牛ADRB3、CAPN3和CAPN4基因多态性及其对生长和胴体性状的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用PCR-SSCP技术,检测了中国黄牛群体、天祝白牦牛、甘南牦牛和青海牦牛类群,以及饲养于新西兰的10个普通牛品种,包括海福特牛、短角牛、安格斯牛、墨里灰牛、西门塔尔牛、南德温牛、夏洛来牛、无角红牛、高地牛和Salers牛的ADRB3基因多态性,以及上述部分普通牛品种和牦牛类群的CAPN3和CAPN4基因多态性,研究3类基因在普通牛和牦牛群体中的遗传特征。基于ADRB3受体对哺乳动物脂肪分解和产热的调节功能及对生长及肉品质的潜在作用,分析了海福特牛、短角牛、安格斯牛、墨里灰牛、西门塔尔牛和南德温牛ADRB3基因3′-UTR区多态性对部分生长及胴体性状估计育种值(EBV)的影响,探讨了ADRB3基因作为普通牛生长及胴体性状候选基因的可能性。所获得的主要研究结果及结论如下:
     1.ADRB3基因、CAPN3和CAPN4基因多态性
     10个新西兰普通牛品种和1个中国黄牛群体的737头个体中,ADRB3基因启动子区检测到6种等位基因A-F,相对于等位基因A,其他等位基因存在4个单碱基突变(SNPs)和3个单碱基插入/缺失。除高地牛外,等位基因A频率在其他10个普通牛品种(或群体)中均在86%以上,为优势等位基因,其中Salers牛均为AA纯合型个体;等位基因在品种间分布不均衡,等位基因C存在于夏洛来牛中,F存在于海福特及墨里灰牛中,等位基因D、E仅存在于中国黄牛群体中。除高地牛PIC=0.3666为中度多态外,其余品种(或群体)PIC<0.25,表现为低度多态,提示普通牛品种(或群体)在启动子区受到较强的选择压力,基因型趋于一致。
     3个中国牦牛类群334份样品,在天祝白牦牛和青海牦牛ADRB3基因启动子区域发现两种等位基因YA和YB,相对于YA序列,等位基因YB存在3个SNPs,且c.-430A>T的颠换只存在于牦牛群体中,为牦牛区别于普通牛的遗传特征之一。等位基因YB频率分别为97.3%和98.0%,为优势等位基因;甘南牦牛只存在YB等位基因。牦牛等位基因YA频率低,序列与普通牛等位基因A相同,等位基因YA来源于普通牛。牦牛该基因位点PIC<0.25为低度多态,结合ADRB3基因对动物耐寒性的影响,表明寒冷气候条件对该位点有较强的选择效应。
     7个普通牛品种共1142份样品,包括安格斯牛、短角牛、海福特牛、西门塔尔牛、墨里灰牛、无角红牛和南德温牛,在ADRB3基因3′-UTR区发现4种等位基因A、B、C和D。相对于等位基因A,等位基因B、C和D共发现5个SNPs。除短角牛外的6个牛品种中,等位基因A频率63.63%-93.78%,为优势等位基因,而短角牛等位基因A、B频率分别为35.90%和41.67%。等位基因在品种间分布不均衡,等位基因A和B存在于所有检测的普通牛品种中,等位基因C只存在于西门塔尔牛、海福特牛和短角牛中,墨里灰牛未检测出等位基因D。墨里灰牛和无角红牛PIC<0.25为低度多态,安格斯牛、海福特牛及南德温牛该位点0.250.50为高度多态。
     CAPN3基因外显子1在高地牛、无角红牛、海福特牛、安格斯牛和西门塔尔牛中未发现多态性,在中国黄牛群体中发现两种等位基因A和B;相对于等位基因A,等位基因B存在c.54 T>G的SNP并导致相应氨基酸的p.Met18Arg错义突变;等位基因A频率96.98%为优势等位基因,该位点PIC=0.0568为低度多态。
     CAPN4基因外显子5-6在Salers牛和甘南牦牛中未发现多态性,而中国黄牛发现两种等位基因A和B。相对于等位基因A,等位基因B在内含子5区存在c.411+24 G>C的SNP;等位基因A频率96.14%为优势等位基因,该位点PIC=0.0712为低度多态。
     2.普通牛ADRB3基因3′-UTR区SNPs对部分生长及胴体性状EBV的影响ADRB3基因3′-UTR区SNPs对检测的6个普通牛品种初生重EBV没有显著影响。
     海福特牛600日龄重和成年母牛体重EBV在基因型间存在显著差异(P<0.05),AB基因型个体两性状EBV分别显著(P<0.05)或极显著(P<0.01)高于AC型。等位基因A对成年母牛体重的EBV有极显著的负效应(P<0.01),而等位基因C对200日龄重EBV有显著负效应(P<0.05),对600日龄重和胴体重有极显著负效应(P<0.01)。选留AB型个体可增加后代群体600日龄重和成年母牛体重。
     短角牛生长及胴体重性状的EBV在基因型间无显著差异,但等位基因B对200日龄重EBV有极显著负效应(P<0.01),对600日龄重EBV有显著负效应(P<0.05);等位基因D对成年母牛体重EBV有显著正效应(P<0.05)。降低等位基因B的频率可提高后代群体200日龄和600日龄体重,而增加等位基因D的频率则能提高后代群体的成年母牛体重。
     安格斯牛BB基因型个体400日龄重EBV显著高于AA型个体(P<0.05),而600日龄重、成年母牛体重和胴体重EBV极显著高于AA型个体(P<0.01),AB型个体介于两者之间。等位基因A对600日龄重及成年母牛体重EBV有显著负效应(P<0.05),对胴体重有极显著负效应(P<0.01);等位基因B对400日龄重EBV有显著正效应。BB基因型频率低(3.23%),所受选择压力大,应慎重考虑通过增加BB型个体以提高后代群体生长及胴体性状对其他与ADRB3基因相关性状的综合影响。
     墨里灰牛ADRB3基因的各基因型对200-600日龄体重的EBV没有显著影响,只有AB基因型个体600日龄重EBV显著高于AA型(P<0.05),选留AB型个体能增加后代群体的600日龄体重。
     南德温牛ADRB3基因的各基因型及等位基因不影响200-600日龄重的EBV。
     西门塔尔牛200-600日龄重EBV在ADRB3基因的各个基因型间无显著差异,但等位基因B对400日龄重和600日龄重的EBV有显著负效应(P<0.05)。
     ADRB3基因对动物脂肪分解和产热调节,以及CAPN3和CAPN4基因对肌肉蛋白水解过程均有重要作用,因此推测3类基因影响牛的生长及胴体品质。本研究检测了普通牛及牦牛ADRB3、CAPN3和CAPN4基因相应区域的多态性,表明其在不同群体中的分子遗传特性;而牦牛ADRB3基因启动子区特有的SNP,将有助于从分子水平进一步探索牦牛不同于普通牛的耐寒性。本研究也证实ADRB3基因3′-UTR区多态性对普通牛各阶段体重及胴体性状的EBV有不同影响,为相应性状分子标记辅助选择提供依据。
