转基因产品检测标准物质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转基因生物检测标准物质是在转基因产品检测中用以校准测量装置、评价测量方法或给检测样品赋值的一种物质,其特性值足够均匀且稳定。转基因生物标准物质在转基因生物安全监管、转基因产品定性与定量检测、检测方法研究与标准化过程中是不可缺少的物质基础,可提高转基因产品检测结果可比性、有效性和溯源性。由于转基因检测标准物质的研制过程繁琐、技术要求高,研制单位较少,国际上的转基因检测有证标准物质基本上由欧盟联合研究中心下属的标准物质与测量研究所和美国的油脂化学家学会研制。我国转基因生物标准物质的研制目前尚属起步阶段,在实际检测工作中,由于转基因检测标准物质的缺乏,已经严重影响了转基因检测方法的标准化和现有标准的执行。因此,开展转基因检测标准物质的研究,可促进我国转基因检测技术和方法的发展,为我国转基因检测规章制度的建设提供技术支持,为提高我国转基因产品标准物质研制水平与国际接轨奠定基础。
     另外,随着转基因技术的不断发展,转基因作物的品种、性状呈多样化趋势发展。若对盲样直接用事件特异性方法进行PCR检测,在检测成本和工作量上都不可取,而容易对未获批准的转基因作物漏检。以转基因PCR筛查作为转基因检测中的第一步,有针对性地选取部分遗传元件,对盲样进行筛查检测。筛查得到的结果,还可为下一步转化事件的鉴定提供科学依据,大大提高检测效率。
     本论文针对以上转基因作物检测研究现状和存在问题,设置了以下研究内容:
     1)以转基因油菜OXY235、Topas、T45,转基因大豆MON89788,转基因玉米MIR604、T25为研究对象,对转基因作物检测基体标准物质和质粒标准物质进行研究。
     2)收集国际上已经商业化应用的转基因油菜、玉米、大豆、水稻遗传转化元件信息,构建转基因作物的筛查检测矩阵,并在此基础上完成筛查策略分析。
     在研究过程中取得了以下创新性成果:
     1、建立和完善了转基因检测基体标准物质研制技术
     在转基因检测基体标准物质研究过程中,首次在国内解决了原材料鉴定、加工、均匀性与稳定性测定与评价、量值确定与不确定度合成等关键技术问题。在原材料鉴定基础上,对原材料采用40℃恒温干燥,保证含水量小于10%。利用冷冻研磨技术保证80%以上的颗粒小于200uM。利用烘干法测定含水量,根据重量和含水量配制0%,0.5%,1%,5%四种转基因浓度。采用自动装置进行装瓶和充氮。利用荧光定量PCR检测转基因含量,并对瓶间和瓶内转基因含量进行方差分析,从而评价均匀性并合成均匀性不确定度。将材料于4℃,25℃和37℃放置1、2、4周,检验其短期稳定性,于4℃,-20℃放置1、2、4、6个月,检验其长稳定性并计算稳定性不确定,确定材料可于常温运输,可于4℃稳定储存半年以上。最后通过8家实验室联合定值的策略,对材料的转基因含量进行检测,材料的不确定度则来自于均匀性、稳定性和定值,通过公式合成了本批标准物质的不确定度,并完成了赋值全过程。
     2、制备完成3种转化体的基体标准物质,每种转化体4个浓度
     以转基因大豆MON89788,转基因玉米MIR604、T25为研究对象,每个转化体获得0%,0.5%,1%,5%四种转基因浓度的基体标准物质,每个浓度100瓶。经过量值测定和不确定度分析,标准物质具有所要求的均匀性、稳定性,并确定了量值和不确定度,可用于转基因成分定性和定量检测。
     3、建立和完善了转基因检测质粒标准物质制备技术
     通过研究,解决了载体的设计与构建、适合性测试、可替代性等关键问题。在构建质粒载体前,根据转基因植物的旁侧序列和内标准基因,结合国内外发布的标准检测方法,确定检测的靶标片段。通过PCR、酶切、连接等分子生物学方法将旁侧序列、内标准基因、以及将这两个片段隔开的间隔序列克隆至骨架载体pBluescript II SK (+)中,最后对构建完毕的6个质粒载体进行PCR、酶切和测序确认,并以测序所得结果对质粒中外源和内标片段比例赋值。此外,以质粒为模板,利用定性和定量PCR引物检测质粒扩增的特异性、灵敏度,证明了质粒的PCR扩增适合性。分别用质粒和基因组DNA绘制标准曲线,比较了质粒和基因组标准曲线的差异。以构建的标准曲线对盲样中转基因含量进行检测,并计算校正系数和校正方程,比较不同方法的准确度和精确度,确定了质粒在定量检测中的应用方法,为质粒的可替代性问题提供了一种可行的解决方案。
     4、制备了6种质粒标准分子
     以转基因油菜OXY235、Topas、T45,转基因大豆MON89788,转基因玉米MIR604、T25为研究对象,制备了6个不同的质粒标准分子,每种质粒标准分子制备了1000管,以107copies/μL的浓度每管500μL的量分装。经实验证明这种质粒标准分子具有良好的均匀性、稳定性、PCR扩增性,是一种良好的转基因检测标准物质。
     5、建立了商业化转化体的基因元件矩阵表,完成了转基因筛查策略研究
     根据加拿大转基因数据库、欧洲转基因生物指南、上海市转基因生物安全检测评估共享服务平台上公布的所有转基因油菜、玉米、大豆、水稻外源基因的分子特征,对转入的外源目的基因、启动子、终止子、筛选标记基因进行统计,建立遗传转化元件的矩阵表。经分析,对转基因油菜利用P-FMV35S、P-CaMV35S、BAR三个元件;对转基因玉米利用P-CaMV35S和T-NOS;对转基因大豆利用P-CaMV35S,Cry1Ac,gat,T-35S,T-E9;对转基因水稻利用P-CaMV35S,T-NOS,筛查率可达100%。本研究针对各物种建立了转基因筛查检测和快速定位策略,为转基因作物的筛查检测提供了科学的依据和重要的参考。
Reference material (RM) for detection of Genetically modified organisms (GMO) is a material orsubstance one or more of whose property values are sufficiently homogeneous and well established tobe used in GMO detection for the calibration of an apparatus, the assessment of a measurement method,or for assigning values to materials. GMO detection RM is indispensable to GMO safety control, GMOqualitative and quantitative detection, and standardization of GMO detection method. It can be used toimprove the comparability, validity and traceability of GMO detection. Procedure of GMO RMpreparation is cumbersome and technically demanding. By now, Only a few departments havedeveloped GMO CRM, and most of the GMO CRM have been developed by EU Joint Research Centre(Institute for Reference Materials and Measurements,IRMM) and American Oil Chemists' Society(AOCS). In China, research and development of GMO detection RM is still in infancy. Lack of RM inroutine work has hindered standardization of GMO detection technology and the implementation ofexisting standards. Therefore, studies on GMO detection RM will promote the development oftechniques and methods for GMO detection, provide technical support for the construction of theregulations of GMO detection, and lay a foundation for developing China's GMO detection RM,towards a international level.
