遗传性耳聋胚胎植入前基因诊断技术的建立应用及遗传性耳聋家系分子致聋机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耳聋是一种严重影响人类生活质量的常见疾病,据我国2006年残疾人抽样调查结果显示听力残疾(含多重残疾)人共2,780万,并以每年新生3万聋儿的速度增长。因此,建立能够预防和减小后代耳聋再发风险的诊断方法和干预措施,提高防聋治聋的水平、降低人群中耳聋发病率对提高我国人口素质有着非常重要的现实和长远意义。
     高密度遗传标记的发展和应用为人类耳聋基因定位克隆和分子流行病学研究提供了强有力的工具。截止到2011年2月,共有166个非综合征型耳聋基因位点见诸报道(62个为常染色体显性遗传基因位点,96个为常染色体隐性遗传基因位点,8个位于X染色体,1个位于Y染色体),62个非综合征型耳聋基因和更多的综合征性耳聋基因成功克隆。
     在本研究中,我们应用单细胞全基因组多重替代扩增技术(Multiple displacement amplification, MDA)、单细胞巢氏PCR(polymerase chain reaction)、单细胞实时荧光定量PCR以及微卫星标记(microsatellite marker, STR)连锁分析等现代分子生物学技术建立了单细胞基因诊断的方法体系,并初步应用到遗传性耳聋的PGD临床工作中;另外以微卫星分子标记(STR)作为遗传标记,在一个常染色体显性非综合征型高频频感音神经性耳聋大家系中进行筛查并成功定位及筛查出致病基因;完成Treacher Collins综合征致病基因的突变筛查。本研究包括如下三部分:
     第一部分遗传性耳聋胚胎植入前基因诊断技术的建立和初步临床应用
     遗传性耳聋绝大多数为单基因特异性点突变,符合辅助生殖技术(in vitro fertilization, IVF)胚胎植入前遗传学诊断(preimplantation genetic diagnosis,PGD)医学指征,可有效避免传统中期妊娠异常胚胎的治疗性流产对患者本人和家属造成的身心伤害。本课题组朱玉华博士在前期研究中,鉴定了一个常染色体显性遗传非综合征型耳聋DFNA64家系的致病基因DIABLO,该家系的先证者夫妇在了解胚胎植入前遗传学诊断技术(PGD)可预防聋儿出生后,有进行此项研究的强烈意愿,并签署了知情同意书。
     通过对该家系先证者夫妇单淋巴细胞及他人废弃胚胎的单卵裂球进行单细胞巢氏PCR、单细胞全基因组多重替代扩增(MDA)及后续PCR测序、实时荧光定量PCR及微卫星标记连锁分析等研究,初步建立了遗传性耳聋胚胎植入前基因诊断技术体系。本课题组与北京医科大学第三医院辅助生殖中心刘平教授合作,对该夫妇进行了一次完整的PGD辅助生殖临床诊疗流程,诊断一个健康胚胎并植入母体子宫,但未获得成功妊娠。
     第二部分非综合征型遗传性耳聋家系致病基因的定位研究
     经表型及遗传方式分析,将收集的SD-L030家系判定为常染色体显性遗传非综合征型耳聋家系。选用微卫星STR分子标记作为遗传标记及经典连锁分析方法,对该家系进行了耳聋致病基因的定位、筛查和鉴定工作。SD-L030家系共4代,成员共30人(包括已故和配偶)是一个常染色体显性遗传性耳聋家系。应用微卫星标记对已知23个DFNA位点进行初步筛查,将该家系致聋基因定位于7p15处D7S629-D7S516之间约1.87cM的区域,与已知耳聋基因DFNA5所在区域重叠。直接测序在DFNA5基因的第7内含子中鉴定了一个新的DFNA5突变,IVS7-2A>G,该突变与此家系表型共分离,通过提取外周血总mRNA并进行RT-PCR,发现该位点突变导致DFNA5第八外显子转录缺失。
     第三部分Treacher Collins综合征致病基因筛查及分子机制研究
     Treacher Collins综合征(Treacher Collins syndrome, TCS)是一种常见的遗传疾病,发病率为1/50,000,主要表现为双侧颧骨骨结构发育异常造成颅面部的发育不全。本研究对两例TCS疑似病例进行了TCOF1基因的直接测序,一例患者携带TCOF1的第2外显子c.146 T>C杂合突变,此突变位点将编码第49位的异亮氨酸替换为苏氨酸,对其父亲、母亲进行该位点突变筛查,未发现突变,该位点突变为一新生突变。本研究结果为该家系下一步遗传咨询和产前诊断的需求提供了资料和依据。同时对TCS发病机理及该病致病基因分子机制的研究进展做了深入的分析和总结。
Hearing impairment is the most common birth defect and sensorineural disorder. Based on the national survey of disabled population in 2006, the total number of hearing impairment in China has reached 27.8 millions. The number of newborn with congenital hearing impairment is 20-30 thousands every year. Therefore, diagnostic techniques and interventions should be established to reduce the risk of future recurrence of deafness. It has very important long-term significance of improving the quality of the population in China.
