三个地方品种鸡肌肉组织基因组DNA甲基化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA甲基化是在DNA甲基转移酶的催化下,将S-硫代腺苷甲硫氨酸中的甲基基团转移到胞嘧啶的第五个碳原子上,使DNA分子中碱基结合甲基的过程。DNA甲基化在基因表达、X染色体的失活、遗传印记、细胞分化、染色质结构维持、胚胎发育、癌症的发生和胚胎发育中扮演着重要角色。DNA甲基化作为一种重要的表观遗传修饰,其功能主要是通过基因表达抑制来实现。显著的甲基化水平差异已经在不同组织中发现,并且在相同组织具有不同的功能。很多研究表明不同的甲基化水平可能与组织特异性转录和某些性状有关,并且对正常的分化和发育以及一些性状起到至关重要的作用。肉质性状是个复杂的性状,由多基因控制,因此控制肉质性状基因的甲基化水平的改变必然影响其表达,进而对肉质性状产生效应。
     DNA甲基化水平受到品种、性别、年龄、环境、饲养管理水平等诸多因素的影响,并且在时间和空间上存在差异表达。本研究采用荧光标记的甲基化敏感扩增多态性技术对汶上芦花鸡9种组织基因组DNA甲基化水平进行了检测,共计检测到19,795个片段,其中非甲基化片段8,935个;半甲基化片段5,668个,全甲基化片段5,192个。半甲基化比率胸肌显著高于其他组织(P<0.05),全甲基化比率肺脏极显著高于其他组织(P<0.01),甲基化比率胸肌和肺脏显著高于其他组织(P<0.05)。
     利用所建立的F-MSAP方法检测了汶上芦花鸡、仙居三黄鸡和淮北麻鸡胸肌组织基因组DNA甲基化水平,并与肉质性状进行相关性分析。半甲基化比率3个品种间差异不显著(P>0.05);全甲基化比率仙居三黄鸡极显著高于淮北麻鸡,淮北麻鸡又极显著高于汶上芦花鸡(P<0.01);甲基化比率仙居三黄鸡极显著高于淮北麻鸡和汶上芦花鸡(P<0.01),而淮北麻鸡和汶上芦花鸡差异不显著(P>0.05)。基因组DNA甲基化水平与肉质性状相关性分析结果表明,甲基化水平与汶上芦花鸡肌纤维密度和剪切力相关性差异极显著(P<0.01),与仙居三黄鸡肌纤维密度和滴水损失相关性差异极显著(P<0.01),与淮北麻鸡滴水损失相关性差异显著(P<0.05),甲基化水平与三个品种的其他肉质性状相关性差异不显著。
     最后对甲基化差异基因FABP4mRNA表达水平与汶上芦花鸡肉质性状相关性进行了分析,结果表明甲基化差异基因FABP4mRNA表达水平与汶上芦花鸡剪切力相关性差异显著(P<0.05),而与其它肉质性状相关性差异不显著(P>0.05)。
DNA methylation is catalyzed by DNA methyltransferases (Mtases) which transfer a methylgroup from S-adenosine-L-methionine to the5th carbon of cytosine. DNA methylation plays acrucial role in many biological processes, including gene expression regulation, X chromosomeinactivation, genomic imprinting, cell differentiation, chromatin modification, cancer developmentand embryo development. The main function of DNA methylation, which mostly occurs at CpGislands, is to inhibit gene expression. Significant differences in methylation levels have been foundin different tissues and in different individuals within the same organization. Many studies haveshown that different methylation levels may be associated with tissue-specific transcription orcertain traits and can play a crucial role in normal differentiation, development and some traits.TheMeat quality traits are complicated traits traits are controlled by many genes, some of which mayplay a major role. Changes in the methylation levels of certain genes controlling meat quality traitswill inevitably affect their expression levels, thereby affecting meat quality traits.
     DNA methylation levels were affected by breed, sex, age, environment, feeding andmanagement, and there are differences in the temporal and spatial expression. In the present study,we used the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP)method to investigate the differences of genome DNA methylation levels in pectoral muscletissues of male Wenshang Barred chicken, a total of19,795fragments were obtained including8935unmethylated bands,5668hemimethylated bands and5192fully methylated bands.Hemimethylation ratio of pectoral muscle was higher than that of other tissues(P<0.05), fullymethylation ratio of lung was significantly higher than that of other tissues(P<0.01), andmethylation ratios of pectoral muscle and lung were higher than that of other tissues(P<0.05).
