SO_2诱导拟南芥差异表达基因的甲基化特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拟南芥(Arabidopsis thaliana.L)是植物生物学研究中遗传背景最清楚的模式植物,其基因组测序工作已经完成,并且全基因组DNA甲基化图谱绘制已有报道。利用拟南芥丰富的遗传资源和相对先进的技术平台,可以为植物发育及抗性研究提供有力的手段和理论支持。
     二氧化硫(SO_2)属于全球性大气污染物,SO_2污染不仅会造成局部或全球气候反常,而且会对动植物的生长发育造成直接危害。如果空气中SO_2浓度超出植物的耐受范围,就会对植物产生毒害作用。目前为止,植物的抗逆机理还不清楚。本文首次对SO_2诱导拟南芥差异表达基因的DNA甲基化特征进行了分析,为研究植物抗SO_2胁迫机制提供实验依据。
     本实验以拟南芥为研究对象,以SO_2诱导拟南芥基因表达谱分析结果为基础,使用CpG岛数据库,对SO_2熏气后差异表达基因进行了CpG岛的预测与分析,分析结果表明:(1)在R>1的差异表达基因中,细胞代谢、结合、转录调控、信号转导和物质运输5类功能基因中含CpG岛的基因数目较多,推测这些基因表达水平的改变可能与DNA甲基化修饰相关。含CpG岛的转录调控基因在整个SO_2诱导拟南芥基因表达谱中大部分表达下调,而且在自然状态下大多处于非甲基化状态,推测转录调控基因的下调表达可能与基因内部CpG岛发生甲基化相关。(2)由诱导表达基因和沉默基因所含CpG岛数目和位置分布,推测SO_2胁迫可能主要通过诱导表达基因和沉默基因转录区的CpG岛甲基化修饰来调控基因的表达。与抗逆相关的诱导表达基因可能通过转录区发生去甲基化诱导基因的表达,沉默基因可能通过转录区的DNA甲基化而抑制基因的转录。ORF区CpG岛分析结果表明,沉默基因在ORF区发生甲基化修饰的几率更大。(3)根据SO_2熏气后拟南芥基因表达谱分析结果及CpG岛预测结果,选定MLH1、ACS-6、NIT2三个差异表达基因作为DNA甲基化分析的目的基因。
     采用甲基化敏感限制性内切酶(MS-RE)-PCR技术对与逆境胁迫密切相关的三个基因(MHL1、ACS-6和NIT2)进行了启动子区CCGG序列甲基化状态分析,结果表明30 mg·m~(-3)的SO_2连续熏气3 d后未引起MHL1启动子区CCGG序列甲基化位点的改变,对照组和实验组MHL1启动子区CCGG均为全甲基化的~(5m)CCGG;也未引起ACS-6启动子区CCGG甲基化位点的改变,对照组和实验组ACS-6启动子区CCGG均处于非甲基化状态;但30 mg·m~(-3)的SO_2连续熏气3 d后引起了NIT2启动子CCGG另一条链的第一个C发生甲基化,CCGG序列从对照组半甲基化~(5m)CCGG转变为全甲基化~(5m)CCGG。
     本论文通过对SO_2连续熏气3 d后拟南芥差异表达基因的CpG岛分析,推测SO_2胁迫下DNA甲基化可能调控了基因的差异性表达。使用(MS-RE)-PCR技术检测MLH1、ACS-6、NIT2三个差异表达基因启动子区CCGG位点的甲基化状态,结果表明,SO_2胁迫引起了拟南芥差异表达基因甲基化状态的改变。
Arabidopsis thaliana is considered to be a good model for plant researchbecause of genetic background. The whole genome of Arabidopsis thalianahas been sequenced and its genome-scale DNA methylation maps haverecently reported. We can provide powerful methods and theoretical supportfor plant development and resistance research by using abundant geneticresources and relatively advanced technology platform.
     Sulfur dioxide (SO_2) is one of common air pollutants. SO_2 pollution notonly causes local or global abnormal climate, but also exerts adverse effectson plants. The growth and development of most plant species are inhibitedafter exposure to high concentrations of SO_2. Up to now, the mechanism ofplants tolerance to environment stresses is unclear. To further understand themechanism of plants tolerance to environment stresses, analysis of DNAmethylation was firstly carried out in differential expression genes ofArabidopsis thaliana exposure to SO_2.
     We analyzed the differential expression genes by using CpG islanddatabase based on gene profiles in 4-week-old Arabidopsis seedlings exposedto SO_2(30 mg ? m~(-3), for 3 days). The results showed that: (1) Transcriptionalgenes played an important role in regulation of gene expression in bothup-regulated and down-regulated genes. The down-regulation oftranscriptional gene expression might be caused by methylation of CpGislands. (2) CpG islands distributed mainly in transcribed regions of inducedgenes and silent genes, we predicted that the methylation status of thetranscribed region CpG islands might play an important role in regulation ofinduced genes and silent genes. (3) From CpG islands in ORF, we knew thatsilent genes were more inclined to be methylated.
