大肠杆菌氟苯尼考耐药性在不同动物间的传播研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验主要研究保定地区不同动物源(包括鸡源、猪源和牛源)大肠杆菌的传播情况,了解氟苯尼考耐药性在不同动物源大肠杆菌的变迁趋势、生物学特性和耐药谱,对大肠杆菌的氟苯尼考耐药性进行危险性评估,并从基因水平对大肠杆菌氟苯尼考耐药机制进行探讨,从而为大肠杆菌病的有效防治和新兽药开发提供参考。本研究主要分3部分:
     1大肠杆菌的分离鉴定及耐药谱测定
     自河北省保定市及其周边地区的鸡场、猪场和牛场分离出60株细菌,经生化实验鉴定出45株分离菌为大肠杆菌,其中有23株鸡源大肠杆菌,14株猪源大肠杆菌和8株牛源大肠杆菌。采用玻板凝集和试管凝集相结合的方法,对45株大肠杆菌进行了O血清型鉴定,鸡源大肠杆菌以O78、O35为优势血清型,猪源、牛源大肠杆菌以O101为优势血清型。按世界卫生组织(WHO)推荐的Kirby-Bauer菌液涂布法对45株大肠杆菌进行氟苯尼考、头孢喹肟、诺氟沙星等11种抗生素的药物敏感性试验,结果表明分离的大肠杆菌对各种抗生素呈现不同程度的耐受性,仅对头孢喹肟较敏感。其中氟苯尼考耐药菌检出率分别为62%,58%和38%。
     2 IntⅠ基因、flor基因和cmlA基因的克隆
     提取所分离的45株大肠杆菌的基因组DNA和质粒DNA,采用PCR扩增技术,以耐氟苯尼考大肠杆菌菌落、基因组DNA及质粒DNA为模板扩增整合酶基因,以耐氟苯尼考大肠杆菌菌落及质粒DNA为模板扩增flor基因及cmlA基因。结果从菌落及质粒DNA中均扩增出了IntⅠ基因(Ⅰ型整合子整合酶基因),且两者呈现良好的一致性;以菌落及质粒DNA为模板扩增出了flor基因和cmlA基因。从菌落和质粒DNA中扩增的同种基因碱基序列完全相同,flor基因与cmlA基因存在28.2%-28.4%同源性。
     3不同动物源大肠杆菌耐药基因的测序及分析
     对扩增的不同动物源大肠杆菌耐氟苯尼考基因flor进行测序和分析,根据测序结果绘制基因进化树图谱。发现来自同种属大肠杆菌的flor基因同源性为100%,猪源、牛源大肠杆菌flor基因同源性为100%,鸡源与猪源、牛源大肠杆菌的flor基因同源性高达99.8%。由flor基因编码的氨基酸序列与GenBank报道的flor基因存在3个氨基酸替代。通过连接、转化构建了基因工程菌,通过蓝白斑实验筛选阳性菌株。经酶切鉴定和质粒PCR确定阳性菌中转入了含耐药基因的重组质粒。比较阳性菌与阴性菌耐药性发现阳性菌对氟苯尼考耐受程度明显增强,对氯霉素的耐受性也有小幅增强,对其他抗生素均敏感。
The purpose of this study is to understand the transmission and prevelance of Escherichia coli from different regions of Baoding and acquire some information about the trend of transition, biological feature and spectrum of florfenicol resistance among different animals. Then the E.coli florfenicol resistance risk is to be evaluated and the mechanism of florfenicol resistance is to be discussed in the genetic level. Based on works we performed above, the prevention and treatment of Escherichia colibacillosis would be more effective and it may provide some references for the development of new veterinary pharmaceuticals. This study is divided into 3 parts and the details is reported as follows.