     We also used the F-MSAP which we founded to investigate the DNA methylation leveldifferences in pectoral muscle tissues and their relationships with meat quality traits of male Wenshang Barred chicken, Xianju chicken and Huaibei Partridge chicken. There was nosignificant different of hemimethylated ratio among three breeds(P>0.05); The fully methylationratio of Xianju chicken was significantly higher than that of Huaibei Partridge chicken, andHuaibei Partridge chicken was significantly higher than that of Wenshang Barred chicken(P<0.01);For the methylation ratio, Xianju chicken was significantly higher than that of Huaibei Partridgechicken and Wenshang Barred chicken, but there was no significant different between WenshangBarred chicken and Huaibei Partridge chicken. The correlation analysis between the methylationlevels and the meat quality traits were also done, The results showed that different methylationlevels were highly significant correlations with muscle fiber density and shear force in WenshangBarred chicken (P<0.01), and for Xianju chicken different methylation levels were highlysignificant correlations with muscle fiber density and drip loss (P<0.01), but for Huaibei Partridgechicken methylation levels were significant correlations with drip loss(P<0.05). However, nosignificant correlations were found with other traits in three breeds (P>0.05).
     The association of the specific methylation FABP4with the meat quality traits were detected,The results showed that the levels of FABP4mRNA were highly significant correlations withshear force of pectoral muscle in Wenshang Barred chicken(P<0.05), However, no significantcorrelations were found with other meat quality traits (P>0.05).
引文
[1] Ghislain Auclair, Michael Weber (2012) Mechanisms of DNA methylation and demethylationin mammals. Biochimie.94,2202-2211
    [2] Cheng X, Blumenthal RM. Mammalian DNA methyltransferases: a structural perspective.Structure,2008,16(3):341–350.
    [3] Auclair G1, Weber M. Mechanisms of DNA methylation and demethylation in mammals.Biochimie.2012,94(11):2202-2211.
    [4]董玉玮,侯进慧,朱必才,等.表观遗传学的相关概念和研究进展.生命的化学.2005,22(1):1-3.
    [5] S. Tomizawa, H. Kobayashi, T. Watanabe, S. Andrews, K. Hata, G. Kelsey, H. Sasaki,Dynamic stage-specific changes in imprinted differentially methylated regions during earlymammalian development and prevalence of non-CpG methylation in oocytes, Development138(2011)811-820.
    [6] Z.D. Smith, M.M. Chan, T.S. Mikkelsen, H. Gu, A. Gnirke, A. Regev, A. Meissner, A uniqueregulatory phase of DNA methylation in the early mammalian embryo, Nature484(2012)339-344.
    [7] T.R. Haines, D.I. Rodenhiser, P.J. Ainsworth, Allele-specific non-CpG methylation of theNf1gene during early mouse development, Dev. Biol.240(2001)585-598.
    [8] W. Xie, C.L. Barr, A. Kim, F. Yue, A.Y. Lee, J. Eubanks, E.L. Dempster, B. Ren,Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in themouse genome, Cell148(2012)816-831.
    [9] R. Lister, M. Pelizzola, R.H. Dowen, R.D. Hawkins, G. Hon, J. Tonti-Filippini, J.R. Nery, L.Lee, Z. Ye, Q.M. Ngo, L. Edsall, J. Antosiewicz-Bourget, R. Stewart, V. Ruotti, A.H. Millar,J.A. Thomson, B. Ren, J.R. Ecker, Human DNA methylomes at base resolution showwidespread epigenomic differences, Nature462(2009)315-322.
    [10] M.J. Ziller, F. Muller, J. Liao, Y. Zhang, H. Gu, C. Bock, P. Boyle, C.B. Epstein, B.E.Bernstein, T. Lengauer, A. Gnirke, A. Meissner, Genomic distribution and inter-samplevariation of non-CpG methylation across human cell types, PLoS Genet.7(2011) e1002389.
    [11] M.B. Stadler, R. Murr, L. Burger, R. Ivanek, F. Lienert, A. Scholer, C. Wirbelauer, E.J.Oakeley, D. Gaidatzis, V.K. Tiwari, D. Schubeler, DNA-binding factors shape the mousemethylome at distal regulatory regions, Nature480(2011)490-495.