     In addition, with the development of transgenic technology, varieties and traits of GM plant weremore and more diverse. If we directly detect the blind sample with event-specific method, the testingcost and effort are unacceptable; also it is possible to miss out un-approved GMO. Using screeningdetection as the first step and optimizing the combination of the detection targets with certain geneticelements can greatly improve the detection efficiency. Screening results can also provide a scientificreference for event-specific detection.
     On the status quo of GMO detection, the dissertation here is composed of two main parts. One is todevelop matrix RM and plasmid RM for detection of GM rapeseed OXY235, Topas, T45, GM soybeanMON89788, GM maize MIR604, T25. And the other is to collect the information of inserted geneelements for the internationally commercialized events of transgenic rapeseed, maize, soybeans and riceto establish molecular characteristics matrix of these transgenic events.
     The major research contents and the points of innovation in the study are as follows:
     1. Development and improvement of technology for production of GMO matrix RM
     Through the study of GMO detection matrix RM, we have solved the key technical issues in rawmaterial identification, processing, evaluation of homogeneity and stability, determination of value andcalculation of uncertainty. Based on identification of raw materials, the seed were dried under constanttemperature at40℃, and kept water content below10%. The seeds were milled using a cryo-grindingvibrating mill to ensure that more than80%of particles less than200uM. Four transgenicconcentrations were prepared according to the weight and water content of GM and Non-GM material.Bottling was implemented by automatic devices. Random samples of the prepared RM were taken, and GM content was analyzed using real-time PCR. Homogeneity and related uncertainties were calculated,indicating that these RMs were homogeneous. Short-term stability was studied at4°C,25°C and37°Cfor1,2,4weeks, and long-term stability at4°C and-20°C for1,2,4,6months. The results indicatedthat these RMs can be shipped under ambient conditions and stored at4°C or-20°C for6months ormore. At last, the GM content was determined by inter-laboratory study, and the expanded uncertaintyof certified value was comprised with homogeneity, long-term stability and inter-laboratory studystandard uncertainty. A complete set of the techniques for preparation of matrix RMs have beenesdablished.
     2. Preparation of matrix RM for three transgenic events, each event with4concentrations
     The matrix RMs was prepared for GM events of soybean MON89788, maize MIR604and T25.For each event, four concentrations (0%,0.5%,1%, and5%), and100bottles for each concentrationwere prepared. Through determination of value and uncertainty, these RMs were proved to besufficiently homogenous and stable, and can be used in GMO qualitative and quantitative detection.
     3. Development and improvement of technology for production of GMO plasmid RM
     A strategy to construct plasmid molecule, and to test the suitability and commutability of theconstructed plasmid in PCR assays has been established. In plasmid vector construction, firstly, theflanking sequence, endogenous reference gene and interval sequence were determined according toexisting standard detection methods. Secondly, these three fragments were clone into pBluescript II SK(+) vector through molecular biology methods, such as PCR, restriction enzyme digestion and ligation.Finally, the vector was confirmed by PCR, enzyme digestion and sequencing. The certified value ofplasmid RM was the number of cloned DNA fragment for the flanking sequence and endogenousreference gene targets per plasmid. In addition, the specificity and sensitivity of plasmid template inqualitative PCR assays was test, similar results were obtained when using pDNA and gDNA as template.In order to study the commutability of pDNA in quantitative PCR, standard curves of pDNA and gDNAwere constructed and compared; both of these standard curves were used to calculate conversion factorand conversion equation, and to measure GM content of blind samples. We put forward a new andfeasible solution for commutability of pDNA in this study.
     4. Preparation of plasmid RMs for six transgenic events
     Six different plasmid reference molecules were constructed for GM rapeseed OXY235, Topas, T45,soybean MON89788, maize MIR604and T25. The plasmid DNA was diluted to a concentration107copies/μL, and filled500μL in to a bottle,1000bottles of plasmid RM were prepared for each plasmid.The experiment results proved that the plasmid RM have a good homogenous and stability, and can bewell amplified in PCR assays. So plasmid DNA is good as a RM for GMO detection.
