荧光信号放大检测技术在生物大分子检测中的研究和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多年来,人们一直致力于发展和完善生物大分子的研究和分析方法,使其更加灵敏、精确、便捷、经济,以满足各个领域对其越来越高的要求。生物分子信号放大检测技术是近年来发展起来的一种利用各种工具酶和纳米颗粒等手段,并结合电化学、光学、压电等技术的高灵敏检测方法,可实现对生物分子的直接高灵敏检测,是生物分析科学领域中的一个研究重点和热点。如何利用现有分子生物学技术和手段将生物分子的含量、相互作用等信息实时、灵敏、特异地转化为易于检测的物理量并拓展其在分子生物学及生物医学中的应用,如何设计新的信号转换手段和建立新的生物分子信号放大检测技术平台来解决生命研究过程中的新问题,仍然是生物医学和分析化学工作者所面临的重大科学问题。
     本论文以上述科学问题为目标,以核酸和蛋白质这两类组成生命的最主要生物大分子为研究对象,利用多种核酸工具酶和荧光核酸探针技术,建立了一系列简便、快速的生物大分子荧光信号放大检测技术平台,在核酸定量分析、点突变(point mutation)检测、多重单核苷酸多态性(Single Nucleotide Polymorphisms, SNPs)基因分型和蛋白质的的分析方面得到重要应用。主要内容归纳如下:
     1、基于接近连接效应的滚环扩增(Rolling Chain amplification, RCA)方法的建立及用于点突变的高灵敏检测。滚环扩增技术由于具有高灵敏、高特异性和等温操作等诸多优点,在生物化学分析和临床医学诊断中有很好的应用前景,但同时也存在着用于扩增的模板-挂锁探针的合成难的问题,限制了滚环扩增技术的广泛应用。本部分在普通的滚环扩增技术基础上,利用接近连接效应原理,建立了一种滚环扩增模板-挂锁探针合成的新方法。该方法不但解决了普通滚环检测技术中存在的长片段DNA合成难和成本高的问题,而且提高了线性片段成环的效率,为滚环扩增的进一步广泛应用提供了帮助,并利用该方法合成的挂锁探针进行滚环扩增实现了对基因点突变的高灵敏检测。
     2、基于分子信标的等温循环链置换聚合酶反应的荧光信号放大技术用于核酸的检测。利用特殊设计的长臂分子信标作为聚合酶反应的模板和检测探针,在靶核酸分子与分子信标杂交中引发引物与分子信标臂部退火,在DNA聚合酶存在下产生循环的链置换聚合酶反应,从而实现了对靶核酸的荧光信号循环放大检测。该技术以靶DNA诱发链置换聚合酶反应的循环发生来实现信号放大,而无需直接扩增靶DNA分子,避免了反应产物污染,并且设计简单、操作简便快捷、在等温条件下反应,灵敏度高,检测下限可达6.4fmol/L,为核酸定量分析和病毒检测提供了一种简单、快速、高灵敏的荧光信号放大分析方法,有望在病毒检测分析等方面得到广泛的应用。
     3、基于切刻酶介导的循环链置换聚合反应用于多重SNPs的荧光信号放大检测。癌症、心脑血管疾病和精神性疾病等复杂疾病均由多个SNPs相互作用引起,因而在关联分析研究中同时对多个SNPs进行基因分型和检测已成为多基因复杂性状疾病的遗传易感性研究的重要技术手段。目前基于杂交稳定性的差异或点突变引起的酶反应速度差异的多重SNPs基因分型和检测方法具有分析点突变差异不显著的缺点,并同时很难将多个SNPs等位基因完全有效地分开,且没有信号放大检测的过程。本部分设计合成了分别带信号识别序列、酶切位点和引物识别序列的等位基因核酸探针,通过连接酶反应,巧妙结合切刻内切酶和聚合酶反应,建立了一种等温、快速、高灵敏和高特异的等温循环荧光信号放大的多重SNPs检测技术平台。该方法同时将多重SNPs基因的点突变信号准确转换为了多种具有显著差异、并可循环生成的单链DNA信号识别序列分子,并与带不同荧光标记的分子信标识别,获得不同的荧光信号,从而准确实现了对多重SNPs的信号放大检测。该检测平台克服了现有检测方法的缺陷,操作简单,等温反应,既能准确判断SNPs,又能将检测信号进行放大,还能对多个SNPs等位基因同时进行分析,为相关疾病筛查和临床诊断、防治和手术预后监测提供了一种新的强有力手段。
     4、利用双链荧光核酸适体探针建立了简便快速的蛋白质的荧光分析方法。核酸适体因能高效、特异地结合各种配体和具有易合成、易修饰等特点,在蛋白质检测方面具有广泛的应用前景。本部分基于结构转换信号核酸适体探针的设计,发展了一种新的基于双链荧光核酸适体探针的蛋白质检测方法。该方法对蛋白质的线性响应范围为6.0~100.0nmol/L,检测下限为6.0nmol/L。该方法对核酸适体探针的空间结构和与靶标的结合位点没有特殊的限制和要求,设计简单,操作方便,有望为基于核酸适体探针的靶物质检测提供一种简便、快速的通用检测平台
     5、基于发夹型核酸适体探针和聚合酶反应的荧光信号放大检测技术用于蛋白质检测。核酸分子由于可借助各种工具酶来检测,因而其检测方法远比传统的蛋白质检测方法灵敏和特异。通过检测核酸来定量蛋白质,一直是人们研究的热点和重点。本部分设计了一种新型的发夹型核酸适体探针,利用其与靶蛋白反应后构象发生变化的特点,建立了一种基于聚合酶反应的荧光信号放大的蛋白质检测新方法。该发夹型核酸适体被设计成蛋白质配体和聚合酶反应模板,当蛋白质与核酸适体特异性结合后,探针的构象由发夹型转变为线型,成为聚合酶反应的模板,在引物和聚合酶作用下启动聚合酶反应,聚合酶反应的进程被荧光染料实时转换为荧光信号,实现了在未直接标记核酸适体的情况下检测蛋白质,同时由于聚合酶的链置换活性,使诱导发夹型核酸适体构象变化的靶蛋白能在聚合酶反应中被置换出来,重新诱导下一轮的聚合酶反应,从而可实现对靶蛋白的循环放大检测,对蛋白质的线性响应范围为0.5~8.0nmol/L,检测下限为0.5nmol/L。该方法无须直接标记核酸适体探针、对核酸适体的空间结构无特殊要求、且只需一个核酸适体靶位点,因而可广泛应用于蛋白质的高灵敏检测。
With the development of Genome Project and Protein Project, more sensitive, accurate, convenient and economic detection methods for biological macromolecules have been the focus of biology, medicine and chemistry. In recent years, signal amplification detection technologies based on electrochemical, optical, piezoelectric technologies and the use of various enzymes and nanoparticles, have realized highly sensitive detections of biological macromolecules. How to utilize the existing molecular biology techniques and tools to convert the information of biological molecules to detectable signals with high sensitivity and specificity, how to further expand the use of signal amplifying methods in molecular biology and biomedical application, and how to design novel signal conversion means and develop novel signal amplification detection technology platform to address the research process to life in the new issue, are still significant topics for researches in biomedical and analysis chemical areas.