     1. Identification of E.coli strains and assay of antibacterial spectrum.
     60 bacterial strains were isolated from dead or sick animals showing typical symptoms of Escherichia colibacillosis in poultry, swine and bovine farms in several regions of Baoding. The 45 strains of E.coli were determined by biochemical tests which including 23,14, 8 strains isolated from poultry, swine and bovine, respectively. Slide and tube agglutination tests were used to determine the serotype of 45 strains and it showed that O78 and O35 were dominant strains of poultry, but in swine and bovine it were O101. The resistance test of 11 antibiotics, such as Florfenicol, Cefquinome, Norfloxacin and the like, were tested according to the Kirby-Bauer’s method recommended by the World Health Organization(WHO). The result revealled that drug resistance of variety of antibiotics was common, and most of them even had multidrug resistance. However, most of strains were sensitive to Cefquinome.The resistance proportion of 3 kinds of animals to Florfenicol were 62%, 58% and 38%, respectively.
     2. Cloning of integrase gene, flor gene and cmlA gene of classⅠintegron.
     The genomic DNA and plasmid from 45 isolates were extracted and the colony of E.coli with resistance to Florfenicol , genomic DNA and plasmid DNA were used as models to amplify the integrase gene. The colony of E.coli with resistance to Florfenicol and plasmid DNA were used as models to amplify flor gene and cmlA gene. The result turned out to be positive that integrase gene of class I integron from two models were amplified successfully, both of which had a good uniformity, as well as the flor gene and cmlA gene. The homogeneous base sequence amplified from the colony and plasmid DNA were identical. The flor gene and the cmlA gene had homology from 28.2% to 28.4%.
     3. Sequence assay and analysis of resistance gene of E.coli from different animals.
     The sequence assay and analysis upon amplified resistance gene of E.coli to Florfenicol from different animals were performed. Then the Gene Evolution Tree was made according to the result of sequence assay. It showed that the homology of the flor gene from homogeneous animal, the flor gene between swine and bovine, the flor gene between poultry and swine or bovine were 100%, 100% and 99.8%, respectively. There were three amino acid substitutions in the flor gene between the sequences coloned and reported by GenBank. Gene engineering bacteria were constructed by technology of linkage and transformation and positive bacterial strains were picked up by blue-white spotting test. The result of identification of restriction enzyme digestion and plasmid PCR showed that the ecombinant plasmid delivered resistance gene was transmitted into positive bacteria. The result of minimum Inhibition concentration test showed that positive bacteria had stronger resistance to florfenicol than negative ones. Also, the former had a little increased resistance to chloromycetin than the latter, however, it was sensitive to other antibiotics.
引文
[1] Escherich T. The intestinal bacteria of the neonate and breast-fed infant[J]. Rev Infect Dis, 1989, 11(2): 352-356.
    [2]陆承平,兽医微生物学(第三版)[M].北京:中国农业出版社, 2000: 215-223.
    [3]蔡宝祥,家禽传染病学(第3版)[M].北京:中国农业出版社, 2000: 5-55.
    [4] Calnek BW. Disease of poultry (tenth edition)[M]. Iowa State University Press. Ames, 1997: 131–141.
    [5]孙海红,马同锁,于珊等.鸡大肠杆菌病多价苗的研制[J].动物医学进展, 2005, 26(4): 68-70.
    [6]李敬玺,张敬礼,翟居怀等.鸡大肠杆菌病及其防治的进展[J].河南职技师院学报, 1999, 27(3): 58-60.
    [7] Dan1eseseu N, Ghergariu S. Epidemiological findings in an outbreak of colibacillosis in comacyclin treated chicks[J]. Medieamentul veterinar, 1991, (8): 43-46.
    [8]王鹏,刘春凌,李玉峰.猪水肿病致病性大肠杆菌的分离与血清型鉴定[J].河北北方学院学报, 2006, 22(5): 43-45.
    [9] Osek J. Prevalence of Virulence Factors ofEscherichia coliStrains Isolated from Diarrheic and Healthy Piglets After Weaning[J]. Veterinary Microbiology, 1999(68): 209-217.
    [10] Holko I, Bisova T, Holkova Z, et al. Virulence Markers of Escherichia coliStrains Isolated from Traditional Cheeses Made from Unpasteurised Sheep Milk in Slovakia [J]. Food Control, 2006(17): 393-396.
    [11]卫广森.新生仔猪大肠杆菌性腹泻K88ac-ST3-LTB三价基因工程灭活疫苗的研究与应用[D].南京:南京农业大学, 2004.