     In this study, we have established preimplantation genetic diagnostic (PGD) technique for hereditary hearing loss by multiple displacement amplification, nested PCR, real-time quantitative PCR and microsatellite marker. Using microsatellite marker, we have successfully identified a novel hearing loss locus and the gene in a family with autosomal dominant non-syndromic deafness. We Successful identify TCOF1 gene mutation in a He-Nan family with Treacher Collins syndrome.
     PART1:Establishment and application of PGD technique for hereditary hearing loss
     The vast majority of genetic deafness was a single-gene disease. Therefore, it is in line with the medical indications for PGD, and can be effectively prevented abnormal embryos for therapeutic abortion, which would avoid the physical and psychological harm for patients. In the previous study of our research group, we have demonstrated that mutation in DIABLO underlying non-syndromic hearing impairment in a large Chinese family. The couple of the proband had very strong demand for PGD, and signed informed consent. We applied the multiple displacement amplification of whole genome, nested PCR, real-time fluorescent quantitative PCR and microsatellite marker to establish the PGD techniques from single lymphocytes of the couple of proband and superseded single blastomere. We have successfully performed an intact PGD cycle in the couple of proband and identified a healthy fetus for implantation. Unfortunately, this fetus did not successfully get nidation due to poor endometrium environment.
     PART 2:Identification of gene underlying autosomal-dominant nonsyndromic hearing loss in a Chinese family
     In this study, we identified the causative gene in an autosomal-dominant nonsyndromic hearing loss Chinese pedigree named SD-L030 and analyzed DFNA5 mutation. This Chinese family spanned four generations and comprised 30 members. Application of microsatellite markers on DFNA 23 loci preliminary screening of 25 genes, data were analyzed by linkage analysis. We mapped the locus to the region between D7S629 and D7S516 (two-point lod-score of 5.39) with application of 8 microsatellite markers. By direct sequencing of best candidate genes in mapping region, we identified a novel missense mutation ivs7-2 A>G in DFNA5 gene, which was faithfully cosegregated with hearing loss in the family. This mutation causes skipping of exon 8, resulting in premature termination of the open reading frame. In order to understand DFNA5 mechanisms and to gain more insights into the function changes of protein resulting from the missense mutation, we will establish effective experimental model in near future.
     PART 3:Mutational screening of TCOFl gene in patients with Treacher Collins syndrome
     Treacher Collins syndrome (TCS) is characterized by hypoplasia of the zygomatic bones and mandible, and so on. Almost 40%-50% of individuals have conductive hearing loss attributed most commonly to malformation (including ankylosis, hypoplasia, or absence) of the ossicles and hypoplasia of the middle ear cavities. We have collected two sporadic patients with conductive hearing loss and notching of the lower eyelid recruited from clinic of Department of otolaryngology of PLA General Hospital. By direct sequencing TCOFl, we identified a novel missense mutation c.146 T>C (p.I49T) in the second exon of TCOFl gene in one patient, but was not found in the gene in his parents. Furthermore, the amine acid of isoleucine in this site is highly conservative across eight species. This result can be used to conduct prenatal diagnosis in this family.
引文
1. Morton CC, Nance WE. Newborn hearing screening-a silent revolution. N Engl J Med.2006,354(20):2151-2164.
    2. 孙喜斌,于丽玫,曲成毅等.中国听力残疾构成特点及康复对策.中国听力语言康复科学杂志.2008,27(2):21-24.
    3. Edwards RG, Gardner RL. Sexing of live rabbit blastocysts. Nature.1967, 214(88):576-577.
    4. Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet.1978,2(8085):366.
    5. Handyside A, Kontogianni E, Hardy K, et al. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature.1990, 344:768-770.
    6. Verlinsky Y, Ginsberg N, Lifchez A, et al. Analysis of the first polar body: preconception genetic diagnosis. Hum Reprod.1990,5(7):826-829.
    7. Munne S, Grifo J, Cohen J. Chromosome abnormalities in human arrested preimplantation embryos:a multiple-probe FISH study. AM. J. Hum. Genet. 1994,55:150-159.
    8. Munne S, Sandalinas M, Escudero T, et al. Outcome of preimplantation genetic diagnosis of translocations. Fertil Steril.2000,73:1209-1218.
    9. Ray PF, Ao A, Taylor D, et al. Assessment of the reliability of single blastomere analysis for Preimplantation diagnosis of the F508 deletion causing cystic fibrosis in clinical practice. Prenat Diagn.1998,18:1402-1412.
    10. Goossens V, Sermon K, Lissens W, et al. Clinical application of preimplanta-tion genetic diagnosis for cystic fibrosis. Prenat.Diagn.2000.20:571-581.
    11. Dreesen J, Jacobs, L, Bras M, et al. Multiplex PCR of polymorphic markers flanking the CFTR gene:a general approach for preimplantation genetic diagnosis of cystic fibrosis. Mol Hum Reprod.2000,6:391-396.
    12. Coskun S, Alsmadi O. Whole genome amplification from a single cell:a new era for preimplantation genetic diagnosis. Prenat Diagn.2007,27(4):297-302.
    13.李汶,卢光琇.人类植入前胚胎单卵裂球性别鉴定的双色荧光原位杂交技术.中华医学遗传学,1999,16(4):255-258.
    14.李晓红,庄广伦,周灿权等.α-地中海贫血种植前基因诊断妊娠成功.中山医科大学学报.2002,23(4):268-269.