     Methylation-sensitive restriction endonuclease-PCR, named (MS-RE)-PCR, were used to reveal the CCGG methylation status in the promoters ofMHL1、ACS-6 and NIT2. The results showed that there were no methylationchanges at CCGG sites in MHL1 and ACS-6 promoters after Arabidopsis seedlings exposed to SO_2 (30 mg ? m~(-3), for 3 days). The CCGG methylationstatus of MHL1 promoters was ~(5m)CCGG and the CCGG methylation status ofACS-6 promoters was CCGG in both SO_2 fumigation group and the control.But CCGG methylation status of NIT2 promoter changed after SO_2fumigation. The first cytosine of CCGG in NIT2 promoter washemimethylated (5'C~mCGG in single strand) in the control group andchanged to be full methylation (5'C~mCGG in double strands) after exposureto SO_2.
引文
[1]Simon C, Langley E, Gary JP, et al. Sulphur dioxide: a potent glutathione depleting agent[J]. Comparative Biochemistry and Physiology, 1996,114(2),89-98.
    [2]孟紫强.环境毒理学[M].北京:中国环境出版社,2000,338-339.
    [3]秦海峰.模拟酸雨中的铝、铅、镉化合物对植物的氧化损伤和遗传损伤效应[D].山西大学2005届硕士研究生学位论文,2005,14.
    [4]太原市1999年度环境质量报告书[M].太原:太原市环境监测中心站,1999:40-45.
    [5]Etlik O, Tomur A, Kutman MN, et al. The effects of sulfur dioxide inhalation and antioxidant vitamins on red blood cell lipoperoxidation[J]. Environmental Research, 1995,71:25-28.
    [6]Meng ZQ, Zhang LZ. Chromosomal aberrations, sister chromatid exchanges and micronuclei induced in human lymphocytes by sodium bisulfite (sulfur dioxide)[J]. Acta Genetica Sinica, 1994,21 (1): 1 -6.
    [7]Krupa SV, Legge AH. Foliar injury symptoms of saskatoon serviceberry (Amelanchier alnifolia Nutt.) as a biological indicator of ambient sulfur dioxide exposures[J]. Environment Pollution, 1999,106(3):449-454.
    [8]Gokiemak M, Yildirim Z, Hasanoglu HC, et al. The role of oxidative stress in bronchoconstriction due to occupational sulfur dioxide exposure[J]. Clinica Chimica Acta, 2003,331:119-126.
    [9]Ranieri A, Castagna A, Lorenzini G, et al. Changes in thylakoid protein patterns and antioxidant levels in two wheat cultivars with different sensitivity to sulfur dioxide[J]. Environmental and Experimental Botany,1997,37:125-135.
    [10]Gokirmak M, Yildirim Z, Hasanoglu HC, et al. The role of oxidative stress in bronchoconstriction due to occupational sulfur dioxide exposure[J]. Clinica Chimica Acta,2003,331:119-126.
    [11]Yi HL, Liu J, Zheng K. Effect of sulfur dioxide hydrates on cell cycle, sister chromatid exchange, and micronuclei in barley[J]. Ecotoxicology and Environmental Safety, 2005,62(3):421-426.
    [12]Rennenberg H. The fate of excess sulphur in higher plants[J]. Annual Review of Plant Physiology,1984,35:121-153.
    [13]Noji M, Saito M, Nakamura M, et al. Cysteine synthase overexpression in tobacco confers tolerance to sulfur-containing environmental pollutants[J]. Plant Physiology, 2001,126:973-980.
    [14]Tanaka K, Sugahara K. Role of superoxide dismutase in defence against SO_2 toxicity and an increase in superoxide dismutase activity with SO_2 fumigation[J]. Plant Cell Physiology, 1980,21 (4):601 -611.
    [15]Goelz SE, Vogelstein B, Hamilton SR, et al. Hypomethylation of DNA from benign and malignant human colon neoplasia[J]. Science,1985,228(4696): 187-191.
    [16]Morel JB, Mourrain P, eclin C, et al. DNA methylation and chromatin structure affect transcriptional and post-transcriptional silencing in Arabidopsis[J]. Current Biology, 2000,10:1591-1594.
    [17]Zluvova J, Janousek B, Vyskot B. Immunohistchemical study of DNA methylation dynamics during plant development[J]. Journal of Experimental Botany, 2001,52(365):2265-2273.
    [18]Finnegan EJ, Genger RK, Peacock WJ, et al. DNA methylation in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998,49:223-247.
