
    [115] Leibfried A, To JP, Busch W, et al., WUSCHEL controls meristem function by directregulation of cytokinin-inducible response regulators. Nature,2005,438:1172-1175.
    [116] Long JA, Ohno C, Smith ZR, et al., TOPLESS regulates apical embryonic fate in Arabidopsis.Science,2006,312:1520-1523.
    [117] Dai M, Hu Y, Zhao Y, et al., A WUSCHEL-LIKE HOMEOBOX gene represses a YABBYgene expression required for rice leaf development. Plant Physiol.,2007,144:380-390.
    [118] Yadav RK, Girke T, Pasala S, et al., Gene expression map of the Arabidopsis shoot apicalmeristem stem cell niche. Proc. Natl. Acad. Sci. USA.,2009,106:4941-4946.
    [119] Harrison CJ, Roeder AH, Meyerowitz EM, et al., Local cues and asymmetric cell divisionsunderpin body plan transitions in the moss Physcomitrella patens. Curr. Biol.,2009,19:461–471.
    [120] Mosquna A, Katz A, Decker EL, et al., Regulation of stem cell maintenance by the Polycombprotein FIE has been conserved during land plant evolution. Development,2009,136:2433-2444.
    [121] Noda K, Glover BJ, Linstead P, et al., Flower colour intensity depends on specialized cellshape controlled by a Myb-related transcription factor. Nature,1994,369:661-664.
    [122] Glover BJ, Perez-Rodriguez M,Martin C. Development of several epidermal cell types can bespecified by the same MYB-related plant transcription factor. Development,1998,125:3497-3508.
    [123] Nakata M, Matsumoto N, Tsugeki R, et al., Roles of the middle domain-specificWUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis. Plant Cell.
    2012,24(2):519-535.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700