    15. Deafness and Hereditary Hearing Loss Overview. In NCBI》 Bookshelf》 GeneReviews》 Initial Posting:February 14,1999. Last Revision:December 2, 2008.
    16. Petersen MB, Wang Q, Willems PJ. Sex-linked deafness. Clin Genet.2008, 73(1):14-23.
    17.李庆忠,迟放鲁.耳聋致病基因定位克隆的方法与策略.中国眼耳鼻喉科学杂志.2007,7(1):56-58.
    1. ESHRE. PGD consortium steering committee. Hum Reprod.2000,15(2): 2673-2683.
    2. Wells D, Sherlock JK. Strategies for preimplantation genetic diagnosis of single gene disorders by DNA amplification. Prenat diagn.1998,18:1389-1401.
    3. ESHRE. PGD consortium steering committee. Hum Reprod.1999,14(12): 3138-3148..
    4.焦泽旭,庄广伦,周灿权等.引物延伸预扩增法应用于β-地中海贫血患者胚胎植入前遗传学诊断-附1例报告.中华妇产科杂志2003,38(3):143-146.
    5.邓捷,彭文林,刘颖等.应用荧光聚合酶链反应对α地中海贫血进行植入前遗传学诊断.中华医学杂志.2005,85(38):2682-2685.
    6.尹爱华,张祥忠,何蕴韶等TaqMan—MGB探针实时荧光PCR在p地中海贫血植入前诊断中的应用研究.热带医学杂志.2007,7(12):1155-1158.
    7. Ren Z, Zhou C, Xu Y,etal.Mutation and haplotype analysis for Duchenne muscular dystrophy by single cell multiple displacement amplification.Mol Hum Reprod.2007,13(6):431-436.
    8. Altarescu G, Eldar-Geva T, Brooks B, et al. Preimplantation genetic diagnosis (PGD) for nonsyndromic deafness by polar body and blastomere biopsy. J Assist Reprod Genet.2009,26(7):391-397.
    9. Chen-Chi Wu, Shin-Yu Lin, Yi-Nin Su, et al. Preimplantation Genetic Diagnosis (Embryo Screening) for Enlarged Vestibular Aqueduct due to SLC26A4 Mutation. Audiol Neurotol.2010,15:311-317.
    10. The Preimplantation Genetic Diagnosis International Society (PGDIS). Guidelines for good practice in PGD:programme requirements and laboratory quality assurance. Reproductive BioMedicine Online.2008,16 (I):134-147.
    11. Handyside A, Kontogianni E, Hardy K, et al. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature.1990, 344:768-770.
    12. Peng W, Takabayashi H, Ikawa K. Whole genome amplification from single cells in preimplantation genetic diagnosis and prenatal diagnosis. Eur J Obstet Gynecol Reprod Biol.2007,131(1):13-20.
    13. Hellani A, Coskun S, Tbakhi A, et al. Clinical application of multiple displacement amplification in preimplantation genetic diagnosis. Reprod Bioned Online.2005,10(3):376-380.
    14. Dean FB, Hosono S, Fang L, etal. Comprehensive human genome amplification using multiple displacement amplification.Proc Natl Acad Sci U S A.2002 99(8):5261-5266.
    15. Van de Velde H, De Vos A, Sermon K, et al. Embryo implantation after biopsy of one or two cells from cleavage-stage embryos with a view to preimplantation genetic diagnosis. Prenat diagn.2000,20:1030-1037.
    16. Veiga A, Sandalinas M, Benkhalifa M, et al. Laser blastocyst biopsy for preimplantation diagnosis in the human. Zygote.1997,5(4):351-354.
    17. Renwick P, Ogilvie CM. Preimplantation genetic diagnosis for monogenic diseases:overview and emerging issues.Expert Rev Mol Diagn. 2007,7(1):33-43.
    18. Hanson EK, Ballantyne J. Whole genome amplification strategy for forensic genetic analysis using single or few cell equivalents of genomic DNA. Anal Biochem.2005,346(2):246-257.
    19. Lovmar L, Syvanen AC. Multiple displacement amplification to creat a long-lasting source of DNA for genetic studies. Hum Mutat.2006, 27(7):603-614.
    20. Lizardi PM, Huang X, Zhu Z, et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet.1998,19: 225-232.
    21. Jasmine F, Ahsan H, Andrulis IL, et al. Whole genome amplification enables accurate genotyping for microarray-based high-density single nucleotide polymorphism arry. Cancer Epidemiol Biomarkers Prev.2008,17(12): 3499-3508.
    22. Renwick PJ, Trussler J, Ostad-Saffari E, et al. Proof of principle and first cases using preimplantation genetic haplotyping-a paradigm shift for embryo diagnosis. Reprod Biomed Online.2006,13(1):110-119.
    23. Sun G, Kaushal R, Pal P, et al. Whole-genome amplification:relative efficiencies of the current methods. Leg Med.2005,7(5):279-286.
    24. Mulis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction. Meth Enzymol.1987,185:335-350.
    25. Harper JC, Wells D. Recent advances and future developments in PGD. Prenatal Diagn.1999,19:1193-1199.
    26. Ray PF, Handside AH. Increasing the denaturation temperature during the first cycles of amplification reduces allele drop out from single cells for preimplantation diagnosis. Mol Hum Reprod.1996,2:213-218.
