直线伺服系统神经网络自适应逆控制理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以国家自然科学基金资助项目《直线伺服双位置环动态精密同步进给理论和实现方法研究(NO.50075057)》为背景,基于神经网络及自适应逆控制理论,提出了直线伺服的高精度快进给的神经逆控制系统方案,并进一步研究了神经网络控制问题。
     由于永磁直线同步电动机消除了旋转电机由旋转运动到直线运动的机械传动链的影响,且具有电磁推力强度高、损耗低、电气时间常数小、响应快等特点,使其在高精度、微进给伺服系统中成为执行机构的最佳选择之一。本项目提出了在诸如龙门移动式镗铣床等涉及高精度同步进给技术的现代加工设备中,采用永磁直线同步电机作为同步进给的驱动元件,以发挥其高速的动态响应能力,实现动态同步进给。
     传统的矢量控制算法是建立在电动机数学模型的基础上的,系统的控制性能往往受模型的精确程度和电动机的参数影响较大。本论文在人工神经网络控制理论的基础上,针对永磁直线同步电动机矢量控制系统,构造MIMO神经网络PID矢量控制系统。通过大量仿真和实验表明,本系统不仅具有较好的动态和稳态性能,而且避免了系统的数学模型、电动机参数变化等因素的不良影响,有很好的自适应性和鲁棒性。
     本文的创新之处在于,将直线电动机作为一个的被控对象,利用自适应逆控制理论设计了一个BP神经网络自适应逆控制系统,以此解决高精度进给的控制问题,并在此基础上,研究了神经逆控制问题来解决模型摄动和参数不确定性给系统带来的扰动,以保证系统的稳定性及鲁棒性;利用逆控制器的快速反应能力来保证系统的快速性,共同实现系统的性能指标。
     所提出的控制方案有严格的理论基础,既保证了闭环系统的稳定性和快速的跟随性能,又抑制了模型摄动及外部干扰对系统的影响,保证了系统的鲁棒性能。仿真也验证了所提方案是行之有效的。
A new kind of inverse control tactic based on neural network control for dynamical and rapid high-precision-feed in a single axis is proposed in this thesis, The background of the thesis is "Theory of Dynamic Precision synchronization Traverse and Research of Realization Methods for Linear Servo Dual Position Loops System (NO.50075057)", which is supported by National Natural Science Foundation of China.
    The linear permanent magnet synchronous motor(LPMSM) has avoided the effects of the mechanical transmission chains from rotary motions to linear ones, and has strong electromagneticm thrust, lower cost, small electrical tune constant and rapid response etc., which becomes one of the best executive machines in high-precision and micro-feed servo system. In this project, using LPMSM as driving parts in modern mechanical systems involved high-precision synchronized feed technology such as gantry-moving type milling machine is first proposed so as to bring their high-speed dynamic response ability into play
    for realizing dynamically synchronized feed
    Conventional vector control algorithm is dependent on the mathematical model of motor.
    Thus, the control performance of system is influenced to a great extent by the model precision and the linear parameters of motor. Based on artificial neutral network control theory, a MEMO neutral network PID neural network vector control system realizing the maximum torque with minimum current is conformed for a LPMSM drive system. A number of simulation and experiments show that the system not only has good performance both in dynamic and steady state but also avoids the adverse effect resulted from the inaccurate mathematical model and the parameter changes of the LPMSM. Therefore, the system possesses good self-adapting and robust
    The innovative ideas in this thesis are that neural network adaptive inverse control theory based on LPMSM control system is applied to the high-precision feed of a single axis, and the controller is composed of inverse model of linear motor. A neural network inverse control system restrains disturbances and uncertainties to keep the robust and stable performances. The
    
    
    adaptive inverse control system, which has the ability of rapid response, is applied to satisfy the rapid performance. Both the inner system and external system are used to satisfy the required tracking performances.