     5. Construction of the inserted gene elements matrix table of commercialized transgenic events,and establishment of the screening strategy for GMO detection
     Matrix tables were constructed on the basis of target gene, promoter, terminator and select markergene by retrieving Canadian GM crop database, European GMO compass and GMO Detection methodDatabase (GMDD), domestic and foreign commercialized events of transgenic rapeseed, maize, soybean and rice were collected. Based on the frequency of application of these gene elements,P-FMV35S, P-CaMV35S and BAR were used in rapeseed screening detection. The combinations ofscreening detection targets were optimized to be P-CaMV35S and T-NOS for maize, P-CaMV35S,Cry1Ac, gat, T-35S and T-E9for soybean, P-CaMV35S and T-NOS for rice. Using these elements, theGMO can be reliably detected once. This study has established a strategy for transgenic screeningdetection and for rapid identification of GM events, providing a scientific basis and an importantreference for the screening detection of GM crops.
引文
1.陈洁君,张维,宛煜嵩,金芜军,王友华,薛爱红,孙国庆.全球转基因作物发展现状及趋势[J].农业生物技术学报,2011(02):369~374.
    2.董莲华,赵正宜,李亮,隋志伟,王晶.转基因植物标准物质研究进展[J].农业生物技术学报,2012(02):203~210.
    3.郭艾英.应用ELISA检测转基因棉花中Bt蛋白的研究[D].天津科技大学,2006.
    4.韩永志.标准物质的均匀性及其检验[J].化学分析计量,2001(03):34~35.
    5.韩永志.标准物质讲座(第六讲)标准物质的稳定性监测及评价[J].化学分析计量,2001(04):37~39.
    6.韩永志.标准物质讲座(第七讲)标准物质的定值[J].化学分析计量,2001(05):38~39.
    7.韩永志.有证标准物质的使用[J].化学分析计量,2001(06):32~33.
    8.韩永志,韩冰.标准物质量值的溯源性及不确定度[J].化工标准.计量.质量,2002(10):22~24.
    9.胡尚杰,吴刚,武玉花,曹应龙,卢长明.转基因作物筛查用阳性质粒分子的构建及应用研究[J].中国油料作物学报,2010,32(2):173~179.
    10.黄昆仑,罗云波.用巢式和半巢式PCR检测转基因大豆Roundup Ready及其深加工食品[J].农业生物技术学报,2003(05):461~466.
    11.黄文胜,潘良文,粟智平,缪海珍,朱水芳,李瑶.基因芯片检测转基因油菜[J].农业生物技术学报,2003(06):588~592.
    12.黄迎春,孙春昀,冯红,胡晓东,尹海滨.利用基因芯片检测转基因作物[J].遗传,2003(03):307~310.
    13.阚莹,张正东.标准物质均匀性检验统计量F的判断[J].中国计量,2010(04):78~79.
    14.刘海涛,张川红,马淼,郑勇奇.中国树木转基因研究进展及其生物安全管理现状[J].中国农学通报,2009(05):80~89.
    15.卢长明.转基因作物田间试验的频次分析[J].生物技术通报,2008,3(3):153~161.
    16.缪海珍,朱水芳,张谦,黄文胜,李瑶,姚文国,毛裕民,谢毅.采用基因芯片技术筛查农作物转基因背景[J].复旦学报(自然科学版),2003(04):634~637642.
    17.聂淑晶,转基因油菜转化事件特异性检测技术[硕士学位论文].北京:中国农业科学院研究生院,2008.
    18.农业部1485号公告-19-2010《转基因植物及其产品成分检测基体标准物质候选物鉴定方法》[S].
    19.农业部NY/T673-2003《转基因植物及其产品检测抽样》
    20.农业部科技发展中心.转基因植物检测[M].北京:中国农业出版社,2009.
    21.农业部科技发展中心.转基因产品溯源[M].北京:中国物资出版社,2011.
    22.彭涛.核酸等温扩增技术及其应用[M].北京:科学出版社,2009.
    23.全浩,韩永志.标准物质及其应用技术(第二版)[M],北京:中国标准物质出版社,2002
    24.全国标准物质管理委员会.标准物质的研制管理与应用[M].北京:中国计量出版社,2010.
    25.全国标准物质管理委员会.标准物质定值原则和统计学原理[M].北京:中国质检出版社,
    2011.
    26.全国化工标准物质委员会.分析测试质量保证[M].辽宁:辽宁大学出版社,2004.
    27.沈愷琳,转基因玉米3272检测方法及质粒标准分子构建[硕士学位论文].上海:上海海洋大学,2009.
    28.沈雨萌,李飞武,李葱葱,张明,陆军.转基因玉米特异性检测阳性标准分子的构建与应用[J].玉米科学,2010(04):52~57.
    29.盛蕾,闻伟刚,赵秀玲,崔俊霞,朱世华.痕量转基因油菜籽成分的半巢式PCR检测[J].中国油料作物学报,2007(03):253~256.
    30.苏长青,谢家建,孙爻,彭于发.一种适合转基因棉CpTI和cry1A基因剂量测定的标准质粒的构建和应用[J].作物学报,2011,37(9):1533~1539.
    31.孙传范.我国农业转基因技术的应用现状和展望[J].安徽农业科学,2011(15):8850~88528891.
    32.汪斌,卢晓华,孟凡敏.2001年以来我国标准物质发展状况概述[J].中国计量,2009(9):71~72.