    27. Lledo B, Ten J, Rodriguez-Arnedo D, etal. Preimplantation genetic diagnosis of X-linked retinoschisis. Reprod Biomed Online.2008,16(6):886-892.
    28. Spits C, De Rycke M, Verpoest W, etal. Preimplantation genetic diagnosis for Marfan syndrome. Fertil Steril.2006,86(2):310-320.
    29. Glentis S, SenGupta S, Thornhill A, et al. Molecular comparison of single cell MDA products derived from different cell types.Reprod Biomed Online.2009, 19(1):89-98.
    30.黄留玉主编.PCR最新技术原理、方法及应用.化学工业出版社.2004:131—139.
    31. Vrettou C, Traeger-Synodinos J, Tzetis M, et al. Real-time PCR for single-cell genotyping in sickle cell and thalassemia syndromes as a rapid, accurate, reliable, and widely applicable protocol for preimplantation genetic diagnosis. Hum Mutat.2004,23(5):513-521.
    32. Martinhago CD, Vagnini LD, Petersen CG, et al. Development of a real-time PCR method for rapid sexing of human preimplantation embryos. Reprod BioMedicine Online.2010,20:75-82.
    33. Ren Z, Zhou C, Xu Y,etal.Mutation and haplotype analysis for Duchenne muscular dystrophy by single cell multiple displacement amplification.Mol Hum Reprod.2007,13(6):431-436.
    34. Lledo B, Ten J, Galan D, etal. Preimplantation genetic diagnosis of Marfan syndrome using multiple displacement amplification. Fertil Steril.2006,86(4): 949-955.
    35. Moutou C, Gardes N, Viville S. Multiplex PCR combining delta F508 mutation and intragenic microsatellites of the CFTR gene for pre-implantation genetic diagnosis (PGD) of cystic fibrosis. Eur J Hum Genet.2002,10(4):231-238.
    36. Goossens V, Sermon K, Lissens W, et al. Improving clinical preimplantation genetic diagnosis for cystic fibrosis by duplex PCR using two polymorphic markers or one polymorphic marker in combination with the detection of the DeltaF508 mutation. Mol Hum Reprod.2003,9(9):559-967.
    37. Pangalos CG, Hagnefelt B, Kokkali G, et al. Birth of a healthy histo- compatible sibling following preimplantation genetic diagnosis for chronic granulomatous disease at the blastocyst stage coupled to HLA typing.Fetal Diagn Ther.2008, 24(4):334-349.
    38. Spits C, Sermon K. PGD for monogenic disorders:aspects of molecular biology. Prenat Diagn.2009,29(1):50-56.
    39. Spits C, LeCaignec C, De Rycke M, et al. Optimization and evaluation of single-cell whole-genome multiple displacement amplification. Hum Mutat. 2006,27(5):496-503.
    40. Wells D, Sherlock JK, Handside AH, et al. Detailed chromosomal and molecular genetic analysis of single cells by whole genome amplification and comparative genomic hybridization. Nucleic Acids Res.1999,27(4):1214-1218.
    41. Grant SF, Steinlicht S, Nentwich U, et al. SNP genotyping on a genome-wide amplified DOP-PCR template. Nucleic Acids Res.2002,30(22):e125.
    42. Grewal SS, Kahn JP, MacMillan ML, et al. Successful hematopoietic stem cell transplantation for Fanconi anemia from an unaffected HLA-genotype-identical sibling selected using preimplantation genetic diagnosis. Blood.2004, 103(3):1147-1151.
    43.孙喜斌,于丽玫,曲成毅等.中国听力残疾构成特点及康复对策.中国听力语言康复科学杂志.2008,27(2):21-24.
    44. Verllnsky Y, KulievA. Thirteen years'experience of preimplantation diagnosis: report of the Fifth International Symposium on Preimplantation on Genetics. Reprod Biomed Online,2004,8(2):229-235.
    45. Gardner DK, Schoolcraft WB, Wagley L. A prospective randomized trial of blastocyst culture and transfer in in-vitro fertilization. Hum Reprod.1998, 13(12):3434-3440.
    1. Marazita ML, Ploughman LM, Rawlings B, et al. Genetic epidemiological studies of early-onset deafness in the U.S. school-age population. Am J Med Genet.1993,46(5):486-491.
    2. Smith RJH, Camp GV. Deafness and Hereditary Hearing Loss Overview. In NCBI》 Bookshelf》 GeneReviews》 Initial Posting:February 14,1999. Last Revision:December 2,2008.
    3. Van Laer L, Cryns K, Smith RJ, et al. Nonsyndromic Hearing Loss. Ear Hear, 2003.24:275-288.
    4.孙开来,熊第志译。医学遗传学原理.北京:科学出版社,2001:190-197.
    5. Gefel D, Maslovsky I, Hillel J. Application of single nucleotide polymorphisms (SNPs) for the detection of genes involved in the control of complex diseases. Harefuah,2008.147(5):449-476.
    6. Camp GV, Couke P, Balemans W, et al. Localization of a gene for non-syndromic hearing loss (DFNA5) to chromosome 7p15. Hum. Mol. Genet,1995, (4):2159-2163.