    [19]葛才林,杨小勇,刘向农等.重金属对水稻和小麦DNA甲基化水平的影响[J].植物生理与分子生物学学报,2002,28(5):363-368.
    [20]Choi CS, Sano H. Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants[J]. Molecular Genetics and Genomics,2007,277:589-600.
    [21]Ronemus MJ, Galbiati M, Ticknor C, et al. Demethylation-induced developmental plieotropy in Arabidopsis[J]. Science, 1996,273(2):654-657.
    [22]Nakano Y, Steward N, Sekine M, et al. A tobacco NtMET1 cDNA encoding a DNA methyltransferase: molecular characterization and abnormal phenotypes of transgenic tobacco plants[J]. Plant Cell Physiology, 2000,41 (4):448-457.
    [23]Matzke MA, Mette MF, Matzke AJ. Transgene silencing by the host genome defense: implification for the evolution of epigenetic control mechanisms in plants and vertebrates[J]. Plant Molecular Biology,2000,43:401-415.
    [24]Fu X, Kohli A, Twyman RM, et al. Alternative silencing effect involve distinct types of non-spreading cytosine methylation at a three-gene, single-copy transgenic locus in rice[J]. Molecular Genetics and Genomics, 2000(1 ),263:106-118.
    [25]侯雷平,李梅兰.DNA甲基化与植物的生长发育[J].植物生理学通讯,2001,37(6):584-588.
    [26]Jonesa L, Hamilton AJ, Voinneta O, et al. RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing[J]. Plant Cell,1999,11(12):2291-2302.
    [27]Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer[J]. Nature Reviews Genetics,2002,3(6):415-428.
    [28]Tao L, Wang W, Li L, et al. DNA hypomethylation induced by drinking water disinfection by-products in mouse and rat kidney[J]. Toxicological Sciences, 2005,87(2):344-352.
    [29]Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics[J]. Science,2001,293(5532):1068-1070.
    [30]Richards EJ. DNA methylation and plant development[J]. Trends in Genetics, 1997,13(8):319-323.
    [31]Zhang XY, Yazaki J, Sundaresan A, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis[J]. Cell, 2006,126:1189-1201.
    [32]Zilberman D, Gehring M, Tran RK, et al. Genome-wide analysis of Arabidopsis DNA methylation uncovers an interdependence between methylation and transcription[J]. Nature Genetic,2007,39:61-69.
    [33]Kim J, Kollhoff A, Bergmann A, et al. Methylation-sensitive binding of transcription factor YY1 to an insulator sequence within the paternally expressed imprinted gene, Peg3[J]. Human Molecular Genetics,2003,12(3):233-245.
    [34]Ehrlich M, Gama-Sosa MA, Huang LH, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells[J]. Nucleic Acids Research, 1982,10(8):2709-2721.
    [35]Bird A. DNA methylation patterns and epigenetic memory[J]. Genes Development, 2002,16(1):6-21.
    [36]Reik W, Santos F, Dean W. Mammalian epigenomics: reprogramming the genome for development and therapy[J]. Theriogenology,2003,59(1):21-32.
    [37]Hansen RS, Stoger R, Wijmenga C, et al. Escape from gene silencing in ICF syndrome: evidence for advanced replication time as a major determinant[J]. Human Molecular Genetics,2000,9(18):2575-2587.
    [38]Gardiner M, Frommer M. CpG islands in vertebrate genomes[J]. Journal of Molecular Biology, 1987,196(2):261 -282.
    [39]Shi H, Wang MX, Caldwell CW. CpG islands: their potential as biomarkers for cancer[J]. Expert Review of Molecular Diagnostics,2007,7(5):519-531.
    [40]Kuo KC, McCune RA, Gehrke CW, et al. Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA[J]. Nucleic Acids Research, 1980,8:4763-4776.
    [41]Oakeley EJ, Podesta A, Jost JP. Developmental changes in DNA methylation of the two tobacco pollen nuclei during maturation[J]. Proceedings of the National Academy of Sciences of USA, 1997,94: 11721-11725.
    [42]Oakeley EJ, Schmitt F, Jost JP. Quantification of 5-methylcytosine in DNA by the chloroacetaldehyde reaction[J]. Biotechniques, 1999,27:744-6,748-50,752.
    [43]Herman JG, Graff JR, Myohanen S, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands[J]. Proceeding of the National Academy of Science of USA, 1996,93(18):9821 -9826.
    [44]Frommer M, McDonald LE, Millar DS, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands[J].Proceeding of the National Academy of Science of USA, 1992,89(5): 1827-1831.