    [12]宫时玉,蒋曹德,邓昌彦. DNA甲基化及其生物学功能.华中农业大学学报.2005,24(6):651-657
    [13] Zhu JK. Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet.2009,43:143-166.
    [14] Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y. Tet proteins canconvert5-methylcytosine to5-formylcytosine and5-carboxylcytosine. Science.2011,333(6047):1300-1303.
    [15] Cortellino S, Xu J, Sannai M, et,al. Thymine DNA glycosylase is essential for active DNAdemethylation by linked deamination-base excision repair. Cell.2011,146(1):67-79.
    [16] Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in5mC to5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature2010,466(7310):1129-1133.
    [17] Wu H, D’Alessio AC, Ito S et,al. Genome-wide analysis of5-hydroxymethylcytosinedistribution reveals its dual function in transcriptional regulation in mouse embryonic stemcells. Genes Dev.2011,25(7):679-684.
    [18]范保星,张开泰,吴德昌.真核生物的DNA甲基转移酶与DNA甲基化.生命的化学.2001,21(5):368-371
    [19] Hutchins AS, Mullen AC, Lee HW, Sykes KJ, High FA, Hendrich BD, Bird AP, Reiner SL.Gene silencing quantitatively controls the function of a developmental trans-activator. MolCell.2002,10(1):81-91
    [20] Sansom OJ, Berger J, Bishop SM, Hendrich B, Bird A, Clarke AR. Deficiency of Mbd2suppresses intestinal tumorigenesis. Nat Genet.2003,34(2):145-147
    [21] Lee PP, Fitzpatrick DR, Beard C, Jessup HK, Lehar S, Makar KW. A critical role for Dnmt1and DNAmethylation in T cell development, function, and survival. Immunity.2001,15(5):763-774]
    [22]曹领改,张旸,蓝兴国,李玉花. DNA去甲基化机制的研究进展.现代生物医学进展.2012,12(1):160-162
    [23] Araujo FD1, Croteau S, Slack AD, Milutinovic S, Bigey P, Price GB, Zannis-Hadjopoulos M,Szyf M. The DNMT1target recognition domain resides in the N terminus. J Biol Chem.2001.276(10):6930-6936
    [24] Pradhan M, Estève PO, Chin HG, Samaranayke M, Kim GD, Pradhan S. CXXC domain ofhuman DNMT1is essential for enzymatic activity. Biochemistry.2008.23;47(38):10000-10009
    [25] Hermann A, Schmitt S, Jeltsch A. The human Dnmt2has residual DNA-(cytosine-C5)methyltransferase activity. J Biol Chem.2003,278(34):31717–31721
    [26] Goll MG,Kirpekar F,Maggert KA,et al.Methylation of tRNAAsp by the DNAmethyltransferase homolog Dnmt2.Science,2006,311:395-398.
    [27] Phalke S,Nickel O,Walluscheck D,et al.Retrotransposon silencing and telomere integrity insomatic cells of Drosophila depends on the cytosine-5methyltransferase DNMT2.Nat Genet,2009,41:696-702.
    [28] Schaefer M,Hagemann S,Hanna K,et al.Azacytidine inhibits RNA methylation at DNMT2target sites in human cancer cell lines.Cancer Res,2009,69:8127-8132.
    [29] Goll MG,Kirpekar F,Maggert KA,et al.Methylation of tRNAAsp by the DNAmethyltransferase homolog Dnmt2.Science,2006,311:395-398.
    [30] Rai K,Chidester S,Zavala CV,et al.Dnmt2functions in the cytoplasm to promote liver,brain,and retina development in zebrafish.Genes Dev,2007,21:261-266.
    [31] Schaefer M,Pollex T,Hanna K,et al. RNA methylation by Dnmt2protects transfer RNAsagainst stress-induced cleavage.Genes Dev,2010,24:1590-1595.
    [32] Karagianni P, Amazit L, Qin J, Wong J. ICBP90, a novel methyl K9H3binding protein linkingprotein ubiquitination with heterochromatin formation. Mol Cell Biol,2008,28(2):705–717.
    [33]邓大君,邓国仁,吕有勇,等.变性高效液相色谱法检测CpG岛胞嘧啶甲基化[J].中华医学杂志,2001,80(2):158-161.
    [34]顾婷婷,张忠明,郑鹏生. DNA甲基化研究方法的回顾与评价.中国妇幼健康研究.2006,17(6):555-560
    [35] Schilling E, Rehli M. Global comparative analysis of tissue-specific promoter CpG methylation[J].Genomics,2007,90(3):314-323.