    7. Van Laer L, Huizing EH, Verstreken M et al. Nonsyndromic hearing impairment is associated with a mutation in DFNA5 Nature Genet,1998,20:194-197.
    8. Bischoff AMLC, Luijendijk MWJ, Huygen PLM, et al. A novel mutation identified in the DFNA5 gene in a Dutch family:a clinical and genetic evaluation. Audiol Neuro-otol,2004,9:34-46.
    9. Yu C, Meng X, Zhang S, et al. A 3-nucleotide deletion in the polypyrimidine tract of intron 7 of the DFNA5 gene causes nonsyndromic hearing impairment in a Chinese family. Genomics,2003,82:575-579.
    10. Cheng J, Han DY, Dai P, et al. A novel DFNA5 mutation, IVS8+4 A4G, in the splice donor site of intron 8 causes late-onset non-syndromic hearing loss in a Chinese family[J]. Clin Genet,2007,72:471-477.
    11. Hong-Joon Park, Hyun-Ju Cho, Jeong-In Baek, et al. Evidence for a founder mutation causing DFNA5 hearing loss in East Asians[J]. Journal of Human Genetics,2010,55:59-62.
    12. Van Laer L, Vrijens K, Thys S, et al. DFNA5:hearing impairment exon instead of hearing impairment gene? Journal of Medical Genetics,2004,41:401-406.
    13. Van Laer L, Meyer NC, Malekpour M, et al. A novel DFNA5 mutation does not cause hearing loss in an Iranian family. Journal of Human Genetics,2007,52: 549-552.
    14. Masuda Y, Futamura M, Kamino H, et al. The potential role of DFNA5, a hearing impairment gene, in p53-mediated cellular response to DNA damage. Journal of Human Genetics,2006,51:652-664.
    15. Gregan J, Van Laer L, Lieto LD, et al. A yeast model for the study of humanDFNA5, a genemutated in nonsyndromic hearing impairment, Biochem Biophys Acta,2003,1638:179-186.
    16. Kim MS, Chang X, Yamashita K, et al. Aberrant promoter methylation and tumor suppressive activity of the DFNA5 gene in colorectal carcinoma. Oncogene,2008,27:3624-3634.
    17. Kim MS, Lebron C, Nagpal JK, et al. Methylation of the DFNA5 increases risk of lymph node metastasis in human breast cancer. Biochem Bio-phys Res Commun,2008,370:38-43.
    18. Lage H, Helmbach H, Grottke C, et al. DFNA5 (ICERE-1) contributes to acquired etoposide resistance inmelanoma cells. FEBS Letters,2001,494: 54-59.
    19.孙乔,张令强,贺福初。GSDMDC家族的基因功能。遗传,2006,28(5):596-600.
    20. Delmaghani S, del Castillo FJ, Michel V, et al. Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nat Genet,2006,38:770-778.
    21. Schwander M, Sczaniecka A, Grillet N et al. A forward genetics screen in mice identifies recessive deafness traits and reveals that pejvakin is essential for outer hair cell function. J Neurosci,2007,28:2163-2175.
    22. Busch-Nentwich E, Sollner C, Roehl H, et al. The deafness gene dfna5 is crucial for ugdh expression and HA production in the developing ear in zebrafish. Development,2004,131:943-951.
    23. Van Laer L, Pfister M, Thys S, et al. Mice lacking Dfna5 show a diverging number of cochlear fourth row outer hair cells. Neurobiology of Disease,2005, 19:386-399.
    24. Hilger-Eversheim K, Moser M, Schorle H, et al. Regulatory roles of AP-2 transcription factors in vertebrate development, apoptosis and cell-cycle control. Gene,2000,260:1-12.
    25. Ahituv N, Erven A, Fuchs H, et al. An ENU-induced mutation in AP-2alpha leads to middle ear and ocular defects in Doarad mice. Mamm Genome,2004,15: 424-432.
    26. Mattson,M.P. Excitotoxic and excitoprotective mechanisms:abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Med,2003,3:65-94.
    27. Lang H, Schulte BA, Zhou D, et al. Nuclear factor kappaB deficiency is associated with auditory nerve degeneration and increased noise-induced hearing loss. J Neurosci,2006,26:3541-3550.
    1. Dixon, Michael J. Treacher Collins syndrome. J Med Gen.1995,32:806-808.
    2. Gorlin RJ, Cohen MM, Levin LS. Syndroms of the head and neck. Oxford: Oxford University Press.1990.
    3. Trainor PA, Dixon J, Dixon MJ. Treacher Collins syndrome:etiology, pathogenesis and prevention. Eur J Hum Genet.2009,17(3):275-283.
    4. Thompson A. Notice of several cases of malformation of the external ear, together with experiments on the state of hearing in suah persons. Monthly J Med Sci,1846,7:420.
    5. Treacher Collins E. Cases with symmetrical congenital notches in the outer part of each lid and defective development of the malar bones. Trans Ophthalmol Soc UK.1990,20:190-200.