    The proposed control scheme has an adaptive inverse control theoretic and neural network base. The controllers designed not only guarantee the stability robustness and performance robustness of the system but also the tracking performance of the system. The simulation results show that the design is reasonable and effective.
引文
[1] B.威德罗,E.瓦莱斯编著。刘树棠;韩崇昭译。自适应逆控制。西安:西安交通大学出版社 2000
    [2] 韩力群 人工神经网络理论、设计及应用 北京:化学工业出版社 2002
    [3] 高文章.主编.数控机床主机共性关键技术.北京:机械工业部,1995.
    [4] 海锦涛、张立斌等.先进制造技术.北京:机械工业出版社,1996
    [5] Butler J, Tomizuka M. Trajectory Planning for High Speed Multiple Axis Contouring Systems. Proceeding of the 1989 American Control Conference, Pittsburgh, PA1989: 87~97
    [6] Koren Y. Cross-coupled Biaxial Computer Control for Manufacturing System. ASME Journal of dynamic systems, measurement and control, 1980,102(12): 256~272
    [7] Kulkarni P, Srinivasaa K. Cross-coupled Compensators for Contouring Control of Multi-axial Machine Tools. In Proceedings of the 13th North American Manufacturing Research Conference, 1985: 558~566
    [8] 韩璞,张海琳,张丽静。神经网络自适应逆控制的仿真研究。华北电力大学学报,2001,3(28):26—30
    [9] 李春元,冯员锟.多变量非线性控制的逆系统方法.北京:清华大学出版社.1991
    [10] 付兴武,赵克定,刘庆和.双马达同步驱动系统自适应神经元网络控制.哈尔滨工业大学学报,1999,31(5):111~113
    [11] 赵春雨,朱洪涛,闻邦椿.多机传动机械系统的同步控制.控制理论与应用,1999,16(2):179~183
    [12] 郭庆鼎,王成元,周美文等.直线交流伺服系统的精密控制技术.北京:机械工业出版社,2000.
    [13] 叶云岳.直线电机原理与应用北京:机械工业出版社,2002.
    [14] (美)S.A.纳斯尔,(罗马尼亚)I.波尔达著《直线电机》.北京:科学出版社,1982
    
    
    [15] 上海工业大学,上海电机厂.直线异步电机.北京:机械工业出版社,1979
    [16] M.波罗亚多夫.直线感应电机理论.北京:科学出版社,1985
    [17] 遇立基.工艺对机床的决定性影响.机电信息,1997.2
    [18] 李猷黔.直接驱动直线交流伺服电动机.微电机,1998.3
    [19] 蔡光起.精密及超精密加工的最新进展.中国机械工程,1996,7(6)
    [20] 孙广山.超精密机械加工技术及发展动向.中国机械工程,1997,7(1)
    [21] 乔景富.直线电机在机床上的应用.机电一体化
    [22] 中国机床工业协会1994赴美、日考察工作组.直线伺服电机传动和高速加工.制造技术与机床.1995.9
    [23] I. Boldea and Sayed A. Nasar. Linear electric actuators and generators. Cambridge University Press. 1997
    [24] 程良伦,杨逸民.新型NC机床精密进口直接驱动及控制系统的研究.电气自动化.1998.3
    [25] Hemati N. A Complete Model Characterization of Brushless Operation. IEEE Trans. On Indu. Appl. 1992, 28(4): 172-180
    [26] 陈晓青,秦忆.交流伺服系统的永磁同步电动机线性化解耦控制研究.电气传动.1992,22(2):17-22
    [27] T.M. Jahns. Motion Control with Permanent-Magnet AC Machines. Proc. IEEE. 1994, 82(8): 1241-1252
    [28] Anurhein. Motor-Electronic Control-Precision of Position: Contributions for the Design of Permanent Magnet Excited Drive System with Minimum Parasitic Speed Variation. Verlag der Fachvereine an den Schweizerischen Hochschulen und Jechuiken, Zurih, 1989.