     In this thesis, a series of fluorescence signal amplifying detection technology platforms based on a variety of nucleic acid enzymes and fluorescent nucleic acid probes have been developed for quantitative analysis of DNA, point mutation detection, multiple single nucleotide polymorphisms (SNPs) genotyping and protein detection. The main researches included in this dissertation are presented as following:
     1. The construction of a padlock probe for rolling chain amplification based on proximity-ligation and detection of point mutation. Rolling circle amplification (RCA) has a wide range of applications in the biochemical analysis and clinical diagnosis due to its high sensitivity and specificity, isothermal operation and many other advantages. But this method is still difficult to construct padlock probes, which has restricted the RCA to be used widely. In this part, we developed a novel method for construction of padlock probe based on proximity-ligation. This method avoids to syntheses cost long DNA fragment and improves the construction efficiency of padlock probes. Here, point mutant genes have been detected sensitively using this method.
     2. Fluorescence signal amplifying detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction with molecular beacon. In this method, the specific long-stem molecular beacon (MB) is designed as a template of polymerization reaction and fluorescence signal carrier and the target is designed as a trigger of polymerization reaction. Upon recognition and hybridization with the target ssDNA, the stem of the MB is opened. The opened MB anneals with the primer and triggers the polymerization reaction circle-after-circle, which results to amplification of fluorescence signal. This design of method is simple and its operation is easy in isothermal reaction conditions. The detecting limit is6.4×10-15mol/L. It is expected to provide a simple, fast and sensitive platform for detection and subsequent analysis of nucleic acids, and potential to be widely used in virus detection.
     3. Multiple fluorescence signals amplifying detection of SNPs based on nicking enzyme mediated circular strand-displacement polymerase reaction. In this part, based on nicking enzyme mediated circular strand-displacement polymerase reaction, an isothermal fluorescence signals amplifying method for multiple SNPs detection platform,is established through the use of multiplex allele-specific probes containing signal discriminating sequences, nicking enzyme sites and primer annealing site. The trick of this method is to divert the allele-specific discriminations to multiplex fluorescence signals. This method is simple and easy to operation. Furthermore, this assay could not only determine the sites of multiplex SNPs, but also identify them accurately. This approach would be a promising technology for multiple SNPs genotyping.
     4. Development of a simple method for protein detection based on double-stranded fluorescent aptamer probe. Aptamer has a wide range of applications for protein detection due to its easy to synthesis and label, high and specific affinity with its target. In this part, a novel method with a double-stranded fluorescent probe for protein detection has been developed. A liner range of6.0-100.0nmol/L of protein detection is achieved. The method has a detection limit of6.0nmol/L. This strategy is easy to generalize for any aptamer without prior knowledge of its secondary tertiary structure, and would be used as a simple and general tool for protein detection.
     5. Fluorescence signal amplifying detection of protein based on hairpin aptamer probe and strand-displacement polymerase reaction. In this part, a novel fluorescent method of protein detection has was developed using hairpin aptamer based on polymerase reaction. The hairpin aptamer was designed to be employed as the protein ligand and template of the polymerase reaction. When the aptamer was bound to the protein, it would change to a liner strand and induce the strand-displacement polymerase reaction. Then protein detection was carried out by monitoring the polymerase reaction without directly labeling with the aptamer. Then the displaced protein could bind to the aptamer again and trigger a next strand-displacement polymerase reaction, leading to fluorescence signal amplifying detection of target protein. The result showed the method with a liner range of0.5~8.0nmol/L and detection limit of0.5nmol/L. This proposed method has the potential to design other protein probe with complex structure aptamer and be used as a simple and general tool for protein detection.
引文
[1]Woychik R P, Klebig M L. Functional genomic in the post-genome era. Mutation Research,1998,400(1-2):3-14
    [2]Williams G T, Smith C A. Molecular Regulation of Apoptosis:Genetic Controls on Cell Death. Cell,1993,74(5):777-779
    [3]钟碧玲,宋永生.鼻咽癌中p53蛋白积聚对瘤细胞有丝分裂和凋亡的影响.癌症,2000,19(5):432-435
    [4]费素娟,黄水平,周力新等.食管癌组织中COX-2、p53和PCNA的表达及意义.中国癌症杂志,2003,13(1):17-21
    [5]Mikami T, Yanagisawa N, Baba H, et al. Association of Bcl-2 protein expression with gallbladder carcinoma differentiation and progression and its relation to apoptosis. Cancer,1999,85(2):318-325
    [6]景丽,张建中,郭凤英等.Cyclin D1、p53及c-myc基因表达与胃癌生物学行为的关系.中国癌症杂志,2003,13(1):27-29
    [7]Osada M, Ohba M, Kawahara C, et al. Cloning and funcdtional analysis of human p51 which structurally and functionally resembles p53. Nature Medicine, 1998,4(7):839-843
    [8]Shi S T, Yang G Y, Wang L D, et al. Role of p53 gene mutations in human esophageal carcinogenesis:results from immurohislochemical and mutation analyses of carcinomas and nearby non-carcerous lesions. Carcinogenesis,1999, 20(4):591-597
    [9]蔡卫民,胡敏君.基因诊断与基因治疗.浙江中西医结合杂志,2002,12(11):661-666
    [10]曾溢滔.血红蛋白疾病的诊断和治疗.中华血液学杂志,1996,17(8):393-394
    [11]Marton M J, Derisi J L, Bennett H A, et al. Drug target validation and identification of secondary drug target effect using DNA microarray. Nature Medicine,1998,4(11):1293-1301
    [12]Mulbry W W, Karns J S, Kearney P C, et al. Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by southern hybridization with opd from Pseudomonas diminuta. Applied and Environmental Microbiology,1986,51(5):926-930
    [13]Correa R R, Mariash C N, Rosenberg M E. Loading and transfer control for Northern hybridization, Biotechniques,1992,12(2):154-8 2001.