    [36] Uhlmann K, Rohde K, Zeller C, et al. Distinct methylation profiles of glioma subtypes.[J] IntCancer,2003,106(1):52-59.
    [37] Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci,2006,31(2):89-97.
    [38]Gebhard C, Schwarzfischer L, Pham TH, et al. Genome-wide profiling of CpG methylationidentifies novel targets of aberrant hypermethylation in myeloid leukemia [J]. Cancer Res,2006,66(12):6118-6128.
    [39] Ballestar E, Wolffe A P. Methyl-CpG-binding proteins:targeting specific gene repression[J]. Eur JBiochem.2001,268:1-6.
    [40] Nygren AO, Ameziane N, Duarte HM, Vijzelaar RN, Waisfisz Q, Hess CJ, Schouten JP, ErramiA. Methylation-specific MLPA (MS-MLPA): simultaneous detection of CpG methylation andcopy number changes of up to40sequences. Nucleic Acids Res.2005;33(14):e128.
    [4130] Gonzalgo M L, Jones P A. Rapid quantitation of methylation differences at specific sites usingmethylation-sensitive single nucleotide primer extensio (Ms-SNuPE)[J]. Nucleic Acids Res,1997,25:2529-2531.
    [42] Yan P S, Chen C M, Shi H, et a l. Dissecting comples epigenetic alterations in breast carcinomausing CpG island microarrays[J]. carcinoma Res,2001,61(23):8375-8380.
    [43] Gitan R S, Shi H, Chen C M, et a l. Methylation-specific oligonucleotide microarray: A newpotential for high-throughput methylation analysis[J]. Genome Res,2002,12(1):158-164.
    [44]朱燕. DNA的甲基化的分析与状态检测[J].现代预防医学,2005,32(9):1070-1073.
    [45] Brena R M, Auer H, Kornacker K, et a l. Accurate quantification of DNA methylation usingcombined bisulfite restriction analysis coupled with the Agilent2100Bioanalyzer platform [J].Nucleic Acids Res,2006,34(3):E17.
    [46] Clement G, Benhattar J. A methylation sensitive dot blot assay (MS-DBA) for the quantitativeanalysis of DNA methylation in clinical samples [J]. Clin Pathol,2005,58(2):155-158.
    [47] Worm J, Aggerholm A, Guldberg P. In-tube DNA methylation profiling by fluorescence meltingcurve analysis. Clin Chem.2001,47(7):1183-1189.
    [48] Shiraishi M, Sekiguchi A, Oates A J, et al. Methyl-CpG binding domain column chromatographyas a tool for the analysis of genomic DNA methylation [J]. Ana Biochem,2004,329(1):1-10.
    [49] Yegnasubramanian S, Lin X, Haffner MC, DeMarzo AM, Nelson WG. Combination ofmethylated-DNA precipitation and methylation-sensitive restriction enzymes(COMPARE-MS)for the rapid, sensitive and quantitative detection of DNA methylation. Nucleic AcidsRes.2006;34(3):e19.
    [50] Rozenberg JM, Shlyakhtenko A, Glass K et,al. All and only CpG containing sequences areenriched in promoters abundantly bound by RNA polymerase II in multiple tissues. BMCGenomics.2008,5(9):67.