    33.王永,兰青阔,赵新,朱珠,程奕.转基因作物外源转基因成分环介导等温扩增技术检测方法的建立及应用[J].中国农业科学,2009(04):1473~1477.
    34.王志刚,彭纯玉.中国转基因作物的发展现状与展望[J].农业展望,2010(11):51~55.
    35.王根荣,陆慧.标准物质及其管理[J].化学分析计量,2004(06):59~62.
    36.许文涛,白卫滨,罗云波,元延芳,黄昆仑.转基因产品检测技术研究进展[J].农业生物技术学报,2008(04):714~722.
    37.叶兴国,王艳丽,丁文静.主要农作物转基因研究现状和展望[J].中国生物工程杂志,2006(05):93~100.
    38.于莉,熊国华,刘志恒,曹际娟. SYBR GreenI实时PCR鉴定检测转基因油菜RT73品系[J].安徽农业科学,2007(10):3010~30113138.
    39.于亚东.化学分析的方法确认[M].北京:中国质检出版社,2009.
    40.袁铁琰.转基因大豆及其加工产品的检测技术研究[硕士学位论文].上海:上海师范大学,
    2004.
    41.尹全,李忆,宋君,张富丽,常丽娟,刘文娟,王东,刘勇.用于转基因植物及其产品检测的标准物质概述[J].安徽农业科学,2011(30):18430~1843118442.
    42.于亚东,刘媛.标准物质新旧定义的理解与比较[J].中国计量,2010(08):82~8597.
    43.余永亮,梁慧珍,王树峰,练云,位艳丽,王庭峰.中国转基因大豆的研究进展及其产业化[J].大豆科学,2010(01):143~150.
    44.张成,刘定富,易先达.全球转基因作物商业化进展及现状分析[J].湖北农业科学,2011(14):2819~2823.
    45.张洁.生物标准物质的制备、发展及管理[J].中国生物制品学杂志,2007(08):630~632.
    46.张丽,作物内标准基因开发与应用研究[硕士学位论文].武汉:中南民族大学,2009.
    47.张丽,武玉花,吴刚,曹应龙,李均,卢长明.转基因油菜筛查检测策略研究[J].中国油料作物学报,2012(01):74~81.
    48.张海波.适合转基因大豆GTS40-3-2复合PCR检测标准分子研制及番茄内标准基因国际协同验证[硕士学位论文].上海:上海交通大学,2008.
    49.周颖,黎源倩,裴晓方.转基因玉米的多重PCR-毛细管电泳-激光诱导荧光检测方法研究[J].高等学校化学学报,2007,28(8):1458~1463.
    50.中华人民共和国国家计量技术规范.标准物质常用术语和定义. JJF1005-2005.
    51.中华人民共和国国家计量技术规范.标准物质认定证书和标签内容编写规则. JJF1186-2007.
    52.中华人民共和国国家计量技术规范.一级标准物质技术规范. JJF1006-1994.
    53.中华人民共和国国家计量技术规范.测量不确定度评定与表示. JJF1059-1999
    54. Clive J.2011年全球生物技术/转基因作物商业化发展态势[J].中国生物工程杂志,2012,32(1):1~14.
    55. ISO/IEC指南2:1996,标准化及其相关活动的通用术语.
    56. ISO/IEC指南25:1990,校准和检测实验室能力的通用要求.
    57. ISO/IEC指南30:1992,标准物质术语和定义.
    58. ISO/IEC指南31:1981,标准物质证书的内容.
    59. ISO/IEC指南35:1989,标准物质定值的一般原则和统计学原理.
    60. Ahmed F E. Detection of genetically modified organisms in foods [J]. Trends Biotechnol,2002,20(5):215~223.
    61. Akiyama H, Sasaki N, Sakata K, Ohmori K, Toyota A, Kikuchi Y, Watanabe T, Furui S, Kitta K,Maitani T. Indicated detection of two unapproved transgenic rice lines contaminating vermicelliproducts [J]. J Agric Food Chem,2007,55(15):5942~5947.
    62. Akritidis P, Pasentsis K, Tsaftaris A S, Mylona P V, Polidoros A N. Identification of unknowngenetically modified material admixed in conventional cotton seed and development of anevent-specific detection method [J]. Electronic Journal of Biotechnology,2008,11:76~83.
    63. Angonesi F C, Maisonnave A C. Quantification of Roundup Ready soybean in Braziliansoy-derived foods by real-time PCR [J]. International Journal of Food Science&Technology,2008,43(6):1027~1032.
    64. Bahrdt C, Krech A, Wurz A, Wulff D. Validation of a newly developed hexaplex real-time PCRassay for screening for presence of GMOs in food, feed and seed [J]. Anal Bioanal Chem,2010,396(6):2103~2112.
    65. Block A, Schwarz G. Validation of different genomic and cloned DNA calibration standards forconstruct-specific quantification of LibertyLink in rapeseed by real-time PCR [J]. Eur Food ResTechnol,2003,216(5):421~427.
    66. Broothaerts W, Corbisier P, Emons H, Emteborg H, Linsinger T P, Trapmann S. Developmentof a certified reference material for genetically modified potato with altered starch composition.[J]. J Agric Food Chem,2007,55(12):4728~4734.
    67. Buh G M, Tengs T, La P J, Holst-jensen A, Pla M, Esteve T, Zel J, Gruden K. Comparison ofnine different real-time PCR chemistries for qualitative and quantitative applications in GMOdetection [J]. Anal Bioanal Chem,2010,396(6):2023~2029.