    [14]Yang H, Mcleese J, Weisbart M, et.al. Simplified high throughput protocol for northern hybridization, Nucleic Acids Research,1993,21(14):3337-3338
    [15]Erica Golemis.蛋白质-蛋白质相互作用:分子克隆手册.贺福初,钱小红,张学敏等译.北京:中国农业出版社,2004,1-5
    [16]Voller A, Bartlett A, Bidwell D E. Enzyme immunoassays with special reference to ELISA techniques. Journal of Clinical Pathology,1978,31(6): 507-520
    [17]Blake M S, Johnston K H, Russell J G J, et al. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots, Analytical Biochemistry,1984,136(1):175-179
    [18]Schaeffer M, Orsi E V, Widelock D. Applications of immunofluorescence in public health virology. Bacteriological Reviews,1964,28(4):402-408
    [19]Matkowskyj K A, Cox R, Jensen R T, et al. Quantitative immunohistochemistry by measuring cumulative signal strength accurately measures receptor number. Journal of Histochemistry and Cytochemistry,2003,51(2):205-214
    [20]Cummings T J, Brown N M, Stenzel T T. TaqMan junction probes and the reverse transcriptase polymerase chain reaction:detection of alveolar rhabdomyosarcoma, synovial sarcoma, and desmoplastic small round cell tumor. Annals of Clinical and Laboratory Science,2002,32(3):219-224
    [21]Yesilkaya H, Meacci F, Niemann S, et al. Evaluation of molecular-beacon, taqman, and fluorescence resonance energy transfer probes for detection of antibiotic resistance-conferring single nucleotide polymorphisms in mixed mycobacterium tuberculosis DNA extracts. Journal of Clinical Microbiology, 2006,44(10):3826-3829
    [22]Shi M M, Myrand S P, Bleavins M R, et al. High throughput genotyping for the detection of a single nucleotide polymorphism in NAD(P)H quinone oxidoreductase (DT diaphorase) using TaqMan probes. Molecular Pathology, 1999,52(5):295-299
    [23]Liu H P, Wang H, Tan W H, et al. TaqMan probe array for quantitative detection of DNA targets. Nucleic Acids Research,2006,34(1):e4
    [24]Wang L, Gaigalsa A K, Blasic J, et al. Flurescence energy transfer between donor-acceptor pair on two oligonucleotides hybridized adjacently to DNA template. Biopolymers,2003,56(6):401-412
    [25]Turin L, Behe P, Plonsky I, et al. Hydrophobic ion transfer between membranes of adjacent hepatocytes:a possible probe of tight junction structure. Proceedings of the National Academy of Sciences of the United States of America,1991,88(20):9365-9369
    [26]Wang J K, Li T X, Guo X Y, et al. Exonuclease III protection assay with FRET probe for detecting DNA-binding proteins. Nucleic Acids Research,2005,33(2): e23
    [27]Sando S, Kool E T. Quencher as leaving group:efficient detection of DNA-joining reactions. Journal of the American Chemical Society,2002, 124(10):2096-2097
    [28]Sando S, Abe H, Kool E T. Quenched auto-ligating DNAs:multicolor identification of nucleic acids at single nucleotide resolution. Journal of the American Chemical Society,2004,126(4):1081-1087
    [29]Sando S, Kool E T. Imaging RNA in bacteria with selfligating quenched probes. Journal of the American Chemical Society,2002,124(33):9686-9687
    [30]Abe H, Kool E T. Flow cytometric detection of specific RNAs in native human cells with quenched autoligating FRET probes. Proceedings of National Academy of Sciences of the United States of America,2006,103(2):263-268
    [31]Li Q G, Luan G Y, Guo Q P, et al. A new class of homogeneous nucleic acid probes based on specific displacement hybridization. Nucleic Acids Research, 2002,30(2):e5
    [32]Tan W H, Wang K M, Drake T J. Molecular beacons. Current Opinion in Chemical Biology,2004,8(5):547-553
    [33]Broude N E. Stem-loop oligonucleotides:a robust tool for molecular biology and biotechnology. Trends Biotechnology,2002,20(6):249-256
    [34]Tang Z W, Wang K M, Tan W H, et al. Real-time monitoring of nucleic acid ligation in homogenous solutions using molecular beacons. Nucleic Acids Research,2003,31(23):e148
    [35]Tang Z W, Wang K M, Tan W H, et al. Real-time investigation of nucleic acidsphosphorylation process using molecular beacons. Nucleic Acids Research, 2005,33(11):e97
    [36]Sokol D L, Zhang X, Lu P, et al. Real time detection of DNA-RNA hybridization in living cells. Proceedings of National Academy of Sciences of the United States of America,1998,95(20):11538-11543
    [37]Santangelo P J, Nix B, Tsourkas A, et al. Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Research,2004,32(6):e57
    [38]Li J J, Geyer R, Tan W H. Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA. Nucleic Acids Research, 2000,28(11):e52
    [39]Fang X H, Li J J, Tan W H. Using molecular beacons to probe molecular interactions between lactate dehydrogenase and single-stranded DNA. Analytical Chemistry,2000,72(14):3280-3285
    [40]Rizzo J, Gifford L K, Zhang X, et al. Chimeric RNA-DNA molecular beacon assay for ribonuclease H activity. Molecular and Cellular Probes,2002,16(4): 277-283
    [41]Heyduk T, Heyduk E. Molecular beacons for detecting DNA binding proteins. Nature Biotechnology,2002,20(5):171-176
    [42]Drewes G, Bouwmeester T. Global approaches to protein-protein interactions. Current Opinion on Cell Biology,2003,15 (2):199-205
    [43]Yang C J, Jockusch S, Vicens M, et al. Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proceedings of the National Academy of Sciences of the United States of America,2005,102(48): 17278-17283
    [44]Geiger A, Burgstaller P, Eltz H, et al. RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Research,1996,24(6):1029-1036
    [45]Nieuwlandt D, Wecker M, Gold L, et al. In vitro selection of RNA ligands to substance P. Biochemistry,1995,249(16):5651-5659
    [46]Stojanovic M N, Prada P, Landry D W. Aptamer-based folding fluorescent sensor for cocaine. Journal of the American Chemical Society,2001,123(21): 4928-4931
    [47]Sulay D J, Romy K, Ellington R C. Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity. Journal of the American Chemical Society,2000,122(11):2469-2473
    [48]Baker B R, Lai, R Y, Wood M S, et al. An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. Journal of the American Chemical Society,2006,128(10):3138-3139
    [49]Xiao Y, Piorek B D, Plaxco K W, et al. A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. Journal of the American Chemical Society,2005,127(51):17990-17991
    [50]Beyer S, Simmel F C. A modular DNA signal translator for the controlled release of a protein by an aptamer. Nucleic Acids Research,2006,34(5): 1581-1587
    [51]Kawakami J, Imanaka H, Sugimoto N, et al. In vitro selection of atpamers that act with Zn2+. Journal of Inorganic Biochemistry,2000,82(2):197-206
    [52]Mullis K B, Falcona F A, Scharf S. Specific amplification of DNA in vitro:the polymerase chain reaction. Cold Spring Harbor Symposia on Quantitative Biology,1985,51(1):263-273
    [53]Krokene P, Barnes I, Wingfield B D, et al. A PCR-RFLP based diagnostic technique to rapidly identify Seiridium species causing cypress canker. Mycologia,2004,96(6):1352-1354
    [54]Shekhar M S, Gopikrishna G, Azad I S. PCR-RFLP analysis of 12s and 16s mitochondrial rRNA genes from brackishwater finfish and shellfish species. Asian fisheries science,2005,18(1):39-48
    [55]Krokene P, Barnes I, Wingfield B D, et al. A PCR-RFLP based diagnostic technique to rapidly identify Seiridium species causing cypress canker. Mycologia,2004,96(6):1352-1354
    [56]Dergam J A, Paiva S R, Schaeffer C E, et al. Phylogeography and RAPD-PCR variation in Hoplias malabaricus (Bloch,1794) (Pisces, Teleostei) in southeastern Brazil. Genetics and Molecular Biology,2002,25(4):379-387
    [57]Odin E, Larsson L, Aran M, et al. Rapid quantitative PCR determination of relative gene expression in tumor specimens using high-pressure liquid chromatography. Tumor Biology,1998,19(3):167-175
    [58]Shea P Y. Single-tube multiplex PCR-SSCP analysis distinguishes 7 common ABO alleles and readily identifies new alleles. Blood,2000,95(4):1487-1492
    [59]Kammann M, Laufs J, Schell J. et al. Rapid insertion al mutagenesis of DNA by polymerase chain reaction (PCR). Nucleic Acids Research,1989,17(13): 5404
    [60]Walker G T, Little M C, Nadeau J G, et al. Isothermal in vitro amplification of DNA by a restriction enzymePDNA polymerase system. Procedings of the National Academy of Sciences of the United States of Amercia,1992,89 (1): 392-396.