    [51] Tate PH, Bird AP. Effects of DNA methylation on DNA-binding proteins and gene expression.Curr Opin Genet Dev.1993,3(2):226–231
    [52] Watt F, and Molloy PL. Cytosine methylation prevents binding to DNA of a HeLa celltranscription factor required for optimal expression of the adenovirus major late promoter.Genes Dev.1988,2(9):1136–1143
    [53] Hendrich, B. and Bird, A. Identification and characterization of a family of mammalianmethyl-CpG binding proteins. Mol Cell Biol.1998,18(11):6538–6547
    [54] Boyes J, and Bird A. DNA methylation inhibits transcription indirectly via a methyl-CpGbinding protein. Cell.1991,64(6)1123–1134
    [55] Sarraf SA, and Stancheva I. Methyl-CpG binding protein MBD1couples histone H3methylation at lysine9by SETDB1to DNA replication and chromatin assembly. Mol Cell.2004,15(4):595–605
    [56] Nan, X. Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A.Transcriptional repression by the methyl-CpGbinding protein MeCP2involves a histonedeacetylase complex. Nature.1998,393(6683):386–389
    [57] Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D. Analysis of theNuRD subunits reveals a histone deacetylase core complex and a connection with DNAmethylation. Genes Dev.1999,13(15)1924–1935
    [58] Ng HH, Zhang Y, Hendrich B, Johnson CA, Turner BM, Erdjument-Bromage H, Tempst P,Reinberg D, Bird A. MBD2is a transcriptional repressor belonging to the MeCP1histonedeacetylase complex. Nat Genet.1999,23(1):58–61
    [59] Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J,Wolffe AP. Methylated DNA and MeCP2recruit histone deacetylase to repress transcription.Nat Genet.1998,19(2):187–191
    [60] Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F, Wolffe AP. Mi-2complex couplesDNA methylation to chromatin remodelling and histone deacetylation. Nat Genet.1999,23(1):62–66
    [61]申艳丽,张华林,陈世林,吴琰,杨利国. DNA甲基化对早期胚胎发育的影响.畜牧与饲料科学.2011,32(11):40-42]
    [62]付晓兰,李雪峰. DNA甲基化与细胞分化.广西农业生物科学.2006,25:135-139
    [63] Hsieh J, Gage FH. Epigenetic contr ol of neural stem cell fate. Curr Opin Genet Dev,2004,14(5):461-469.
    [64] Borgel J, Guibert S, Li Y, Chiba H, Schübeler D, Sasaki H, Forné T, Weber M. Targets anddynamics of promoter DNA methylation during early mouse development. Nat Genet.2010,42(12):1093-1100.
    [65] Smith ZD, Chan MM, Mikkelsen TS, Gu H, Gnirke A, Regev A, Meissner A. A uniqueregulatory phase of DNA methylation in the early mammalian embryo. Nature.2012,484(7394):339-344.
    [66] Kobayashi H, Sakurai T, Imai M, Takahashi N, Fukuda A, Yayoi O, Sato S, Nakabayashi K,Hata K, Sotomaru Y, Suzuki Y, Kono T. Contribution of intragenic DNA methylation inmouse gametic DNA methylomes to establish oocyte-specific heritable marks, PLoS Genet.2012,8(1) e1002440.
    [67] Smallwood SA, Tomizawa S, Krueger F, Ruf N, Carli N, Segonds-Pichon A, Sato S, Hata K,Andrews SR, Kelsey G. Dynamic CpG island methylation landscape in oocytes andpreimplantation embryos, Nat Genet.2011,43(8):811-814.
    [68]孔祥东,王军,张思仲. DNA甲基化与发育调节.生物学通报.2000,35(8):19-2
    [69]黄钧. DNA甲基化与胚胎发育的研究进展.国外医学妇产科学分册.2007,34(1):8-11
    [70]沈秀平,林月霞,徐琪. DNA甲基化及其生物学功能.中国畜牧兽医.2012,39(6):83-86
    [71]王琳,刘辰,徐江. DNA甲基化与肿瘤研究进展.畜牧与饲料科学.2011,32(11):43-44
    [72]谢松松,王宝峰,周宗瑶. DNA甲基化的研究进展.现代生物医学进展.2009,7(17):3368-3370
    [73]李建许,刘红林. DNA甲基化与组蛋白甲基化的关系.遗传.2004,26(2):267-270
    [74] Roberts LR, Gores GJ: Hepatocellular carcinoma: molecular pathways and new therapeutictargets. Semin Liver Dis2005;25:212-225
    [75] Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet2007;8:253-262
    [76] Hamilton JP. Epigenetics: Principles and Practice. Dig Dis.2011;29(2):130-135
    [77] Feinberg AP. Epigenetics at the epicenter of modern medicine. JAMA2008;299:1345-1350
    [78] Beard C, Li E, and Jaenisch R. Loss of methylationactivates Xist in somatic but not inembryonic cells. Genes Dev.1995,9(19):2325–2334.
    [79] Kang Y.K, Koo D.B, Park J.S, Choi Y.H, Chung A.S, LeeK.K and Han Y.M. Aberrantmethylation of donorgenome in cloned bovine embryos.Nat. Genet.2001,28(2):173-177.
    [80] Meissner A. Epigenetic modifications in pluripotent and differentiated cells, Nat. Biotechnol.2010,28(10):1079-1088.