    [12] Haskchoi C, Jung K, et al. Genotypic Prevalence of the Adhesin Involved in Diffuse Adherence in Escherichia coli Isolates in Pre-weaned Pigs with Diarrhoea in Korea [J]. Vet Med Infect Dis Vet Public Health, 2004, 51(4): 166-168.
    [13] Martins MF, Escherichla MRN, Ferreira A, et al.Pathogenic Characteristics of Toll Strains Isolated from New-born Piglets with Diarrhea in Brazil [J]. Vet Microbiol, 2000, 76(1): 51-59.
    [14] Justin N, Walker N, Bullifent HL, et al. The First Strain of Clostridium Perfringens Isolated from an Avian Source has an Alpha-toxin with Divergent Structural and Kinetic Properties[J]. Biochemistry, 2002, 41: 6 253-6 262.
    [15]陶勇,王红宁,刘书亮.四川规模化鸡场致病性E.coli血清型、耐药性和质粒图谱的研究[J].中国兽药杂志, 2001, 35(4): 9-13.
    [16]高崧,刘秀梵,张如宽.禽大肠杆菌病[J].养禽与禽病防治,1999, (9): 18-20.
    [17] Mukhopadhyaya BB,Hishya SK. Incidence of colibacillosis in chicks in some poultry pockets of west Bengal[J]. Indian Journal of Poultry Science, 1992, 27(2): 103-107.
    [18]马红霞,邓旭明,欧阳红生.细菌多重耐药分子机制的研究进展[J].国外医药抗生素分册, 2002, 23(3): 102-106.
    [19]袁正宏.微生物感染与抗生素耐药[J].国外医学-微生物学分册, 2000, 23(5): 39.
    [20] Stuart B, Levy A. The challenge of antibiotic resistance[M]. Scientific American. http://www. sciam. com / 1998/0398issue/0398levy. html.
    [21] Vanden Bogaard AE, Stobberingh EE. Antibiotic usage in animals: Impact on bacterial resistance and public health[J]. Drugs, 1999, 58(4): 589-607.
    [22] Wagner J, Hahn H. Increase of antimicrobial resistance in human bacterial pathogens by resistance gene transfer from food of animal origin[J]. Berliner and Munchener Tierarztliche Wochenschrift, 1999, 112(10-11): 380-384.
    [23] Mcdonalc LC, Kuehnert MJ, Tenove FC. Vancomvcin-resistant entercrococci outside the healthcare settin; prevalence, sources, and public health implications[J]. Emerg Infect Dis, 1997, 3: 311-317.
    [24]雷连成.细菌的耐药性(Ⅰ) [J].中国兽药杂志, 2002, 36(11): 41-44,49 .
    [25]崔晓文,张秀英.细菌耐药性产生的分子机制与耐药基因的快速检测方法[J].中国兽药杂志,2004, 38 (9): 30-32.
    [26]沈关心.微生物学与免疫学(第5版)[M].北京:人民卫生出版, 2003: 288.
    [27]张永利,万献尧.细菌耐药性研究进展[J].中国医师杂志, 2004, 6(12): 1 721-1 722.
    [28] Maneewannakul K,Levy SB. Identification for mar mutants among quinolone-resistant clinical isolates of Escherichia coli[J]. Antimicroh Agents Chemother, 1996, 40(7): 1 695-1 698.
    [29]蒋红霞,曾振灵.细菌耐药机制及耐药性控制对策[J].动物医学进展, 2001, 22(4): 4-7.
    [30] Davies J, Smith DI. Plasmid-determined resistance to antimicrobiala-gents[J]. Annd Rev Microbiol, 1978, 32, 469-518.
    [31] Dorthe S, Frank MA, Lars BJ. Characterisation of integrons and antibiotic resistance genes in Danish multiresistants Salmonella enterica Ty-phimurium DT104[J]. FEMS Microbiology Letters, 1998, 160: 37-41.
    [32] Mobak KD, Baggesen FK, Aarestrup JM, et al. An outbreak of multi-drug-resistant, quinolone- resistant Salmonella enterica serotype Ty-phimurium DT104[N]. EnglMed, 1999, 341: 1420-1425.
    [33]徐建国.分子医学细菌学[M].北京:科学出版社, 2000: 8-30.