    [61]周薇薇刘云庆陈振栋等,PCR技术在临床医学中的应用.黑龙江:黑龙江教育出版社,1996,55-241
    [62]Dongen J J M, Macintyre E A, Gabert J A, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Leukemia,1999,13(12)1901-1928
    [63]Shen Z Y, Wells R L, Liu J M, et al. Identification of a cytochrome P450 gene by reverse transcription PCR using degenerate primers containing inosine. Proceedings of the National Academy of Sciences,1993,90(24):11483-11487
    [64]Rose T M, Schuttz E R, Henikoff J G, et al. Consensus-de-generate hybrid oligonucleotide primers for amplification of distantly-related sequences. Nucleic Acids Research,1998,26(7):1628-1635
    [65]Richmond T, Designing degenerate PCR primers. CoDEHoP: consensus-degenerate hybrid oligonucleotide primers. Genome Biology,2000, 1(1):240-245
    [66]王洪振,周晓馥,宋朝霞等.简并PCR技术及其在基因克隆中的应用.遗传,2003,25(2):201-204
    [67]Fisher P J, Gardner R C and Richardson T E, Single locus microsatellites isolated using 5'-anchored PCR. Nucleic Acids Research,1996,24(21): 4369-4371
    [68]Murray G I, In situ PCR. The Journal of Pathology,1993,169(2):187-188
    [69]Tani K, Kurokawa K and Nasu M, Development of a direct in situ PCR method for detection of specific bacteria in natural environments. Applied and Environmental Microbiology,1998,64(4):1536-1540
    [70]Mckie A, Samuel D, Cohen B. et al. Development of a quantitative immuno-PCR assay and its use to detect mumps-specific IgG in serum. The Journal of Immunological Methods,2002,261(1-2):167-175
    [71]Barletta J M, Edelman D C, Constantine N T. Lowering the detection limits of HIV-1 viral load using real-time immuno-PCR for HIV-1 p24 antigen. American Journal of Clinical Pathology,2004,122(1):20-27.
    [72]Gundersen D E and Lee I M. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs.1996,35(3):144-151
    [73]Sandhu G S, Aleff R A and Kline B C. Dual asymmetric PCR:one-step construction of synthetic genes. Biotechniques,1992 12(1):14-16
    [74]Yang F L. Development of quantitative real-time polymerase chain reaction for duck eateritiz virus DNA. Avian Diseases.2005,49(3):337-400.
    [75]欧阳松应,杨冬,欧阳红生等.实时荧光定量PCR技术及其应用.生命的化学,2004,24(1):74-76
    [76]Pallad I S, Kay I and Fonte R. Use of real-time PCR and light cycler system for the rapid detection of pneumocystis carina in respiratory specimens. Diagnostic Microbiology and Infectious Disease,2001,39(4):233-236
    [77]Bertsch T, Zimmer W and Casarin W. Real-time PCR assay with fluorescent hybridization probes for rapid Interleukin-6 promoter genotyping. Clinical Chemistry,2001,47 (10):1873-1874
    [78]Walker GT, Fraiser MS, SchramJ L, et al. Strand displacement amplification-an isothermal, in vitro DNA amplification technique. Nucleic Acids Research, 1992,20(7):1691-1696.
    [79]Spargo C A, Haaland P D, Jurgensen S R, et al. Chemiluminescent detection of strand displacement amplified DNA from species comprising the Mycobacterium tuberculosis complex. Molecular and Cellular Probes,1993,7 (5):395-404.
    [80]Spargo C A, Fraiser M S, Van C M, et al. Detection of M. tuberculosis DNA using thermophilic strand displacement amplification. Molecular and Cellular Probes,1996,10(4):247-256.
    [81]Walker G T. Empirical aspects of strand displacement amplification. PCR Methods Applications,1993,3(1):1-6.
    [82]Compton J. Nucleic acid sequence-based amplification. Nature,1991,350 (7): 91-92
    [83]Deiman B, Aarle P and Sillekens P. Characteristics and Applications of Nucleic Acid Sequence-Based Amplification (NASBA). Molecular Biotechnology,2002, 20(1):160-179
    [84]Souza D H, Jaykus L A. Nucleic acid sequence based amplification for the rapid and sensitive detection of Salmonella enterica from foods. Journal of Applied Microbiology,2003,95(6):1343-1350
    [85]Weusten J A M, CarpayW M, Tom A M, et al. Principles of quantitation of viral loads using nucleic acid sequence-based amplification in combination with homogenous detection using molecular beacons. Nucleic Acids Research,2002, 30(6):e26
    [86]Jean J, Blais B, Darveau A, et al. Rapid detection of human rotavirus using colorimetric nucleic acid sequence-based amplification (NASBA)-enzyme-linked immunosorbent assay in sewage treatment effluent. FEMS Microbiology Letters,2002,210 (1):143-147
    [87]任力强.可使RNA体外特异性扩增的Qp复制酶技术,生物学杂志,1991, 6(2):134-136
    [88]陈庆山,刘春燕,刘迎雪等,核酸体外扩增技术.中国生物工程杂志,2004,24(5):10-14
    [89]Engvall E and Perlmann P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry,1971, 8(9):871-874
    [90]Silvana C, Monica I R and Graciela S. Immunodiagnosis of human fascioliasis by an enzyme-linked immunosorbent assay (ELISA) and a micro-ELISA. Clinical and diagnostic laboratory immunology,2001,8(1):174-177
    [91]Balsari A, Poli G and Molina V. ELISA for toxoplasma antibody detection:a comparison with other serodiagnostic tests. Journal of clinical pathology,1980, 337(7):640-643
    [92]Mir M, Vreeke M and Katakis I. Different strategies to develop an electrochemical thrombin aptasensor. Electrochemistry Communications,2006, 8(3):505-511
    [93]Patolsky F, Katz E, Bardea A, et al. Enzyme-Linked amplified electrochemical sensing of oligonucleotide-DNA interactions by means of the precipitation of an insoluble product and using impedance spectroscopy, Langmuir,1999, 15(11):3703-3706
    [94]Shlyahovsky B, Pavlov V, Kaganovsky L, et al. Biocatalytic evolution of a biocatalyst marker:towards the ultrasensitive detection of immunocomplexes and DNA analysis, Angewandte Chemie International Edition,2006, 45(29):4815-4819
    [95]Alfonta L, Singh A K and Willner I. Liposomes labeled with biotin and horseradish peroxidase:a probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes, Analytical Chemistry, 2001,73(1):91-102
    [96]Horn T and Urdea M S. Forks and combs and DNA:the synthesis of branched oligodeoxyribonucleotides, Nucleic Acids Research,1989,17(17):6959-6967
    [97]Player A N, Shen L P, Kenny D. et al. Single-copy Gene Detection using branched DNA (bDNA) in situ hybridization, Journal of Histochemistry and Cytochemistry,2001,49(5):603-612.