    6. Franceschetti A, Klein D. Mandibulo-facial dysostosis:new hereditary syndrome. Acta Ophthalmol.1949,27:143-224.
    7. Dixon MJ, Dixon J, Houseal T, et al. Narrowing the position of the Treacher Collins syndrome locus to a small interval between three new microsatellite markers at 5q32-33.1. Am J Hum Genet.1993,52:907-914.
    8. Dauwerse JG, Dixon J, Seland S, et al. Mutations in genes encoding subunits of RNA polymerases Ⅰ and Ⅲ cause Treacher Collins syndrome. Nature Genetics. 2011,43(1):20-22.
    9. Balestrazzi P, Baeteman MA, Mattei MG, et al. Franceschetti syndrome in a child with a de novo balanced translocation (5;13)(q11;p11) and significant decrease of hexosaminidase B. Hum Genet.1983,64:305-308.
    10. Dixon MJ, Read AP, Donnai D, et al. The gene for Treacher Collins syndrome maps to the long arm of chromosome 5. Am J Hum Genet,1991,49:17-22.
    11. Jabs EW, Li X, Coss CA, et al. Mapping the Treacher Collins syndrome locus to 5q31.1-33.3. Genomics,1911,11:193-198.
    12. Lotius SK, Dixon J, Koprivnikar, et al. Transcriptional map of the Treacher Collins candidate gene region. Genome Res.1996,6:26-34.
    13. Edwards SJ, Gladwin AJ, Dixon MJ. The mutational spectrum in Treacher Collins Syndrome reveals a predominance of mutations that create a premature termination codon. Am J Hum Genet.1997,60:515-524.
    14. So RB, Gonzales B, Henning D,et al. Another face of the Treacher Collins syndrome (TCOF1) gene:identification of additional exons. Gene.2004,328: 49-57.
    15. Wise CA, Ching LC, Paznekas WA, et al. TCOF1 gene encodes a putative nucleolar phosphorylation that exibits mutation Treacher Collins syndrome throughout its coding region. Proc Nail Acad Sci USA.1997,94:3110-3115.
    16. Dixon J, Hovanes K, Shiang R, et al. Sequence analysis, identification of evolutionary conservedmotifs and expression analysis of murine tcofl provide further evidence for a potential function for the gene and its human homologue, TCOF1. Hum Mol Genet.1997,6:727-737.
    17. The Treacher Collins Syndrome Collaborative Group, Positional cloning of a gene involved in the pathogenesis of Treacher Collins Syndrome. Nature Genet. 1996,12 p.130-136.
    18. Ellis PE, Dawson M, Dixon MJ. Mutation testing in Treacher Collins Syndrome. J Orthod.2002,29:293-298.
    19. Dixon J, Ellis I, Bottani A, Temple K, Dixon MJ. Identification of mutations in TCOF1:use of molecular analysis in the Am J Med Genet A.2004,127: 244-248.
    20. Gladwin AJ, Dixon J, Loftus SK, et al. Treacher Collins syndrome may result from insertions, deletions or splicing mutations, which introduce a termination codon into the gene. Hum Mol Genet.1996,5:1533-1538.
    21. Splendore A, Silva EO, Alonso LG, Richieri-Costa A, Alonso N, Rosa A, Carakushanky G, Cavalcanti DP, Brunoni D, Passos-Bueno MR. High mutation detection rate in TCOF1 among Treacher Collins syndrome patients reveals clustering of mutations and 16 novel pathogenic changes. Hum Mutat.2000,16: 315-322.
    22. Splendore A, Passos-Bueno MR, Jabs EW, Van Maldergem L, Wulfsberg EA. TCOF1 mutations excluded from a role in other first and second branchial arch-related disorders. Am J Med Genet.2002,111:324-327.
    23. Splendore A, Fanganiello RD, Masotti C, Morganti LS, Passos-Bueno MR. TCOF1 mutation database:novel mutation in the alternatively spliced exon 6A and update in mutation nomenclature. Hum Mutat.2005,25:429-434.
    24. Teber OA, Gillessen-Kaesbach G, Fischer S, et al. Genotyping in 46 patients with tentative diagnosis of Treacher Collins syndrome revealed unexpected phenotypic variation. Eur J Hum Genet.2004,12:879-890.
    25. Horiuchi K, Ariga T, Fujioka H, Kawashima K, Yamamoto Y, Igawa H, Sugihara T, Sakiyama Y. Mutational analysis of the TCOF1 gene in 11 Japanese patients with Treacher Collins Syndrome and mechanism of mutagenesis. Am J Med Genet A.2005,134:363-367.
    26. Shoo BA, McPherson E, Jabs EW. Mosaicism of a TCOF1 mutation in an individual clinically unaffected with Treacher Collins syndrome. Am J Med Genet.2004,126A:84-88.
    27. Marszalek B, Wojcicki P, Kobus K, Trzeciak WH. Clinical features, treatment and genetic background of Treacher Collins syndrome. J Appl Genet.2002,43: 223-233.
    28. Unpublished CEGH, Brizal. http://genoma.ib.usp.br/
    29. Dixon MJ, Dixon J. Genetic background has a major effect on the penetrance and severity of craniofacial defects in mice heterozygous for the gene encoding the nucleolar protein treacle. Dev Dyn.2004,229(4):907-914.