    68. Burns M J, Valdivia H, Harris N. Analysis and interpretation of data from real-time PCR tracedetection methods using quantitation of GM soya as a model system [J]. Anal Bioanal Chem,2004,378(6):1616~1623.
    69. Burns M, Corbisier P, Wiseman G, Valdivia H, Mcdonald P, Bowler P, Ohara K, Schimmel H,Charels D, Damant A, Harris N. Comparison of plasmid and genomic DNA calibrants for thequantification of genetically modified ingredients [J]. Eur Food Res Technol,2006,224(2):249~258.
    70. Burns M, Valdivia H. A procedural approach for the identification of sources of uncertaintyassociated with GM quantification and real-time quantitative PCR measurements [J]. Eur FoodRes Technol,2007,226(1):7~18.
    71. Cankar K, Stebih D, Dreo T, Zel J, Gruden K. Critical points of DNA quantification by real-timePCR--effects of DNA extraction method and sample matrix on quantification of geneticallymodified organisms.[J]. BMC Biotechnol,2006,6:37.
    72. Cao Y, Wu G, Wu Y, Nie S, Zhang L, Lu C. Characterization of the Transgenic Rice EventTT51–1and Construction of a Reference Plasmid [J]. J Agr Food Chem,2011,59(16):8550~8559.
    73. Chaouachi M, El M R, Berard A, Romaniuk M, Laval V, Brunel D, Bertheau Y. Development ofa real-time PCR method for the differential detection and quantification of four solanaceae inGMO analysis: potato (Solanum tuberosum), tomato (Solanum lycopersicum), eggplant(Solanum melongena), and pepper (Capsicum annuum).[J]. J Agric Food Chem,2008,56(6):1818~1828.
    74. Certification of reference materials of dry-mixed maize powder with different Mass Fractions ofMIR604Maize. ERM-BF415,2006
    75. Certification of reference materials of maize seed powder with different mass fractions ofgenetically modified98140maize. ERM-BF427,2009.
    76. Certification of Reference Materials of Potato Powder with Different Mass Fractions of theEvent AM04-1020. ERM-BF430,2011.
    77. Certification of plasmid DNA containing MON810maize DNA fragments. ERM-AD413,
    2007.
    78. Certification of Plasmid DNAcontaining NK603Maize DNAFragments. ERM-AD413,2011.
    79. Certification of Plasmid DNA containing356043Soybean DNA Fragments. ERM-AD425,
    2011.
    80. Charels D, Broeders S, Corbisier P, Trapmann S, Schimmel H, Linsinger T, Emons H. TowardMetrological Traceability for DNA Fragment Ratios in GM Quantification.2. Systematic Studyof Parameters Influencing the Quantitative Determination of MON810Corn by Real-Time PCR[J]. J. Agric. Food Chem.,2007,55(9):3258~3267.
    81. Ciabatti I, Marchesi U, Froiio A, Patern A, Ruggeri M, Amaddeo D. Role of the “NationalReference Centre for Genetically Modified Organisms (GMO) Detection” in the OfficialControl of Food and Feed [J]. Vet Res Commun,2005,29(0):31~34.
    82. Clapp J. Illegal GMO releases and corporate responsibility: Questioning the effectiveness ofvoluntary measures [J]. Ecol Econ,2008,66(2–3):348~358.
    83. Clive J. Global Status of Commercialized Biotech/GM Crops:2011[J]. China Biotechnology,2012,32(1):1~14.
    84. Compton J. Nucleic acid sequence-based amplification [J]. Nature,1991,350(6313):91~92.
    85. Corbisier P, Broothaerts W, Gioria S, Schimmel H, Burns M, Baoutina A, Emslie K R, Furui S,Kurosawa Y, Holden M J, Kim H H, Lee Y M, Kawaharasaki M, Sin D, Wang J. Towardmetrological traceability for DNA fragment ratios in GM quantification.1. Effect of DNAextraction methods on the quantitative determination of Bt176corn by real-time PCR [J]. J AgricFood Chem,2007,55(9):3249~3257.
    86. Corbisier P, Trapmann S, Gancberg D, Hannes L, Van I P, Berben G, Schimmel H, Emons H.Quantitative determination of Roundup Ready soybean (Glycine max) extracted from highlyprocessed flour [J]. Anal Bioanal Chem,2005,383(2):282~290.
    87. Davison J. GM plants: Science, politics and EC regulations [J]. Plant Sci,2010,178(2):94~98.
    88. Deiman B, Van A P, Sillekens P. Characteristics and applications of nucleic acid sequence-basedamplification (NASBA)[J]. Mol Biotechnol,2002,20(2):163~179.
    89. Demeke T, Ratnayaka I. Multiplex qualitative PCR assay for identification of geneticallymodified canola events and real-time event-specific PCR assay for quantification of the GT73canola event [J]. Food Control,2008,19(9):893~897.
    90. Dobnik D, Morisset D, Gruden K. NAIMA as a solution for future GMO diagnostics challenges[J]. Anal Bioanal Chem,2010,396(6):2229~2233.
    91. Dorries H H, Remus I, Gronewald A, Gronewald C, Berghof-jager K. Development of aqualitative, multiplex real-time PCR kit for screening of genetically modified organisms(GMOs).[J]. Anal Bioanal Chem,2010,396(6):2043~2054.
    92. Feriotto G, Gardenghi S, Bianchi N, Gambari R. Quantitation of Bt-176Maize GenomicSequences by Surface Plasmon Resonance-Based Biospecific Interaction Analysis of MultiplexPolymerase Chain Reaction (PCR)[J]. J. Agric. Food Chem.,2003,51(16):4640~4646.