    [34] Bass LA, Liebert CA., Lee MD, et al. Incidence and characterization of integrons, genetic elements mediating multiple-drug resistance in avian Escherichia coli[J]. Antimicrobial Agents and Chemo- therapy, 1999, 43(12): 2 925-2 929.
    [35] Laraki N, Galleni M, Thamm I, et al.Structure of In31, a blaIMP-containing Pseudomonas aeruginosa integron phyletically related to In5, which carries an unusual array of gene cassettes[J]. Antimicrob Agents Chemother, 1999, 43(4): 890-901.
    [36] Bunny KL, Hall RM, Stokes HW. New mobile gene cassettes containin g an aminoglycoside resistance gene, aacA7, and a chloramphenicol resis-tance gene, catB3, in an integron in pBWH301[J]. Antimicrobial Agents and Chemotherapy, 1995, 3: 686-693.
    [37]张秀英.抗生素的耐药机制分类及概述[A].1999年中国兽医微生物学学术年会论文集[C].北京:中国微生物学会兽医微生物学专业委员会, 1999. 205-209.
    [38]刘辉,张供领,许胜勇,等.细菌对抗生素耐药性的国内外研究现状[J].山东家禽, 2001, (2):32-34.
    [39]左联,姚天爵.绿脓杆菌外膜通透性与耐药性的关系[J].国外医学药学分册,1997,24(3):134- 138.
    [40] Robinson A. Antibiotics and resistance: hand in hand[J]. Can Med Assoc J, 1994, 150:927.
    [41]黄怡,刘忠令.细菌耐药机制的研究现状[J].国外医学-微生物分册, 2000, 023(001): 0024-0026.
    [42]张继瑜,赵荣材,邓旭明等.喹诺酮类药物耐药性的分子机制[A].中国畜牧兽医学会—兽医药理毒理学分会第七次学术讨论会论文摘要汇编[C].北京:中国畜牧兽医学会2000.15.
    [43]张永利.细菌耐药性研究进展[J].中国医师杂志, 2004, 6(12): 1 721-1 722.
    [44]朱力军.动物大肠杆菌耐药性的变化趋势[J].中国兽药杂志, 2001, 35 (2): 16-18.
    [45]王春芬,于连智,马云飞等. 17种抗菌兽药对猪鸡大肠杆菌和金葡菌的药敏试验研究[J].沈阳农业大学学报, 1999, 30(4) : 454-456.
    [46]程雷,陈吕海,严建刚.江苏省部分鸡场鸡致病性大肠杆菌分离株药敏试验[J].中国兽药杂志, 1999, 33(3): 34-36.
    [47]王红宁,刘书亮,陶勇等.规模化猪场致病性大肠杆菌、沙门氏菌药敏区系调查[J].西南农业学报, 2000, (13卷增刊): 84-90.
    [48]雷连成,江文正,韩文瑜等.致病性大肠杆菌的耐药性监测[J].中国兽医杂志, 2001, 37(1): 12-13.
    [49]许兰菊,蒋媛媛,刘红英等.鸡大肠杆菌病的病原分离鉴定与药敏试验研究[J].河南农业大学学报, 2003, 37(4): 392-295.
    [50]姜中其,陈晓红,方维焕等.规模化猪场仔猪断奶腹泻大肠杆菌耐药性监测[J].浙江大学学报(农业与生命科学版), 2004, 30(5): 567-571.
    [51]刘栓江,杨汉春,王建舫,等.鸡源大肠杆菌的耐药性监测[J].中国兽医杂志, 2004, 40(6): 48-49.
    [52]雷连成.细菌的耐药性(II).中国兽医杂志, 2002, 36(12): 47-50.
    [53] Varma KJ, Adams PE, Powers TE, et al.Pharmacokinetics of florfenicol in veal carves[J]. J Vet. Pharmacol Therap, 1986, 9 (4): 412-425.
    [54]邱银生,吴佳.兽用广谱抗菌药物氟甲砜霉素[J].中国兽药杂志, 1996, 30 (2): 47-48.
    [55] Kim EH, Aoki H.Sequence analysis of the florfenicol resistance gene encoded on the transferable R-plasmid of a fish pathogen Pasteurella piscicida[J]. Microbiol Immunol, 1996, 40(9): 665-669.