    [98]Urdea M S, Kolberg J, Clyne J, et al. Application of a rapid non-radioisotopic nucleic acid analysis system to the detection of sexually transmitted disease-causing organisms and their associated antimicrobial resistances, Clinical Chemistry,1989,35 (8):1571-1575.
    [99]Harris E, Detmer J, Dungan J, et al. Detection of trypanosoma brucei spp. in human blood by a nonradioactive branched DNA-based technique, January Clinic Microbiology,1996,34 (12):2401-2407
    [100]Horn T, Chang C A and Urdea M S, An improved divergent synthesis of comb-type branched oligodeoxyribonucleotides (bDNA) containing multiple secondary sequences, Nucleic Acids Research,1997,25(23):4835-4841
    [101]Collins M L, Irvine B, Tyner D, et al. A branched DNA signal amplification assay for quantification of nucleic acid targets below 100 molecule/ml. Nucleic Acids Research,1997,25(15):2979-2984.
    [102]Yu M, Chuaug W, Dai C, et al. Clinical evaluation of the automated COBAS AMPLICOR HCV MONITOR test version 2.0 for quantifying serum Hepatitis C virus RNA and comparison to the quantiplex HCV version 2.0 test. Journal clinical Microbiology,2000,38:2933-2939.
    [103]Erali M, Ashwood E, Hillyard D. Performance characteristics of the COBAS AMPLICOR Hepatitis C virus MONITOR Test, version 2.0. American Journal of Clinical Pathology,2000,114(5)180-87.
    [104]王镜岩,朱圣庚,徐长法.生物化学(下册).第3版.北京:高等教育出版社,2002,410
    [105]乔婉琼,周东蕊,杨耀等.滚环扩增原理及其在医药领域的应用.中国药科大学学报,2006,37(3):201-205
    [106]王亚君,黄朝阳,程金平.滚环扩增体系及其应用研究进展.临床输血与检验,2005,7(1):73-75
    [107]肖乐义,祁自柏,姜俊等.滚环DNA扩增的原理、应用和展望.中国生物工程杂志,2004,24(9):33-38
    [108]Pickering J, Bamford A, Godbole V, et al. Integration of DNA ligation and rolling circle amplification for the homogeneous, end-point detection of single nucleotide polymorphisms. Nucleic Acids Research,2002,30(12):e60
    [109]Chen Y, Shortreed M R, Peelen D, et al. Surface Amplification of Invasive Cleavage Products. Journal of the American Chemical Society,2004,126 (10): 3016-3017
    [110]Christian A T, Pattee M S, Attix C M, et al. Detection of DNA point mutations and mRNA expression levels by rolling circle amplification in individual cells. Proceedings of the National Academy of Sciences,2001,98(25):14238-14243
    [111]Johan B, Anders I, Erik W, et al. Ulf Landegren and Mats Nilsson parallel gene analysis with allele-specific padlock probes and tag microarrays. Nucleic Acids Research,2003,31 (17):e107
    [112]Nallur G, Luo C, Fang L, et al. Signal amplification by rolling circle amplification on DNA microarrays. Nucleic Acids Research,2001,29(23), e118.
    [113]Smirnov D A, Burdick J T, Morley M, et al. Method for manufacturing whole-genome microarrays by rolling circle amplification. Genes Chromosomes Cancer,2004,40(1):72-77
    [114]Gavin M B. Protein microarrays and proteomics. Nature Genetics,2002,32(5), 526-532
    [115]Schweitzer B, Roberts S, Grimwade B, et al. Multiplexed protein profiling on microarrays by rolling-circle amplification. Nature Biotechnology,2002,20 (4): 359-365
    [116]Michale C M, Ramous S, William J, et al. Rolling circle amplification improves sensitivity in multiplex immunoassays on microspheres. Clinical Chemistry, 2002,48(10):1855-1858
    [117]Zhou L, Ou L J, Chu X, et al. Aptamer-based rolling circle amplification:a platform for electrochemical detection of protein, Analytical Chemistry,2007, 79(19):7492-7500
    [118]Giusto D A D, Wlassoff W A, Gooding J J, et al. Proximity extension of circular DNA aptamers with real-time protein detection. Nucleic Acids Research,2005,33(6), e64
    [119]Yang L T, Christine W, Fung, E J C, et al. Real-time rolling circle amplification for protein detection. Analytical Chemistry,2007,79(9):3320-3329
    [120]Weizmann Y, Cheglakov Z, Pavlov V, et al. Autonomous fueled mechanical replication of nucleic acid templates for the amplified optical detection of DNA, Angewandte Chemie International Edition,2006,45(14),2238-2242.
    [121]Weizmann Y, Beissenhirtz M K, Nowarski Z C R, et al. A virus spotlighted by an autonomous DNA machine. Angewandte Chemie International Edition,2006, 45(44),7384-7388.
    [122]Beissenhirtz M K, Elnathan R, Weizmann Y, et al. The aggregation of Au nanoparticles by an autonomous DNA machine detects viruses. Small,2007, 3(3):375-379
    [123]Beissenhirtz M K and Willner I. DNA-based machines, Organic and biomolecular chemistry.2006,4(2):3392-3401
    [124]Cheglakov Z, Weizmann Y, Basnar B, et al. Diagnosing viruses by the rolling circle amplified synthesis of DNAzymes. Organic and biomolecular chemistry 2007,5(2):223-225
    [125]Shlyahovsky B, Li D, Weizmann Y, et al. Spotlighting of cocaine by an autonomous aptamer-based machine. Journal of the American Chemical Society, 2007,129(13):3814-3815
    [126]Willner I, Cheglakov Z, Weizmann Y et al. Analysis of DNA and single base mutations using magnetic particles for purification, amplification and DNAzyme setection.2008, Analyst,133(7):923-927.
    [127]Li J W, Chu Y Z, Lee B Y H, et al. Enzymatic signal amplification of molecular beacons for sensitive DNA detection. Nucleic Acids Research,2008,36(6):e36
    [128]Kiesling T, Cox K, Davidsonl E A, et al. Sequence specific detection of DNA using nicking endonuclease signal amplification (NESA). Nucleic Acids Research,2007,35(18):e117
    [129]Lee H J, Li Y, Wark A W, et al. Enzymatically amplified surface plasmon resonance imaging detection of DNA by Exonuclease Ⅲ digestion of DNA microarrays. Analytical Chemistry,2005,77(16):5096-5100
    [130]Cooksey R C, Holloway B P, Oldenburg M C, et al. Evaluation of the Invader Assay:a linear signal amplification method for Identification of mutations associated with resistance to rifampin and isoniazid in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy,2000,44(5):1296-1301.