    30. Mckenzie J, Graig J. Mandibulo-facial dysostosis (Treacher Collins syndrome). Arch Dis Child.1955,30(152):391-395.
    31. Sulik KK, Johnston MC, Smiley SJ, et al. Mandibulofacial dysostosis (Treacher Collins syndrome):a new proposal for its pathogenesis. Am J Med Genet.1987, 27:359-372.
    32. Gorlin RJ, Cohen MM, Levin LS:Syndromes of the Head and Neck. Oxford, UK: Oxford University Press,1990.
    33. Dixon J, Jones NC, Sandell LL et al. Tcofl/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proc Natl Acad Sci USA.2006,103:13403-13408.
    34. Dixon J, Edwards SJ, Anderson I, et al. Identification of the complete coding sequence and genomic organization of the Treacher Collins syndrome gene. Genome Res.1997,7:223-234.
    35. Marsh KL, Dixon J, Dixon MJ. Mutations in the Treacher Collins syndrome gene lead to mislocalization of the nucleolar protein treacle. Hum Mol Genet.1998,7: 1795-1800.
    36. Winokur ST, Shiang R. The Treacher Collins syndrome (TCOF1) gene product, treacle, is targeted to the nucleolus by signals in its C-terminus. Hum Mol Genet. 1998,7:1947-1952.
    37. Isaac C, Marsh KL, Paznekas WA et al. Characterization of the nucleolar gene product, treacle, in Treacher Collins syndrome. Mol Biol Cell.2000,11: 3061-3071.
    38. Valdez BC, Henning D, So RB, et al. The Treacher Collins syndrome (TCOF1) gene product is involved in ribosomal DNA gene transcription by interacting with upstream binding factor. Proc Natl Acad Sci USA.2004,101:10709-10714.
    39. Jones NC, Lynn ML, Gaudenz K et al. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nat Med.2008, 14:125-133.
    40. Bogerd HP, Fridell RA, Benson RE,et al. Protein sequence requirements for function of the human T-cell leukemia virus type 1 Rex nuclear export signal delineated by a novel in vivo randomization-selection assay. Mol Cell Biol.1996, 16:4207-4214.
    41. Feng Y, Olson EC, Stukenberg PT, et al. LIS1 regulates CNS lamination by interacting with mNudE, a central component of the centrosome. Neuron.2000, 28:665-679.
    42. Sasaki S, Shionoya A, Ishida M et al. A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron.2000,28: 681-696.
    43. Yao Y, Yamamoto K, Nishi Y, et al. Mouse RNA polymerase I 16-kDa subunit able to associate with 40-kDa subunit is a homolog of yeast AC 19 subunit of RNA polymerases Ⅰ and Ⅲ. J Biol Chem.1996,271(51):32881-32885.
    44. Macaya D, Katsanis SH, Hefferon, TW et al. A synonymous-mutation in TCOF1 causes Treacher Collins syndrome due to mis-splicing of a constitutive exon. Am J Med Genet.2009,149A:1624-1627.
    45. Stovin JJ, Lyon JA Jr, Clemmens RL. Mandibulofacial dysostosis. Radiology. 1960,74:225-231.
    46. Kolar JC, Farkas LG, Munro IR. Surface morphology in Treacher Collins syndrome:an anthropometric study. Cleft Palate J.1985,22(4):266-274.
    47. Pron G, Galloway C, Armstrong D, et al. Ear malformation and hearing loss in patients with Treacher Collins syndrome. Cleft Palate Craniofac J.1993,30(1): 97-103.
    48. Huston Katsanis S, Cutting GR. Treacher Collins Syndrome. GeneReviews [Internet]. Seattle (WA):University of Washington, Seattle; 1993-.2004 Jul 20 [updated 2006 Oct 27]
    49. Chemke J, Mogilner BM, Ben-Itzhak I, et al. Autosomal recessive inheritance of Nager acrofacial dysostosis. J Med Genet.1988,25:230-232.
    50. Kay ED, Kay CN. Dysmorphogenesis of the mandible, zygoma, and middle ear ossicles in hemifacial microsomia and mandibulofacial dysostosis Am J Med Genet.1989,32(1):27-31.
    51. Waitzman AA, Posnick JC, Armstrong DC, et al. Craniofacial skeletal measurements based on computed tomography:Part Ⅱ. Normal values and growth trends. Cleft Palate Craniofac J.1992,29(2):118-128.
    1. Camp GV, Couke P, Balemans W, et al. Localization of a gene for non-syndromic hearing loss (DFNA5) to chromosome 7p15. Hum. Mol. Genet.1995, (4):2159-2163.
    2. Van Laer L, Huizing EH, Verstreken M et al. Nonsyndromic hearing impairment is associated with a mutation in DFNA5. Nature Genet.1998,20:194-197.
    3. Cohen MM, Gorlin RJ. Epidemiology, etiology and genetic patterns. In Motulsky AG, Bobrow M, Harper PS, et al. (eds) Hereditary hearing loss and its syndromes. Oxford University Press, New York and Oxford.1995.9-21.
    4. Bischoff AMLC, Luijendijk MWJ, Huygen PLM, et al. A novel mutation identified in the DFNA5 gene in a Dutch family:a clinical and genetic evaluation. Audiol Neuro-otol.2004,9:34-46.