    [56]Bolton LF, Kelley LC, Lee MD, et al.Deection of multidrug-resistance Salmonella enterica sero type typhimurium DT104 based on a gene which confers cross-resistance to florfenicol and chloramphenicol [J]. J Clin Microb, 1999, 37(5): 1 348-1 351.
    [57]Arcangio li MA, Nawaz MS, Khan SA, et al.A new chloramphenicol and florfenicol resistance gene flanked by two integron structures in Salmonella typh imurium DT104[J]. FEM S Microb L ett, 1999, 174: 327-332.
    [58] Keyes K, Hudson C, Maurer JJ, et al.Detection of florfenicol resistance genes in Escherichia coli from sick chickens. Antimicrob. Agents Chemother. 2000. 44: 421-424.
    [59] Cloeckaert A, Baucheron S, Flaujac G., et al.Plasmid-mediated florfenicol resistance by the flor gene in Escherichia coli isolated from cattle. Antimicrob. Agents Chemother. 2000b. 44: 2 858-2 860.
    [60] White DG., Hudson C, MuaerrJJ, et al.Charaeterization of chloramphenieol and florfenicol resistance in Eshcerichia coli associated whit bovine diarrhea.J.Clin. Microbiol. 2000. 38: 4 593-4 598.
    [61] Bischoff KM. WhietDG, MeLnnott PF, et al.Characterization of chloramphenicol resistance in batehemolytic Escherichia coli associated with diarrhea swine.J.Clin. Microbiol.2002. 40: 389- 394.
    [62] Blickwede Mand Schwazr S. Molecular analysis of florfenieol resistant Escherichia coli isolates from pigs. J Antimicrob. Chemother. 2004. 53: 58-64.
    [63]杜向党,吴蓓蓓等,牛源致病性大肠杆菌耐氟苯尼考floR基因的克隆与序列分析[J].中国兽医学报, 2005, 5(25), 247-249.
    [64] Syriououlou VP, Harding AL.Goldmann DA. et al. In vitro antibacterial activity of fluorinated analogs of chloramphenicol and thiamphenical.Antimicrob.Agents Chemother. 1981. 19: 294-297.
    [65] Bissonnette L, Champetier S, Buisson JP, et al. Characterization of the nonenzymatic chloramphenicol resistance (cmlA)gene of the In4 integron of Tn1696, similarity of the product to transmembrane transport proteins.J. Bacteriol. 1991. 173 : 4 493-4 502.
    [66]Arcangioli MA, Sabine LS, Martel JL, et al. Evolution of chloramphenicol resistance,with emergence of cross-resistance to florfenicol,in bovine Ssalmonella Typhimurium strains implicates definitive phage type (DT)104. J. Med. Microbiol. 2000, 49: 103-110.
    [67]Kim E and Aoki T. Sequence analysis of the florfenicol resistance gene encoded in the transferable R plasmid from a fish pathogen Pasteurella piscicida. Microbiol. Immunol. 1996. 9: 665-669.
    [68]Bolton LF, Kelley LC, Lee MD, et al.Detection of Salmonella typhimuriun DT104 based on the gene St-flo which confers resistance to florfenicol and chloramphenicol.J.Clin. Microbiol. 1999. 37: 1 348-1 351.
    [69] Arcangioli MA, Leroy SS, Martel JL, et al.A new chloramphenicol and florfenicol resistance gene linked to an integron structure in Salmonella typhimurium DT104. FEMS Microbiol.Lett. 1999. 174: 327-332.
    [70] Paulsen IT, Brown MH and Skurray RA.Proton-dependent multidrug efflux systems. Microbiol. Rev. 1996. 66: 575-608.
    [71]陶勇,王红宁,刘书亮.四川规模化鸡场致病性E.coli血清型、耐药性和质粒图谱的研究[J].中国兽药杂志, 2001, 35(4): 9-13.
    [72]高崧,刘秀梵,张如宽.禽大肠杆菌病[J].养禽与禽病防治, 1999, (9): 18-20.
    [73] Alonso R, Acucken HM, Perez-Diaz JC, et al. Comparison of Serotyping biotype and bacteriocin type with rDNA RFLP patterns for the type identification of Serratia marcescens[J]. Epidemical infect, 1993, 111: 99-107.