    [29] Thomas M. jakus and wen L. Soong. Pulsating Torque Minimuzation Techniques for Permanent Magnet AC Motor drives-A Review. IEEE Trans. Ind. Electron. 43(2): 321-330, Apirl 1996.
    [30] Joachim Holtz and Lothar Springob. Identification and Compensation of Torque Ripple in High-precision Permanent Magnet Motor Drives. IEEE Trans. Ind. Eletron. 43(2): 309-320, April, 1996
    [31] 郭庆鼎,王成元.交流伺服系统.北京:机械工业出版社,1994
    
    
    [32] Kuo-Kai Shyu, Hsin-Jang Shieh, and Sheng-Shang Fu. Model Reference Adaptive Speed Control for Induction Motor Drive Using Neural Networks. IEEE Trans. Ind. Electron., vol. 45, Feb. 1998.
    [33] 孙宜标、郭庆鼎等.基于推力观测器的直线交流伺服系统滑模变结构控制.电工技术学报,1998,13(2):1-5
    [34] 冯垛生,曾岳南.无速度传感器矢量控制原理与实践.北京:机械工业出版社,2001.
    [35] Zames, G.. 1981. Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverse. IEEE Trans. Automat. Contr., vol. AC-26:301-320
    [36] 张兴花 戴先中等。感应电机的逆系统方法解耦控制。电气传动。2001,2:28—31
    [37] 李士勇 编著。模糊控制 神经控制和智能控制论 哈尔滨:哈尔滨工业大学出版社 1998
    [38] 郝晓弘,邵辉,胡冷石,杨新华。基于动态递归网的无刷直流电动机自适应逆控制。计算机仿真。2002:1(19)101-103
    [39] 王成元 周美文 郭庆鼎 编著。矢量控制交流伺服驱动电动机 北京:机械工业出版社 1995
    [40] Doyle J. Advance in multivariable control. Lecture Notes in Control and information, 1984.
    [41] 孙宜标 郭庆鼎。交流永磁直线伺服系统的神经网络—滑模双自由度控制。电气传动,2002,1:19-23
    [42] 靳蕃编著。神经计算智能基础 原理 方法 成都:西南交通大学出版社2000
    [43] 孙衢,李人厚,王魁生。用于神经网络直接逆控制的连续空间遗传算法。西安石油学院学报。2000 4(15):67-69
    [44] 曹建荣 虞烈 魏泽国等。基于逆系统理论的感应电机解耦控制的研究。电工技术学报。1999 2:7-11
    [45] Doyle J. Analysis of feedback system with structured uncertainties. IEE Proceedings of Control Theory and Applications, 1982, 129: 242-250
    
    
    [46] Doyle J, Packard A, Zhou K. Review of LFTs, LMIs, and μ. Proceedings of the 30th IEEE CDC, Brighton: 1991, 3: 1227-1260
    [47] 邓辉 孙富春 等。机械手的模糊逆模型鲁棒控制,自动化学报,2001,4(27):521-530
    [48] Shen T and Tamura K. Properties of algebraic Ricciti inequalities and H_∞ robust sub-optimal controller design. Proceedings of the 30th IEEE CDC, Brighton: 1991, 3: 212-213
    [49] 葛友 李春文等。逆系统方法在电力系统综合控制中的应用。中国电机工程学报。2001,4:1-4
    [50] 胡崇岳 编著。现代交流调速技术北京:机械工业出版社 1999
    [51] Sampei M, Mita T, Nakamich N. An algebraic approach to output feedback control problems, system and control letters. 1990, 14, pp13-24.