    5. Van Laer L, Destefano AL, Myers RH, et al. Is DFNA5 a susceptibility gene for age-related hearing impairment? European Journal of Human Genetics.2002, 10:883-886.
    6. Yu C, Meng X, Zhang S, et al. A 3-nucleotide deletion in the polypyrimidine tract of intron 7 of the DFNA5 gene causes nonsyndromic hearing impairment in a Chinese family. Genomics.2003,82:575-579.
    7. Cheng J, Han DY, Dai P, et al. A novel DFNA5 mutation, IVS8+4 A4G, in the splice donor site of intron 8 causes late-onset non-syndromic hearing loss in a Chinese family. Clin Genet.2007,72:471-477.
    8. Hong-Joon Park, Hyun-Ju Cho, Jeong-In Baek, et al. Evidence for a founder mutation causing DFNA5 hearing loss in East Asians. Journal of Human Genetics.2010,55:59-62.
    9. Van Laer L, Meyer NC, Malekpour M, et al. A novel DFNA5 mutation does not cause hearing loss in an Iranian family. Journal of Human Genetics.2007,52: 549-552.
    10. Van Laer L, Vrijens K, Thys S, et al. DFNA5:hearing impairment exon instead of hearing impairment gene? Journal of Medical Genetics.2004,41:401-406.
    11. Kremer H, Pinckers A, van den Helm B, et al. Localization of the gene for dominant cystoid macular dystrophy on chromosome 7p. Hum Mol Genet. 1994,3:299-302.
    12. Inglehearn CF, Keen TJ, Maghtheh MA, et al. Further refinement of the localization for autosomal dominant retinitis pigmentosa on chromosome 7p (RP9). Am J Hum Genet.1994,54:675-680.
    13. Guilford P, Ayadi H, Blanchard S, et al. A human gene responsible for neurosensory, non-syndromic recessive deafness is a candidate homologue of the mouse sh-1 gene. Hum Mol Genet.1994,3:989-993.
    14. Vrijens K, Camp GV, Van Laer L. Characterization of the murine Dfna5 promoter and regulatory regions. Gene.2009,432:82-90.
    15. Gregan J, Van Laer L, Lieto LD, et al. A yeast model for the study of humanDFNA5, a genemutated in nonsyndromic hearing impairment, Biochem Biophys Acta.2003,1638:179-186.
    16. Kim MS, Chang X, Yamashita K, et al. Aberrant promoter methylation and tumor suppressive activity of the DFNA5 gene in colorectal carcinoma. Oncogene.2008,27:3624-3634.
    17. Kim MS, Lebron C, Nagpal JK, et al. Methylation of the DFNA5 increases risk of lymph node metastasis in human breast cancer. Biochem Bio-phys Res Commun.2008,370:38-43.
    18. Masuda Y, Futamura M, Kamino H, et al. The potential role of DFNA5, a hearing impairment gene, in p53-mediated cellular response to DNA damage. Journal of Human Genetics.2006,51:652-664.
    19. Lage H, Helmbach H, Grottke C, et al. DFNA5 (ICERE-1) contributes to acquired etoposide resistance inmelanoma cells. FEBS Letters.2001,494: 54-59.
    20. Sun Q, Zhang LQ, He FC. Progress of researches on gene function of GSDMDC family. Yi Chuan.2006,28:596-600.
    21. Delmaghani S, del Castillo FJ, Michel V, et al. Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nat Genet.2006,38:770-778.
    22. Schwander M, Sczaniecka A, Grillet N et al. A forward genetics screen in mice identifies recessive deafness traits and reveals that pejvakin is essential for outer hair cell function. J Neurosci 2007,28:2163-2175.
    23. Busch-Nentwich E, Sollner C, Roehl H, et al. The deafness gene dfna5 is crucial for ugdh expression and HA production in the developing ear in zebrafish. Development.2004,131:943-951.
    24. Van Laer L, Pfister M, Thys S, et al. Mice lacking Dfna5 show a diverging number of cochlear fourth row outer hair cells. Neurobiology of Disease.2005, 19:386-399.
    25. Morishita H, Makishima T, Kaneko C, et al. Deafness due to degeneration of cochlear neu-rons in caspase-3-deficient mice. Biochem Bio-phys Res Commun.2001, 284:142-149.
    26. Takahashi K, Kamiya K, Urase K, et al. Caspase-3-deficiency induces hyperplasia of supporting cells and de-generation of sensory cells resulting in hearingloss. Brain Res 2001,894:359-367.
    27. Hilger-Eversheim K, Moser M, Schorle H, et al. Regulatory roles of AP-2 transcription factors in vertebrate development, apoptosis and cell-cycle control. Gene.2000,260:1-12.
    28. Ahituv N, Erven A, Fuchs H, et al. An ENU-induced mutation in AP-2alpha leads to middle ear and ocular defects in Doarad mice. Mamm Genome 2004, 15:424-432.
    29. Mattson,M.P. Excitotoxic and excitoprotectivemechanisms:abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Med.2003,3:65-94.
    30. Lang H, Schulte BA, Zhou D, et al. Nuclear factor kappaB deficiency is associated with auditory nerve degeneration and increased noise-induced hearing loss. J Neurosci.2006,26:3541-3550.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700