    93. Folloni S, Bellocchi G, Prospero A, Querci M, Moens W, Ermolli M, Van E G. StatisticalEvaluation of Real-Time PCR Protocols Applied to Quantify Genetically Modified Maize [J].Food Analytical Methods,2010,3(4):304~312.
    94. Fukuta S, Mizukami Y, Ishida A, Ueda J, Hasegawa M, Hayashi I, Hashimoto M, Kanbe M.Real-time loop-mediated isothermal amplification for the CaMV-35S promoter as a screeningmethod for genetically modified organisms [J]. Eur Food Res Technol,2004,218(5):496~500.
    95. Grohmann L, Brunen-nieweler C, Nemeth A, Waiblinger H U. Collaborative trial validationstudies of real-time PCR-based GMO screening methods for detection of the bar gene and thectp2-cp4epsps construct.[J]. J Agric Food Chem,2009,57(19):8913~8920.
    96. Gryson N. Effect of food processing on plant DNA degradation and PCR-based GMO analysis: areview [J]. Anal Bioanal Chem,2010,396(6):2003~2022.
    97. Guo J, Chen L, Liu X, Gao Y, Zhang D, Yang L. A multiplex degenerate PCR analyticalapproach targeting to eight genes for screening GMOs [J]. Food Chem,2012,132(3):1566~1573.
    98. Holst-jensen A. Testing for genetically modified organisms (GMOs): Past, present and futureperspectives [J]. Biotechnol Adv,2009,27(6):1071~1082.
    99. Holst-jensen A, Berdal K G. The Modular Analytical Procedure and Validation Approach andthe Units of Measurement for Genetically Modified Materials in Foods and Feeds [J]. J Aoac Int,2004,87(4):927~936.
    100. Holst-jensen A, Bertheau Y, De L M, Grohmann L, Hamels S, Hougs L, Morisset D, Pecoraro S,Pla M, Den B M, Wulff D. Detecting un-authorized genetically modified organisms (GMOs) andderived materials [J]. Biotechnol Adv,2012(0).
    101. Huggett B. EU to monitor for Chinese GM rice.[J]. Nat Biotechnol,2008,26(5):478.
    102. Kumar R, Singh C K, Kamle S, Sinha R P, Bhatnagar R K, Kachru D N. Development ofnanocolloidal gold based immunochromatographic assay for rapid detection of transgenicvegetative insecticidal protein in genetically modified crops [J]. Food Chem,2010,122(4):1298~1303.
    103. Kuribara H, Shindo Y, Matsuoka T, Takubo K, Futo S, Aoki N, Hirao T, Akiyama H, Goda Y,Toyoda M, Hino A. Novel reference molecules for quantitation of genetically modified maizeand soybean.[J]. J AOAC Int,2002,85(5):1077~1089.
    104. Lauwaars M, Anklam E. Method validation and reference materials [J]. Accreditation andQuality Assurance: Journal for Quality, Comparability and Reliability in Chemical Measurement,2004,9(4):253~258.
    105. Lee D, La Mura M, Greenland A, Mackay I. Quantitation using informative zeros (QUIZ):Application for GMO detection and quantification without recourse to certified referencematerial [J]. Food Chem,2010,118(4):974~978.
    106. Leimanis S, Hern M, Fern S, Boyer F, Burns M, Bruderer S, Glouden T, Harris N, Kaeppeli O,Philipp P, Pla M, Puigdom P, Vaitilingom M, Bertheau Y, Remacle J. A Microarray-basedDetection System for Genetically Modified (GM) Food Ingredients [J]. Plant Mol Biol,2006,61(1):123~139.
    107. Lien T T, Lam T D, An V T, Hoang T V, Quang D T, Khieu D Q, Tsukahara T, Lee Y H, Kim JS. Multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole DNA biosensor for label-freedetection of genetically modified organisms by QCM and EIS [J]. Talanta,2010,80(3):1164~1169.
    108. Lievens A, Bellocchi G, De B D, Moens W, Savini C, Mazzara M, Van E G, Van B M. Use ofpJANUS-02-001as a calibrator plasmid for Roundup Ready soybean event GTS-40-3-2detection: an interlaboratory trial assessment [J]. Anal Bioanal Chem,2010,396(6):2165~2173.
    109. Lipp M, Anklam E, Stave J W, Lipp M, Anklam E, Stave J W. Validation of an immunoassayfor detection and quantitation of a genetically modified soybean in food and food fractions usingreference materials: interlaboratory study [J]. J AOAC Int,2000,83(4):919~927.
    110. Liu D, Shen J, Yang L, Zhang D. Evaluation of the Impacts of Different Nuclear DNA Contentin the Hull, Endosperm, and Embryo of Rice Seeds on GM Rice Quantification [J]. J. Agric.Food Chem.,2010,58(8):4582~4587.
    111. Li F W, Shao G G, Xing Z J, Li C C, Xia W, Zhang M. Construction of the plasmid referencemolecule for detection of transgenic soybean MON89788.[J]. Agricultural Science&Technology-Hunan,2010,11(5):55~5886.
    112. Made D, Degner C, Grohmann L. Detection of genetically modified rice: a construct-specificreal-time PCR method based on DNA sequences from transgenic Bt rice.[J]. Eur. Food Res.Technol.,2006,224(2):271~278.