    [52] Safonov G, Limebeer DJN, Chiang RC. Simplifying the H_∞ theory via loop-shifting, matrix-pencil and descriptor concepts. International journal of Control, 1989, 50(6): 2467-2488
    [53] Petersen I R, Hollot C V. A Ricciti equation approach to the stabilization of uncertain linear system Automatic, 1986, 22(4): 397-411
    [54] 王东风 于希宁 宋之平。制粉系统球磨机的动态数学模型及分布式神经网络逆系统控制。中国电机工程学报。2002,1:97-101
    [55] Faa-Jeng Lin, "Real-Time IP Position Controller Design with Torque Feedforward Control for PM Synchronous Motor" IEEE Trans, 1997, 44(3): 398-407
    [56] 吴麒.自动控制原理.北京:清华大学出版社,1990
    [57] 周悦.永磁直线同步电动机鲁棒位置伺服系统的设计.沈阳工业大学硕士学位论文,1999
    [58] 郭庆鼎,迟林春,王成元.基于神经网络给定补偿的永磁同步直线伺服系统的H_∞控制.控制与决策,2000,15(1):75~78
    
    
    [59] Lee M N, Moon J H, Jin K B, et al. Robust H_∞ Control with Multiple Constraints for the Track-Following System of an Optical Disk Drive. IEEE Trans. Industrial Electronics, 1998, 45(8): 638~645
    [60] Li Yi, Masayoshi Tomizuka. Two-Degree-of-Freedom Control for Hard Disk Servo Systems. IEEE Trans. Mechatronice 1999, 4(3): 17~24
    [61] 程卫国,冯峰,姚东等编著.MATLAB5.3应用指南.北京:人民邮电出版社,1999
    [62] Dennis S. Bernstein, Wassim M. Haddad. LQG Control with an H_∞ Performance Bound: A Riccati Equation Approch. IEEE Trans. Automat. Control, 1989, 34(3): 293~305
    [63] 袁曾任.人工神经元网络及其应用.北京:清华大学出版社.1999
    [64] Hsi-Han Yeh, Siva S. Banda, Bor-Chin Chang. Necessary and Sufficient Conditions for Mixed H_2and H_∞ Optimal Control. IEEE Trans. Automat. Control, 1992, 37(3): 355~358
    [65] 郭庆鼎 张凤 王飞。基于模型扰动抑制的直线伺服系统设计。电工技术学报,2001 5:83-85
    [66] 陈伯时 冯晓刚 王晓东等。电气传动的智能控制。电气传动,1997,1:3-8
    [67] Kemin Zhou, Keith Glover, Bobby Bodenheimer, John Doyle. Mixed H_2/H_∞Performance Objectives Ⅰ: Robust Performance Analysis. IEEE Trans. Automat. Control, 1994, 39(8): 1564~1574
    [68] John Doyle, Kemin Zhou, Keith Glover, Bobby Bodenheimer. Mixed H_2/H_∞. Performance Objectives Ⅱ: Optimal Control. IEEE Trans. Automat. Control, 1994, 39(8): 1575~1587
    [69] Mario Sznaier. An Exact Solution to General SISO Mixed H_2/H_∞ Problems via Convex Optization. IEEE Trans. Automat. Control, 1994, 39(12): 2511~2517
    [70] 张乃尧,阎平凡.神经网络与模糊控制.北京:清华大学出版社.1998,10
    
    
    [71] Carsten Scherer, Pascal Gahinet, Mahmoud Chilali. Multiobjective Output-Feedback Control via LMI Optimization. IEEE Trans. Automat. Control, 1997, 42(7): 896~911
    [72] 孙宜标 郭庆鼎 孙艳娜。基于模糊自学习的交流直线伺服系统滑模变结构控制。电工技术学报,2001,1:52-56
    [73] M. Sznaier, H. Rotstein, Juanyu Bu, and A. Sideris. An Exact Solution to Contious-Time Mixed H_2/H_∞ Control Problems. IEEE Trans. Automat. Control, 1998, 45(11): 2095~2101
    [74] 靳其兵,曾东宁,王云华,顾树生。多变量系统的神经网络解耦新方法。东北大学学报,1999 3(20):250-253
    [75] 袁南儿 王万良 计算机新型控制策略及其应用 北京 清华大学出版社1998
    [76] 李艳 邵日祥 邵世煌。模糊控制在电气传动中的运用现状及前景。电气传动,1997 2:3-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700