    [131]Hessner M J, Friedman K D, Voelkerding K V, et al. Multisite study for genotyping of the Factor Ⅱ (Prothrombin) G20210A mutation by the invader assay. Clinical. Chemistry,2001,47(11):2048-2050.
    [132]Olivier M, Chuang L M, Chang M S, et al. High-throughput genotyping of single nucleotide polymorphisms using new biplex invader technology. Nucleic Acids Research,2002,30(12):e53.
    [133]Lyamichev V and Neri B, Invader assay for SNP genotyping. Methods Molecular Biology,2003,212(1):229-240.
    [134]Olson M C, Takova T, Chehak L, et al. Invader assay for RNA quantitation. Methods Molecular Biology,2004,258(1):53-69.
    [135]Hasegawa Y, Sarashina T, Ando M, et al. Rapid Detection of UGT1A1 Gene polymorphisms by newly developed invader assay. Clinical. Chemistry,2004, 50(8):1479-1480
    [136]Hjertner B, Meehan B, Mckillen J, et al. Adaptation of an Invader assay for the detection of African swine fever virus DNA. Journal Virology Methods,2005, 124(1-2):1-10
    [137]Mast A and Arruda M. Invader assay for single-nucleotide polymorphism genotyping and gene copy number evaluation. Methods Molecular Biology, 2006,335(1):173-86.
    [138]Jeffrey J. Germer, D W, Majewski, B Y, et al. Evaluation of the invader sssay for genotyping Hepatitis C Virus. Journal of Clinical Microbiology,2006,44(2): 318-323
    [139]Fredriksson S, Gullberg M, Landegren U, et al. Protein detection using proximity-dependent DNA ligation assays. Nature Biotechnology,2002,20(5): 473-477
    [140]Gullberg M, Fredriksson S, Taussig M, et al. A sense of closeness:protein detection by proximity ligation. Nature Biotechnology,2002,20(5):473-477
    [141]Gullberg M, Gustafsdottir S M, Schallmeiner E, et al. Cytokine detection by antibody-based proximity ligation. Proceedings of the National Academy of Sciences,2004,101(22):8420-8424
    [142]Gustafsdottir S M, Schallmeiner E, Fredriksson S, et al. Proximity ligation assays for sensitive and specific protein analyses. Analytical Biochemistry, 2005,345(1):2-9
    [143]Pai S, Ellington A D and Levy M. Proximity ligation assays with peptide conjugate 'burrs' for the sensitive detection of spores. Nucleic Acids Research, 2005,33(18):e162
    [144]Zhu L, Koistinen H, Wu P, et al. A sensitive proximity ligation assay for active PSA. Biological Chemistry,2006,387(6):769-72
    [145]Gustafsdottir S M, Nordengrahn A, Fredriksson S, et al. Detection of individual microbial pathogens by proximity ligation. Clinical. Chemistry,2006,52(6): 1152-1160
    [146]Soderberg O, Gullberg M, Jarvius M, et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nature Methods, 2006; 3(12):995-1000
    [147]Fredriksson S, Dixon W, Ji H, et al. Multiplexed protein detection by proximity ligation for cancer biomarker validation. Nature Methods,2007,4(4):327-329
    [148]Darmanis S, Kahler A, Spangberg L, et al. Self-assembly of proximity probes for flexible and modular proximity ligation assays. Biotechniques,2007,43(4): 443-444,446,448
    [149]Nordengrahn A, Gustafsdottir S M, Ebert K, et al. Evaluation of a novel proximity ligation assay for the sensitive and rapid detection of foot-and-mouth disease virus. Microbiology,2008,127(3-4):227-236
    [150]Soderberg O, Leuchowius K J, Gullberg M, et al. Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods,2008,45(3):227-232
    [151]Gustafsdottir S M, Schlingemann J, Alvaro R I, et al. In vitro analysis of DNA-protein interactions by proximity ligation. Proceedings of the National Academy of Sciences,2007,104(9):3067-3072
    [152]羊小海,王蕾,王柯敏等.基于接近效应聚合反应与核酸适体的蛋白质检测新方法.科学通报,2007,52(20):2363-2366
    [153]詹林盛,王全立,孙红琰.脱氧核酶研究进展.生物化学与生物物理学报,2002,29(1):42-45
    [154]Santoro S W and Joyce G F. A general purpose RNA-cleaving DNA enzyme. Proceedings of National Academy of Sciences of the United States of America, 1997,94(9):4262-4266
    [155]Feldman A R and Sen D. A new and efficient DNA enzyme for the sequence-specific cleavage of RNA. Journal of Molecular Biology,2001, 313(2):283-294
    [156]Harris R S, Petersen-Mahrt S K and Neuberger M S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Molecualr Cell, 2002,10(5):1247-1253
    [157]Mei S H J, Liu Z J, Brennan J D, et al. An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling. Journal of the American Chemical Society,2003,125(2):412-420
    [158]Todd A V, Impey H L, Applegate T L, et al. Homogeneous amplification and detection of nucleic acid sequences using DzyNA (TM)-PCR. Clinical Chemistry,1999,45(11):2049-2050
    [159]Ohyama T, Kato Y, Mita H. et al. Structural and functional characterization of novel G-quadruplexed DNA-heme coordination complex. Nucleic Acids Symposium Series,2005,49(1):245-246
    [160]Pavlov V, Xiao Y, Gill R, et al. Amplified chemiluminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels. Analytical Chemistry,2004,76 (7):2152-2156
    [161]Niazov T, Pavlov V, Xiao Y, et al. DNAzyme-functionalized Au nanoparticles for the amplified detection of DNA or telomerase activity. Nano Letters,2004, 4(9):1709-1712
    [162]Xiao Y, Pavlov V, Niazov T, et al. Catalytic beacons for the detection of DNA and telomerase activity. Journal of the American Chemical Society,2004,126 (24):7430-7431
    [163]Tian Y, He Y and Mao C D. Cascade Signal Amplification for DNA Detection. Chemical and Biochemical,2006,7 (12):1862-1864
    [164]Deng M, Zhang D, Zhou Y. et al. Highly effective colorimetric and visual detection of nucleic acids using an asymmetrically split peroxidase DNAzyme. Journal of the American Chemical Society,2008,130(39):13095-13102
    [165]T Li, S Dong and E Wang. Label-free colorimetric detection of aqueous Mercury Ion (Hg2+) using Hg2+-modulated G-Quadruplex-based DNAzymes. Analytical Chemistry,2009,81(6):2144-2149
    [166]Chen W, Li B, Xu C. et al. Chemiluminescence flow biosensor for hydrogen peroxide using DNAzyme immobilized on eggshell membrane as a thermally stable biocatalyst. Biosensors and Bioelectronics,2009,24(8):2534-2540
    [167]Lu N, Shao C, and Z Deng. Rational design of an optical adenosine sensor by conjugating a DNA aptamer with split DNAzyme halves. Chemical Communications,2008,14(46):6161-6163.