    113. Mbongolo M E, Lievens A, Barbau-piednoir E, Sneyers M, Leunda-casi A, Roosens N, Van BM. SYBR Green qPCR methods for detection of endogenous reference genes in commoditycrops: a step ahead in combinatory screening of genetically modified crops in food and feedproducts [J]. Eur Food Res Technol,2011,232(3):485~496.
    114. Miraglia M, Berdal K G, Brera C, Corbisier P, Holst-jensen A, Kok E J, Marvin H J, SchimmelH, Rentsch J, Van R J, Zagon J. Detection and traceability of genetically modified organisms inthe food production chain [J]. Food Chem Toxicol,2004,42(7):1157~1180.
    115. Moreano F, Busch U, Engel K H. Distortion of Genetically Modified Organism Quantification inProcessed Foods: Influence of Particle Size Compositions and Heat-Induced DNA Degradation.[J]. J. Agric. Food Chem.,2005,53(26):9971~9979.
    116. Morisset D, Dobnik D, Hamels S, Zel Jana, Gruden K. NAIMA: target amplification strategyallowing quantitative on-chip detection of GMOs [J]. Nucleic Acids Res,2008,36(18): e118.
    117. Pardigol A, Guillet S, Popping B. A simple procedure for quantification of genetically modifiedorganisms using hybrid amplicon standards [J]. Eur. Food Res. Technol.,2003,216(5):412~420.
    118. Peano C, Samson M C, Palmieri L, Gulli M, Marmiroli N. Qualitative and quantitativeevaluation of the genomic DNA extracted from GMO and non-GMO foodstuffs with fourdifferent extraction methods [J]. J. Agric. Food Chem.,2004,52(23):6962~6968.
    119. Peccoud J, Jacob C. Theoretical uncertainty of measurements using quantitative polymerasechain reaction [J]. Biophys J,1996,71(1):101~108.
    120. Prokisch J, Zeleny R, Trapmann S, Guern L L, Schimmel H, Kramer G N, Pauwels J. Estimationof the minimum uncertainty of DNA concentration in a genetically modified maize samplecandidate certified reference material [J]. Fresenius' Journal of Analytical Chemistry,2001,370(7):935~939.
    121. Querci M, Van B M, Zel J, Van E G, Broll H. New approaches in GMO detection.[J]. AnalBioanal Chem,2010,396(6):1991~2002.
    122. Raymond P, Gendron L, Khalf M, Paul S, Dibley K, Bhat S, Xie V, Partis L, Moreau M E,Dollard C, Cot M J, Laberge S, Emslie K. Detection and identification of multiple geneticallymodified events using DNA insert fingerprinting [J]. Anal Bioanal Chem,2010,396(6):2091~2102.
    123. Ronning S B, Vaitilingom M, Berdal K G, Holst-jensen A. Event specific real-time quantitativePCR for genetically modified Bt11maize (Zea mays)[J]. Eur. Food Res. Technol.,2003,216(4):347~354.
    124. Rossi S, Scaravelli E, Germini A, Corradini R, Fogher C, Marchelli R. A PNA-array platformfor the detection of hidden allergens in foodstuffs [J]. Eur Food Res Technol,2006,223(1):1~6.
    125. Rene K, Franziska Z, Alda B. Multiplex real-time PCR for the simultaneous detection andquantification of DNA from three transgenic rice species and construction and application of anartificial oligonucleotide as reference molecule [J]. Eur Food Res Technol,2010,230:731~736.
    126. Scaravelli E, Broh M, Marchelli R, Van H A. Development of three real-time PCR assays todetect peanut allergen residue in processed food products [J]. Eur Food Res Technol,2008,227(3):857~869.
    127. Shindo Y, Kuribara H, Matsuoka T, Futo S, Sawada C, Shono J, Akiyama H, Goda Y, ToyodaM, Hino A. Validation of real-time PCR analyses for line-specific quantitation of geneticallymodified maize and soybean using new reference molecules.[J]. J AOAC Int,2002,85(5):1119~1126.
    128. Sisea C R, Pamfil D. Comparison of DNA extraction methods for GMO analysis of foodproducts.[J]. Bulletin of University of Agricultural Sciences and Veterinary MedicineCluj-Napoca. Animal Science and Biotechnologies,2007,63/64:478~484.
    129. Stave J W. Protein immunoassay methods for detection of biotech crops: applications,limitations, and practical considerations.[J]. J AOAC Int,2002,85(3):780~786.
    130. Stobiecka M, Cie J, Janowska B, Tudek B, Radecka H. Piezoelectric Sensor for Determinationof Genetically Modified Soybean Roundup Readya in Samples not Amplified by PCR [J].Sensors,2007,7(8):1462~1479.
    131. Su C, Xie J, Wang X, Peng Y. Integrated structure and event-specific real-time detection oftransgenic cry1Ac/SCK rice Kefeng6[J]. Eur Food Res Technol,2011,232(2):351~359.
    132. Taverniers I, Windels P, Vaitilingom M, Milcamps A, Van B E, Van E G, De L M.Event-specific plasmid standards and real-time PCR methods for transgenic Bt11, Bt176, andGA21maize and transgenic GT73canola.[J]. J Agric Food Chem,2005,53(8):3041~3052.
    133. Taverniers I, Bockstaele E, Loose M. Cloned plasmid DNA fragments as calibrators forcontrolling GMOs: different real-time duplex quantitative PCR methods [J]. Anal Bioanal Chem,2004,378(5):1198~1207.
    134. Taverniers I, Windels P, Van B E, De L M. Use of cloned DNA fragments for event-specificquantification of genetically modified organisms in pure and mixed food products [J]. Eur FoodRes Technol,2001,213(6):417~424.