    [81] Ooi S K, O'Donnell A H, Bestor T H. Mammalian cytosine methylation at a glance[J]. J CellSci.2009,122(Pt16):2787-2791.
    [82] Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development[J].Nature.2007,447(7143):425-432.
    [83]徐青,张沅,孙东晓,王雅春,唐绍青,赵萌.应用MSAP方法检测鸡不同组织基因组的甲基化状态.遗传.2011,33(6):620-626
    [84] Rlehardson BC Role of DNA methylation in the regulation of cell function: autoimmnuity,agingandeaneer. J Nutr.2002,132:2401S2405S.
    [85] R nn T, Poulsen P, Hansson O, Holmkvist J, Almgren P, Nilsson P, Tuomi T, Isomaa B,Groop L, Vaag A, Ling C Age influenees DNA methylation and gene expression ofCOX7A1in homan skeletal muscle. Diabetologia.2008,51:11591168.
    [86] Haggarty P Nutrition and the epigenome. Prog Mol Biol Transl Sci.2012,108:427-46
    [87] Cedar H (1988) DNA methylation and gene activity. Cell.53,34.
    [88] Gama-Sosa MA, Midgett RM, Slagel VA, Githens S, Kuo KC, Gehrke CW, Ehrich M (1983)Tissue-specific differences in DNA methylation in various mammals. Biochim Biophys Acta.740,212219.
    [89] T.Mohandas, R.Sparkes, L.Shapiro (1981) Reactivation of an inactive human Xchromosome:evidence for X inactivation by DNA methylation, Science.211,393–396.
    [90] Li E, Beard C, Jaenisch R (1993) Role for DNA Methylation in Genomic Imprinting. Nature.366,362–365.
    [91] Razin A (1998) CpG methylation, chromatin structure and gene silencing-a three-wayconnection. EMBO J.17,49054908.
    [92] Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3bare essential for de novo methylation and mammalian development. Cell.99,247–257.
    [93] Zhang D, Li S, Tan Q, Pang Z (2012) Twin-based DNA methylation analysis takes the centerstage of studies of human complex diseases. J Genet Genomics.39,581586.
    [94] Spisák S, Kalmár A, Galamb O, Wichmann B, Sipos F, Péterfia B, Csabai I, Kovalszky I,Semsey S, Tulassay Z, Molnár B (2012) Genome-wide screening of genes regulated by DNAmethylation in colon cancer development. PLoS One.7, e46215.
    [95] Buchheit T, Van de Ven T, Shaw A (2012) Epigenetics and the transition from acute to chronicpain. Pain Med.13,14741490.
    [96] Gokul G, Khosla S (2012) DNA methylation and cancer. Subcell Biochem.61,597625.
    [97] Gopalakrishnan S, van Emburgh BO, Robertson KD (2011) DNA methylation indevelopment and human disease. Mutat Res.647,30–38.
    [98] Esteller M (2005) Aberrant DNA methylation as a cancer-inducing mechanism. Annu RevPharmacol Toxicol.45,629–656.
    [99] Calvanese V, Lara E, Kahn A, Fraga MF (2009) The role of epigenetics in aging andage-related diseases. Ageing Res. Rev.8:268-276.
    [100] Wilson VL, Smith RA, Ma S, Cutler RG (1987) Genomic5-methyldeoxycytidine decreaseswith age. J. Biol. Chem.262:9948-9951.
    [101] Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, et al.(2012) Distinct DNA methylomes ofnewborns and centenarians. Proc. Natl Acad. Sci109:10522-10527.
    [102] Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, et al.(2010) Human aging-associatedDNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res20:434-439.
    [103] Bell JT, Tsai PC, Yang TP, Pidsley R, Nisbet J, et al.(2012) Epigenome-wide scans identifydifferentially methylated regions for age and age-related phenotypes in a healthy ageingpopulation. PLoS Genet8: e1002629.
    [104] Bocklandt S, Lin W, Sehl ME, S_anchez FJ, Sinsheimer JS, et al.(2011) Epigeneticpredictor of age. PLoS One6: e14821.
    [105] Hernandez DG, Nalls MA, Gibbs JR, Arepalli S, van der Brug M, et al.(2011) Distinct DNAmethylation changes highly correlated with chronological age in the human brain. Hum.Mol. Genet20:1164-1172.