    [45]Maekawa M, Sugano K, Kashiwabara H, et al. DNA methylation analysis using bisulfite treatment and PCR-single-strand conformation polymorphism in colorectal cancer showing microsatellite instability[J]. Biochemical and Biophysical Research Communications, 1999,262:671-676.
    [46]Gonzalgo ML, Jones PA. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE)[J].Nucleic Acids Research, 1997,25:2529-2531.
    [47]Yan PS, Chen CM, Shi H, et al. Dissecting comples epigenetic alterations in breast cancer using CpG island microarrays[J]. Cancer Research,2001,61(23):8375-8380.
    [48] Huang TH, Perry MR, Laux DE. Methylation profiling of CpG islands in human breast cancer cells[J]. Human Molecular Genetics, 1999,8:459-470.
    [49]Gitan RS, Shi H, Chen CM, et al. Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis[J]. Genome Research,2002,12:158-164.
    [50]Kopriva S. Regulation of sulfate assimilation in Arabidopsis and beyond[J]. Annals of Botany,2006,97:479-495.
    [51]曾纪睛,张明永.选择性剪接在植物逆境相关基因表达调控中的作用[J].植物生理学通讯,2006,42(6):1005-1014.
    [52]Fraga MF, Uriol E, Borja DL, et al. High-performance capillary electrophoretic method for the quantification of 5-methyl 2-deoxycytidine in genomic DNA: application to plant, animal and human cancer tissues[J]. Electrophoresis, 2002,23:1677-1681.
    [53]Bird AP. CpG-rich islands and the function of DNA methylation[J]. Nature, 1986, 21:209-213.
    [54]Cokus SJ, Feng SH, Zhang XY, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning[J]. Nature,2008,452:215-219.
    [55]仪慧兰,吴婷,刘晓东等.利用寡核苷酸芯片进行拟南芥SO_2胁迫基因表达谱分析[J].山西大学学报(自然科学版),2008,31(4):617-621.
    [56] Ashikawa I. Gene-associated CpG islands in plants as revealed by analyses of genomicsequences[J]. The Plant Journal, 2001,26(6):617-625.
    [57]Park JM, Park CJ, Lee SB, et al. Overexpression of the tobacco tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco[J]. Plant Cell,2001,13:1035-1046.
    [58]Kim CY, Zhang SQ. Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco[J]. The Plant Journal,2004,38:142-151.
    [59]Cheong YH, Chang HS, Gupta R, et al. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress and hormonal responses in Arabidopsis[J]. Plant Physiology,2002,129:661-677.
    [60]Madlung A, Masuelli RW, Watson B, et al. Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids[J]. Plant Physiology,2002,129:733-746.
    [61]Ammerschmid T, Gao MG. Cell wall hydroxyproline enhancement and lignin deposition as an early evention the resistance of cucumber to cladosporium cucumerinum[J]. Plant Pathology,1984,24:43-47.
    [62]Tierney ML, Wiechert J, Pluymers D. Analysis of the expression and P33-related cell wall protein in carrot and soybean[J]. Molecular and General Genetics, 1988,211:393-399.
    [63]Mazau D. Hydroxyproline-rich glycoprotein accumulation in the cell walls of plants infected by various pathogens[J]. Physiological and Molecular Plant Pathology, 1986,29:147-157.
    [64]Finley D, Ozkaynak E, Varshavsky A. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation and other stresses[J]. Cell, 1987, 37:1035-1046.
    [65]Kane MF, Loda M, Gaida GM, et al. Methylation of the hMLM1 promoter correlates with lack of expression of hMLM1 in sporadic colon tumors and mismatch repairdefective human tumor cell lines[J]. Cancer Research, 1997,57(5):808-811.
    [66]仪慧兰,李红孩,孟紫强.SO_2体内衍生物诱发蚕豆根尖细胞微核[J].生态学报,2004,24(2):368-371.
    [67]Qian YC, Yu SW. Oxidation of sulfur dioxide on plants and anti-oxidation of plants[J]. Plant Physiology Communications,1991,27(5):326-331.
    [68]Rao MV, Paliyath G, Ormrod DP. Ultraviolet-B and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana[J]. Plant Physiology,1996,110(1):125-136.
    [69]Desikan R, Mackemess SAH, Hancock JT, et al. Regulation of the Arabidopsis transcriptome by oxidative stress[J]. Plant Physiology,2001,127:159-172.
    [70]Weber M, Davies JJ, Wittig D, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells[J]. Nature Genetics,2005,37:853-862.
    [71]Dahl C, Guldberg P. DNA methylation analysis techniques[J]. Biogerontology,2003,4(4):233-250.
    [72]杨金兰,柳李旺,龚义勤等.镉胁迫下萝下基因组DNA甲基化敏感扩增多态性分析[J].植物生理与分子生物学学报,2007,33(3):219-226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700