    135. The certification of Conventional, Roundup Ready, Bollgard, and Bollgard II, CottonseedReference Materials. AOCS0804-A, AOCS0804-B,2004.
    136. The certification of Conventional and Roundup Ready (RT73) Canola Seed Reference Materials.AOCS0304-A and AOCS0304-B,2008.
    137. The certification of Conventional, A2704-12, and A5547-127Soybean Leaf DNA ReferenceMaterials. AOCS0707-A2, AOCS0707-B2and AOCS0707-C2,2009.
    138. Tomita N, Mori Y, Kanda H, Notomi T. Loop-mediated isothermal amplification (LAMP) ofgene sequences and simple visual detection of products [J]. Nat. Protocols,2008,3(5):877~882.
    139. Toyota A, Akiyama H, Sugimura M, Watanabe T, Kikuchi H, Kanamori H, Hino A, Esaka M,Maitani T. Quantification of genetically modified soybeans using a combination of acapillary-type real-time PCR system and a plasmid reference standard.[J]. Biosci BiotechnolBiochem,2006,70(4):821~827.
    140. Trapmann S, Schimmel H, Kramer G N, Van E G, Pauwels J. Production of certified referencematerials for the detection of genetically modified organisms.[J]. J AOAC Int,2002,85(3):775~779.
    141. Van B M, Lievens A, Barbau-piednoir E, Mbongolombella G, Roosens N, Sneyers M, Casi A. Atheoretical introduction to “Combinatory SYBR Green qPCR Screening”, a matrix-basedapproach for the detection of materials derived from genetically modified plants [J]. AnalBioanal Chem,2010,396(6):2113~2123.
    142. Van D G, Van B R, Bleeker-marcelis H, Van B I, Adan A J, Jhakrie S, Hessing M. Detection ofgenetically modified organisms in foods by protein-and DNA-based techniques: bridging themethods.[J]. J AOAC Int,2002,85(3):787~791.
    143. Venelinov T, Quevauviller P. Are certified reference materials really expensive?[J]. TrACTrends in Analytical Chemistry,2003,22(1):15~18.
    144. Vollenhofer S, Burg K, Schmidt J, Kroath H. Genetically modified organisms in food-screeningand specific detection by polymerase chain reaction.[J]. J Agric Food Chem,1999,47(12):5038~5043.
    145. Wang X, Teng D, Yang Y, Tian F, Guan Q, Wang J. Construction of a reference plasmidmolecule containing eight targets for the detection of genetically modified crops [J]. ApplMicrobiol Biot,2011,90(2):721~731.
    146. Watanabe T, Tokishita S, Spiegelhalter F, Furui S, Kitta K, Hino A, Matsuda R, Akiyama H,Maitani T. Development and Evaluation of Event-Specific Qualitative PCR Methods forGenetically Modified Bt10Maize [J]. J. Agric. Food Chem.,2007,55(4):1274~1279.
    147. Wu G, Wu Y, Nie S, Zhang L, Xiao L, Cao Y, Lu C. Real-time PCR method for detection of thetransgenic rice event TT51-1[J]. Food Chem,2010,119(1):417~422.
    148. Wu G, Wu Y, Xiao L, Lu C. Event-specific qualitative and quantitative PCR detection ofgenetically modified rapeseed Topas19/2[J]. Food Chem,2009,112(1):232~238.
    149. Wu Y, Wu G, Xiao L, Lu C. Event-specific qualitative and quantitative PCR detection methodsfor transgenic rapeseed hybrids MS1xRF1and MS1xRF2.[J]. J Agric Food Chem,2007,55(21):8380~8389.
    150. Wu G, Wu Y, Xiao L, Lu C. Event-specific qualitative and quantitative PCR methods for thedetection of genetically modified rapeseed Oxy-235.[J]. Transgenic Res,2008.
    151. Yang L, Guo J, Pan A, Zhang H, Zhang K, Wang Z, Zhang D. Event-specific quantitativedetection of nine genetically modified maizes using one novel standard reference molecule.[J]. JAgric Food Chem,2007,55(1):15~24.
    152. Yang L, Pan A, Zhang H, Guo J, Yin C, Zhang D. Event-Specific Qualitative and QuantitativePolymerase Chain Reaction Analysis for Genetically Modified Canola T45[J]. J. Agric. FoodChem.,2006,54(26):9735~9740.
    153. Yazgan S, Bernreuther A, Ulberth F, Isengard H. Water an important parameter for thepreparation and proper use of certified reference materials [J]. Food Chem,2006,96(3):411~417.
    154. Zel J, Cankar K, Ravnikar M, Camloh M, Gruden K. Accreditation of GMO detectionlaboratories: Improving the reliability of GMO detection [J]. Accreditation and QualityAssurance: Journal for Quality, Comparability and Reliability in Chemical Measurement,2006,10(10):531~536.
    155. Zhang D, Guo J. The Development and Standardization of Testing Methods for GeneticallyModified Organisms and their Derived ProductsF [J]. Journal of Integrative Plant Biology,2011,53(7):539~551.
    156. Zhang M, Gao X, Yu Y, Ao J, Qin J, Yao Y, Li Q. Detection of Roundup Ready soy in highlyprocessed products by triplex nested PCR [J]. Food Control,2007,18(10):1277~1281.
    157. Zhou X, Xing D, Tang Y, Chen W R. PCR-Free Detection of Genetically Modified OrganismsUsing Magnetic Capture Technology and Fluorescence Cross-Correlation Spectroscopy [J].PLoS ONE,2009,4(11): e8074.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700