    [168]Li T, Dong S and Wang E. Enhanced catalytic DNAzyme for label-free colorimetric detection of DNA. Chemical Communications,2007,7(41): 4209-4211.
    [169]Li T, Wang E K and Dong S J. Potassium-lead-switched G-Quadruplexes:a new class of DNA logic gates. Journal of the American Chemical Society,2009, 131(42):15082-15083
    [170]Li T, Dong S J, and Wang E K. G-quadruplex aptamers with peroxidase-like DNAzyme functions:which is the best and how does it work? Chemistry in An Asian Journal,2009,4(6):918-922
    [171]Li D, Shlyahovsky B, Elbaz J, et al. Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-Aptamer conjugates. Journal of the American Chemical Society 2007,129(18):5804-5805
    [172]Pelossof G, Vered R T, Elbaz J, et al. Amplified biosensing using the horseradish peroxidase-mimicking DNAzyme as an electrocatalyst. Analytical Chemistry,2010,82 (11):4396-4402
    [173]Park S J, Taton T A and Mirkin C A. Array-based electrical detection of DNA with nanoparticle probes. Science,2002,295(22):1503-1506.
    [174]Taton T A, Mirkin C A, Letsinger R L. Scanometric DNA array detection with nanoparticle probes. Science,2000,289(8):1757-60
    [175]张盛龙,彭图治.石英晶体微天平的纳米微球质量放大技术及短序列DNA测定.高等学校化学学报,2002,23(6):1022-1026
    [176]Wang Q, Yang X H and Wang K M. Enhanced surface plasmon resonance for detection of DNA hybridization based on layer-by-layer assembly films. Sensors and Actuators B,2007,123(1),227-232.
    [177]Zhao X, Dytioco R and Tan W. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticle. Journal of the American Chemical Society,2003,125(38):11474-11475
    [178]Bae S W, Cho M S, Hur S S, et al. A doubly signal-amplified DNA detection method based on pre-complexed [Ru(bpy)3]2+-Doped Silica Nanoparticles. Chemistry-A European Journal,2010,16(38):11572-11575
    [179]Zhou X and Zhou J. Improving the signal sensitivity and photostability of DNA hybridizations on microarrays by using dye-doped core-shell silica nanoparticles. Analytical Chemistry,2004,76(18):5302-5312
    [180]Rector A, Tachezy R and Ranst M V. A Sequence-independent strategy for detection and cloning of circular DNA virus genomes by using multiply primed rolling-circle amplification. Journal of Virology,2004,78(10):4993-4998
    [181]Hutchison C A, Smith H O, Pfannkoch C, et al. Cell-free cloning using{phi}29 DNA polymerase. Proceedings of the National Academy of Sciences of the United States of America,2005,102(48):17332-17336
    [182]Szemes M, Bonants P, Weerdt M, et al. Diagnostic application of padlock probes-multiplex detection of plant pathogens using universal microarrays. Nucleic Acids Research,2005,33(8):e70
    [183]Yang L, Fung C W, Cho E J, et al. Real-Time rolling circle amplification for Protein Detection. Analytical Chemistry,2007,79(9):3320-3329
    [184]Nilsson M, Malmgren H, Samiotaki M, et al. Padlock probes:circularizing oligonucleotides for localized DNA detection. Science,1994,265(5181): 2085-2088
    [185]吴冠芸,宋防,刘敬忠等.中国福建、湖北、贵州三省p-地中海贫血突变基因的分析.中华血液学杂志,1992,13(10):507-509
    [186]Howell W M, Jobs M and Brookes A J. iFRET:an improved fluorescence system for DNA-melting analysis. Genome Research,2002,12(9):1401-1407
    [187]Landegren U, Kaiser R, Sanders J, et al. A ligase-mediated gene detection technique. Science,1988,241(4869):1077-1080
    [188]Eggerding F A. A one-step coupled amplification and oligonucleotide ligation procedure for multiplex genetic typing. Genome Research,1995,4(6):337-345
    [189]Tyagi S and Kramer F R. Molecular beacons probes that fluoresce upon hybridization. Nature Biotechnology,1996,14(3):303-308
    [190]Tyagi S, Marras S A E and Kramer F R. Wavelength-shifting molecular beacons. Nature Biotechnology,2000,18(11):1191-1196
    [191]Tsourkas A, Behlkel M A and Bao G. Structure-function relationships of shared-stem and conventional molecular beacons. Nucleic Acids Research, 2002,30(19):4208-4215.
    [192]Weber J L, David D, Heil J, et al. Human diallelic insertion deletion polymorphisms. the American Journal Human Genetics,2002,71(4):854-862
    [193]Syvanen A C. Accessing genetic variation:genotyping single nucleotide polymorphisms. Nature Reviews Genetics,2001,2(12):930-942
    [194]Sachidanandam R, Weissman D, Schmidt S C, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms, Nature,2001,409(6822):928-933
    [195]Wang Z and Moult J. SNPs, protein structure and disease. Human Mutation, 2001,17(4):263-270
    [196]韩海琼,邵淑丽.基质金属蛋白酶-1,3的单核苷酸多态性现象在癌症中的作用.肿瘤研究与临床,2006,18(10):714-717
    [197]许玲,孙大志,余志红.肿瘤基因单核苷酸多态性研究及个体化医疗的思考.2005,13(5):592-595
    [198]王佐广,温绍君,吴兆苏.临床药物应用与单核苷酸多态性.中国医药导刊,2002,4(1):45-46
    [199]Carlson C S, Eberle M A, Rieder M J, et al. Additional SNPs and linkage-disequilibrium analyses are necessary for whole genome association studies in humans. Nature genetics,2003,33(4):518-521
    [200]Botstein D, Risch N. Discovering genotypes underlying human phenotypes: pase successes for Mendelian disease, future approaches for complex disease. Nature Genetics,2003,33(suppl.):228-237
    [201]Jenkins S and Gibson N. High-throughput SNP genotyping. Comparative and Functional Genomics,2002,3(1):57-66
    [202]Pompanon F, Bonin A, Bellemain E, et al. Genotyping errors:causes, consequences and solutions. Nature Reviews Genetics,2005,6 (11):847-859
    [203]施锦绣,王莹,黄薇.基因组分型技术的发展和应用,中国科学C辑:生命科学,2008,38(10):900-906
    [204]Kostrikis L G, Tyagi S, Mhlanga M M, et al. Molecular beacons-spectral genotyping of human alleles. Science,1998,279(5354):1228-1229
    [205]Tyagi S, Bratu D P, Kramer F R.Multicolor molecular beacons for allele discrimination. Nature Biotechnology,1998,16(1):49-53
    [206]Maruyama T, Takata T, Ichinose H, et al. Simple detection of point mutations in DNA oligonucleotides using SYBR Green I. Biotechnology Letters,2003, 25(19):1637-1641
    [207]Yesilkaya H, Meacci F, Niemann S, et al. Evaluation of molecular-beacon, taqman, and fluorescence resonance energy transfer probes for detection of antibiotic resistance-conferring single nucleotide polymorphisms in mixed mycobacterium tuberculosis DNA extracts. Journal of Clinical Microbiology, 2006,44(10):3826-3829
    [208]Reed G H, Kent J O and Wittwer C T. High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics,2007, 8(6):597-608
    [209]Jobs M, Howell W M, Stromqvist L, et al. DASH-2:flexible, low-cost, and high-throughput SNP genotyping by dynamic allele-specific hybridization on membrane arrays. Genome Research,2003,13(5):916-924
    [210]Livak K J. Allelic discrimination using fluorogenic probes and the 5'-nuclease assay. Genetic Analysis,1999,14(5-6):143-149
    [211]Zhou G H, Kamahori M, Okano K, et al. Quantitative detection of single nucleotide polymorphisms for a pooled sample by a bioluminometric assay coupled with modified primer extension reactions (BAMPER). Nucleic Acids Research,2001,29(19):e93
    [212]Meara O D, Ahmadian A, Odeberg J, et al. SNP typing by apyrase-mediated allele-specific primer extension on DNA microarrays. Nucleic Acids Research, 2002,30(15):e75
    [213]Giusto D D and King G C. Single base extension (SBE) with proofreading polymerases and phosphorothioate primers:improved edelity in single-substrate assays. Nucleic Acids Research,2003,31(3):e7
    [214]Lyamichev V, Mast A L and Hall J G. Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotides probes. Nature Biotechnology,1999,17(3):292-296
    [215]Chen X, Kwok P Y. Template-directed dye-terminator incorporation (TDI) assay:A homogeneous DNA diagnostic method based on fluorescence energy transfer. Nucleic Acids Research,1997,25(2):347-353
    [216]Li J.S. Chu X, LiuY.L.et al. A colorimetric method for point mutation detection using high-fidelity DNA ligase. Nucleic Acids Research.2005,33(19):e168.