    [106] Haggarty P (2012) Nutrition and the epigenome. Prog Mol Biol Transl Sci108:427-46
    [107] Hwang JY, Kim EB, Ka H, Lee CK (2013) Identification of the porcine XIST gene and itsdifferential CpG methylation status in male and female pig cells. PLoS One8: e73677
    [108] Jang HJ, Lee MO, Kim S, Kim TH, Kim SK, et al.(2013) Biallelic expression of theL-arginine:glycine amidinotransferase gene with different methylation status between maleand female primordial germ cells in chickens. Poult Sci92:760-769.
    [109] Chun Yang, Mingjun Zhang, Weiping Niu, Runjun Yang, Yonghong Zhang, Zhengyan Qiu,Boxing Sun and Zhihui Zhao Analysis of DNA Methylation in Various Swine Tissues. PloSOne.2011,6(1):e16229.
    [110] Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CLA genomic sequencing protocol that yields a positive display of5-methylcytosine residuesin individual DNA strands. Proc Natl Acad Sci USA.1992,89(5):1827-1831.
    [111] Cottrell SE Molecular diagnostic applications of DNA methylation technology. ClinBiochem.2004,37(7):595-604.
    [112] Shan XH, Li YD, Liu XM, Wu Y, Zhang MZ, Guo WL, Liu B, Yuan YP Comparativeanalyses of genetic/epigenetic diversities and structures in a wild barley species (Hordeumbrevisubulatum) using MSAP, SSAP and AFLP. Genet Mol Res.2012,11(3):2749-2759.
    [113] Mastan SG, Rathore MS, Bhatt VD, Yadav P, Chikara J Assessment of changes in DNAmethylation by methylation-sensitive amplification polymorphism in Jatropha curcas L.subjected to salinity stress. Gene.2012,508(1):125-129.
    [114] Shiraishi M, Sekiguchi A, Oates AJ, Terry MJ, Miyamoto Y, Sekiya T Methyl-CpG bindingdomain column chromatography as a tool for the analysis of genomic DNA methylation.Ana Biochem.2004,329(1):1-10.
    [115] Suzuki MM, Bird A DNA methylation landscapes: provocative insights from epigenomics.Nat Rev Genet.2008,9(6):465-476.
    [116] Wilson IM, Davies JJ, Weber M, Brown CJ, Alvarez CE, MacAulay C, Schübeler D, LamWL Epigenomics: mapping the methylome. Cell Cycle.2006,5(2):155-158.
    [117]蒋曹德,邓昌彦,熊远著.猪个体DNA甲基化百分差异与胴体性状的关系.农业生物技术学报.2005,13(2):179-185
    [117] Martins-Wess F, Voss-Nemitz R, Drogemuller C, Brenig B, Leeb T (2002) Construction of a1.2-Mb BAC/PAC contig of the porcine gene RYR1region on SSC6q1.2and comparativeanalysis with HSA19q13.13. Genomics80:416-422.
    [118] Davoli R, Zambonelli P, Fontanesi L, Cagnazzo M, Bigi D, et al.(2003c) Radiation hybridmapping of three skeletal muscle genes (CKM, ECH1and TNNT1) to porcine chromosome6. Anim. Genet34:302-303.
    [119] Kopecny M, Stratil A, Van Poucke M, Bartenschlager H, Geldermann H, et al.(2004)PCR-RFLPs, linkage and RH mapping of the porcine TGFB1and TGFBR1genes. Anim.Genet35:253-255.
    [120] Zuo B, Xiong YZ, Deng CY, Su YH, Wang J, et al.(2005) Polymorphism, linkage mappingand expression pattern of the porcine skeletal muscle glycogen synthase (GYS1) gene.Anim. Genet36:254-257.