    [74] Grimout PA, Grimout F, Minor S, et al. Compatible results Obtained from biotyping and serotyping in Serratiamarcescens[J]. J Clin Microbiol, 1979, 10: 425-432.
    [75] Hamilton RL, Brown WJ.Bacteriocin typing of clinically isolated Serratia marcescens[J]. Appl Microbiol, 1972, 24: 899-906.
    [76] Ojeniyi B. Polyagglulinable pseudomonas aeruginosa from cystic filn-osis patients:asurvey[J]. APMIS, 1994, 46(suppl): 1-44.
    [77] Tosin I, Silbert S, Sader HS.The use of molecular typing to evaluate the dissemination of antim- icrobial resistance among Gram-negative rods in Brazilian hospitals[J]. Braz J Infect Dis, 2003, 7: 360-369.
    [78]刘瑛,陈峰.重复序列引物聚合酶链反应在医院感染流行病学调查中的应用[J].中华检验医学杂志, 2005, 28: 625-626.
    [79] Schutze GE, Gilliam CH, Jin S, et al. Use of DNA fingerprinting in decision making for considering closure of neonatal intensive care units because of Pseudomonas aeruginosa bloodstream infections[J]. Pediatr Infect Dis J, 2004, 23: 110-114.
    [80] Freijo MP, Fluit AC, Schmitz FJ, et al. Class 1 integrons in Gram-negative isolates or from different European hospitals and association with decreased susceptibility to multiple antibiotic compounds. J. Antimicrob.Chemother. 1998. 42: 689-696.
    [81]Senda K, Arakawa Y, Ichiyama S, et al. PCR detection of metallo-beta-lactamase gene (blaIMP)in gram-negative rods resistant to broad-spectrum beta-lactams. J.Clin. Microbiol.1996. 34: 2 909-2 913.
    [82]Bush K, Jacoby G.A and Medeiros AA.A functional classification scheme for lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 1995. 39: 1 211-1 233.
    [83]Peters EDJ, Leverstein WMA, Box ATA, et al. Novel Gene Cassettes and Integrons Antimicrob. Agents Chemother. 2001. 45: 2 961-2 964.
    [84]Bass L, Liebert CA., Lee MD, et al. Incidence and characterization of integrons, genetic elements mediating multiple-drug resistance,in Avian Escherichia coli.Antimicrob. Agents Chemother. 1999. 43: 2 925-2 929.
    [85]Rosser SJ and Young HK. Identification and characteriaztion of class 1 integrons in bacteria from an aquatic environment. J. Antimicrob. Chemother. 1999. 44: 11-18.
    [86]廖延雄.兽医微生物实验诊断手册[M].北京:中国农业出版社, 1995.
    [87]傅先强,刘占君.养禽场禽病检验手册[M].北京:中国农业大学出版社, 1997.
    [88] F.奥斯伯, R.布伦特, R.E.金斯顿,等. (颜子颖,王海林译)精编分子生物学实验指南[M].北京:科学出版社, 2001.
    [89]中国农科院,哈尔滨兽医研究所编著.兽医微生物学[M].北京:中国农业出版社, 1998: 583-585.
    [90]倪语星,王金良,徐英春.抗微生物药物敏感性实验规范[M].上海科学技术出版公司,2002: 22.
    [91] NCCLS consensus. Performance Standards for Antimicrobial Disk Susceptibility Testing [S]. Approved Standard-Seventh Edition. National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing. In Twelfth Informational Supplement. NCCLS document M100-S12. Volume 22. NCCLS, Wayne, PA; 2002: 42-45.
    [92]朱力军.动物大肠杆菌耐药性的变化趋势[J].中国兽药杂志, 2001, 35 (2): 16-18.
    [93]纪春晓,胡功政,程天印.鸡源大肠杆菌的耐药性及其机制[J].上海畜牧兽医通讯, 2005, (2): 27-29.
    [94]张秀英,吴好庭,赵晖,等.部分鸡场大肠杆菌对抗菌药物的耐药性[J].中国兽医学报, 2005, 25 (4): 422-424.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700