    [217]Abravaya K, Carrino J. J, Muldoon S. et al. Detection of point mutations with a modified ligase chain reaction (Gap-LCR). Nucleic Acids Research,1995, 23(4):4675-4682.
    [218]Kim J.M and Lee H.J. Rapid Discriminatory Detection of Genes Coding for SHV-Lactamases by Ligase Chain Reaction. Antimicrobial Agents and Chemotherapy.2000,44(7):1860-1864.
    [219]Pickering J, Bamford A, Godbole V, et al. Integration of DNA ligation and rolling circle amplification for the homogeneous, end-point detection of single nucleotide polymorphisms. Nucleic Acids Research,2002,30(12):e60
    [220]Qi X, Bakht S, Devos K M. L-RCA (ligation-rolling circle amplification):a general method for genotyping of single nucleotide polymorphisms (SNP). Nucleic Acids Research,2001,29(22):e116
    [221]Afshin A, Baback G, Anna C, et al. Single-Nucleotide Polymorphism Analysis by Pyrosequencing. Analytical Biochemistry,2000,280(1):103-110
    [222]Ogino S, Kawasaki T, Brahmandam M, et al. Sensitive sequencing method for KRAS mutation detection by pyrosequencing. Journal of Molecular Diagnostics, 2005,7(3):413-421
    [223]颜志强,杨胜利,龚毅.PCR及其衍生技术在基因突变检测中的应用.遗传,2003,25(2):198-200
    [224]Qi X Q, Saleha B, Katrien M, et al. L-RCA (ligation-rolling circle amplification):a general method for genotyping of single nucleotide polymorphisms (SNPs). Nucleic Acids Research,2001,29 (22):e116
    [225]Li J S and Zhong W W. Typing of Multiple single-nucleotide polymorphisms by a microsphere-based rolling circle amplification assay. Analytical Chemistey, 2007,79(23):9030-9038
    [226]Judith J, Sandra C, Sandra B S, et al. Multiplex Ligation-Dependent Probe Amplification. Journal of Molecular Diagnostics,2006,8(4):433-443
    [227]Walker G T, Little M C, Nadeau J G, et al. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proceedings of the National Academy of Sciences of the United States of America 1992, 89(1):392-396.
    [228]Tuerk C and Gold, L. Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase. Science,1990, 249(4968):505-510
    [229]Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. Journal of the American Chemical Society,2004,126(38):11768-11769
    [230]Huang C C, Huang Y F, Cao Z, et al. Aptamer-modified gold nanoparticles for colorimetric determination of platelet t-derived growth factors and their receptors. Analytical Chemistry,2005,77(17):5735-5741
    [231]甄蓓,张敏丽,宋亚军等.抗体-适配子混合夹心法检测炭疽芽孢杆菌芽孢的研究.生物技术通讯,2002,13(2):123-125
    [232]Xu D, Yu X, Liu Z, et al. Label-free electrochemical detection for aptamer-based array electrodes. Analytical Chemistry,2005(16),77:5107-5113
    [233]郑静,林莉,程圭芳等. 基于核酸适配体和纳米材料的凝血酶蛋白特异性识别电化学生物传感器.中国科学B辑:化学,2006,36(6):485-492
    [234]Heyduk E, Knoll E, Heyduk T. Molecular beacons for detecting DNA binding proteins:mechanism of action. Analytical Biochemistry,2003,316(1):1-10
    [235]Hamaguchi N, Ellington A and Stanton M. Aptamer beacons for the direct detection of proteins. Analytical Biochemistry,2001,294(2):126-131
    [236]Nutiu R and Li Y F. In vitro selection of structure-switching signaling aptamers. Angewandte Chemie International Edition,2005,44(7):1061-1065
    [237]Jiang Y X, Fang X H and Bai C L. Signaling aptamer/protein binding by a molecular light switch complex. Analytical Chemistry,2004,76(27): 5230-5235
    [238]Zhou C S, Jiang Y X, Ma B C, et al. Detection of oncoprotein platelet-derived growth factor using fluorescent signaling complex of aptamer and TOTO. Analytical & Bioanalytical Chemistry,2006,384(5):1175-1180
    [239]Tang Z W, Mallikaratchy P, Yang R H, et al. Aptamer switch probe based on intramolecular displacement. Journal of American Chemical Society,2008, 130(34):11268-11269
    [240]Bock L C, Griffin L C, Latham J A, et al. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 1992,355(6360): 564-566
    [241]Nutiu R, Li Y. Structure-switching signaling aptmers. Journal of American Chemical Society,2003,125(16):4771-4778
    [242]Liu Y, Lin C, Yan H. et al. Aptamer-drected self-assembly of protein arrays on a DNA nano structure. Angenwandte Chemie International Edition,2005, 44(28):4333-4338
    [243]许金钩,王尊本.荧光分析法.第三版.北京:科学出版社,2006,187-200
    [244]Wang X L, Li F, Su Y H, et al. Ultrasensitive Detection of Protein Using an Aptamer-Based Exonuclease Protection Assay. Analytical Chemistry,2004, 76(19):5605-5610

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700