    [121] Croall D E, Demartno G N. Calcium-activated nentral proteage (calpain) system:structure,furetion and regulation[J]. Physiological Reviews,1991,71:813~814
    [122] Ernst C W, Robic A, Yerle M, et al. Mapping of calpastatin and three microsatellites toporcine chromosome2q2.1-q2.4[J]. Science,1991,253:448~451
    [123] Gu F,Harbitz I,Chowdhary B P,Davies W,Gustavsson I.Mapping of the porcine lipoproteinlipase(LPL) gene to chromosome14q12-q14by in situ hybridization[J].Cytogenet CellGenet,1992,59(1):63~64
    [124] Goldspink G,Yang S P.Muscle structure development and growth[M] CABinternational,1999,Poultry meat Science,P:11
    [125]刘月环,蒋涛,彭淑红.瘦肉率的主基因及其分子标记的研究进展[J].黄牛杂志,2001,27(30):36
    [126] Abbott C R,Rossi M,Kim M.Investigation of the melanocyte stimulating hormone on foodintake.Lack of evidence to support a role for the melanocortin-3-receptor.Brain Res,2000,869(1-2):203~210
    [127] Challis B G,Yeo G S,Farooqi I S.The role of melanocortin signalling in the control of bodyweight:evidence from human and murine genetic models[J].QJM,2000,93(1):7~14
    [128] Kwan Suk kim,Larsen N,Short T.A.Missense variant of the porcine melanocortin-4receptor(MC4R) gene is associated with fatness, growth,and feed intake traits[J].Mammaliangenome,2000,11:131~135
    [129] Gerbens F, Handers F L,Verburg F J, et al. Effect of genetic variants of the heart fattyacid-binding protein gene on intramuscular fat and performance traits in pig[J]. Anim Sci,1999,77(4):846~852
    [130] Hertzel VA, Bernlohr DA. The mammalian fatty acid-binding protein multigene family:molecular and genetic insight into function. TEM,2000;11:175~180
    [131]曹红鹤,李宏滨,王立贤.FABPs作为猪肌内脂肪沉积候选基因的研究进展.国外畜牧科技,1999,26(6):31~33
    [132] Liou H-L, Kahn PC, Storch J. Role of the helical domain in fatty acid transfer fromadipocyte and heart fatty acid-binding proteins to membranes.J Biol Chem,2002;277:1806~1815
    [133] Gerbens F, de Koning DJ, Harders FL, Meuwissen THE,Janss LLG, Groenen MAM, et al.The effect of adipocyte and heart fatty acid-binding protein genes on intramuscular fat andbackfat content in Meishan crossbred pigs. J.Anim Sci,2000;78:552~559
    [134] Glatz JFC, van der Vusse GJ. Cellular fatty acid binding proteins: their function andphysiological significance.Prog Lipid Res,1996;35:243~282
    [135] Schaap FG, van der Vusse GJ, Glatz JF. Evolution of the family of intracellular lipid bindingproteins in vertebrates. Mol Cell Biochem,2002;239:69~77
    [136]杨文平,周忠孝.猪H-FABP基因研究进展.动物科学与动物医学[J],2004,21(8):17~18
    [137] Zimmerman AW, Veerkamp JH. New insights into the structure and function of fattyacid-binding proteins. Cell Mol Life Sci,2002;59:1096~1116
    [138] Veerkamp JH, Maatman RG. Cytoplasmic fatty acid-binding proteins: their structure andgenes. Prog Lipid Res.1995;34(1):17-52.
    [139]Frans Gerbens, Jansen A, van Erp AJ, Harders F, Meuwissen TH, Rettenberger G, VeerkampJH, te Pas MF. The adipocyte fatty acid-binding protein locus:characterization andassociation with intramuscular fat content in pigs[J]. Mamm Genome,1998,9(12):1022-1026.
    [140] Gerbens F, Verburg FJ, Van Moerkerk HT, Engel B, Buist W, Veerkamp JH, te Pas MF.Association of heart and adipocyte fatty acid-binding protein gene expression withintramuscular fat content in pigs[J]. J Anim Sci,2001,79(2):347~354.
    [141] Gerbens F, de Koning DJ, Harders FL, Meuwissen TH, Janss LL, Groenen MA, VeerkampJH, Van Arendonk JA, te Pas MF. The effect of adipocyte and heart fatty acid-bindingprotein genes on intramuscular fat and back-fat content in Meishan crossbred pigs[J]. JAnim Sci,2000,78:552-559.
    [142] Gerbens F, van Erp AJ, Harders FL, Verburg FJ, Meuwissen TH, Veerkamp JH, te Pas MF.Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fatand performance traits in pigs[J]. J Anim Sci,1999,77(4):846-852.
    [143]叶满红,曹红鹤,文杰,李宏滨,陈继兰,赵桂萍.北京油鸡和矮脚鸡心脏型、脂肪型脂肪酸结合蛋白基因多态性的研究.畜牧兽医学报,2003,34(5):422-426
    [144]李文娟,李宏宾,文杰,陈继兰,赵桂苹,郑麦青.鸡H-FABP和A-FABP基因表达与肌内脂肪含量相关研究.畜牧兽医学报,2006,37(5):417-423

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700