In this study, the variation of ADRB3 gene was detected in Chinese cattle, Tianzhu white yak, Gannan yak, Qinghai yak, and ten cattle breeds in New Zealand including Hereford, Shorthorn, Angus, Murray Grey, Simmental, South Devon, Charolais, Red Poll, Highland and Salers by PCR-SSCP, as well as the CAPN3 and CAPN4 genes in some of above populations, in order to understand the genetic characters of these three genes in cattle and yak. Based on the pivotal role of ADRB3 in lipolytic and thermogenic processes in mammal and potential effects on growth and carcass traits of domestic animal, the association of the polymorphisms in 3′-UTR of ADRB3 gene and Estimated Breeding Values (EBVs) of growth and carcass traits were analyzed for the purpose of evaluating the possibility of ADRB3 as a candidate gene for growth and carcass traits in the investigated cattle breeds. The main results showed as follows:
     1. Polymorphisms of ADRB3, CAPN3 and CAPN4 genes
     Six PCR-SSCP patterns representing six alleles A-F containing four single nucleotide polymorphisms (SNPs) and three nucleotide deletion/insertions were observed at the promoter region of ADRB3 gene in 737 cattle from ten breeds in New Zealand and one Chinese cattle population by PCR-SSCP. Allele A was the most common allele with frequency of more than 86% in ten cattle populations excluding Highand, especially all of Salers represented genotype AA. Alleles distributed disproportionably among eleven populations, such as allele C observed in Charolais and allele F in Hereford and Murray Grey, as well as alleles D and E only in Chinese cattle. The promoter region of ADRB3 gene showed low genetic diversity with polymorphism information content (PIC) of less than 0.25 in all of the populations except Highland cattle with PIC of 0.3666. Those results suggested that strong selection pressure were applied to cattle in both New Zealand and China to maintain low genetic diversity at promoter region of ADRB3 gene.
     Two alleles YA and YB were checked at promoter region of ADRB3 gene in 334 individuals from three yak populations in China. There were three SNPs within allele YB relative to allele YA in yak or allele A in cattle. Mutation of c.-430A>T that particularly detected within allele YB showed genetic characteristic of ADRB3 in yak as distingushed from cattle. Allele YB was the most common allele with frequency of 97.3% and 98.0% in Tianzh white yak and Qinghai yak respectively, but there was only identified allele YB in Gannan yak. It was possible that allele YA came from cattle because of very low frequency in yak and same sequence with allele A of cattle. The polymorphism at promoter region of ADRB3 in yak was low with PIC less than 0.25, considering the association of ADRB3 gene with cold tolerance of mammal, suggesting strong selection pressure is being applied to yak by cold climate in alpine region to maintain low genetic diversity at this locus in the population.
     Four alleles A, B,C and D were identified at 3′-UTR of ADRB3 gene in total 1142 cattle from seven breeds including Angus, Shorthorn, Hereford, Simmental, Murray Grey, Red Poll and South Devon. Alleles B, C and D contained five SNPs relative to allele A. Allele A was the most common allele according to frequency ranged from 63.63%-93.73% in all investigated population except Shorthorn with frequency of alleles A and B of 35.90% and 41.76%, respectively. Four alleles distributed unequally among seven populations, and alleles A and B were detected in all populations and alleles C in Simmental, Hereford and Shorthorn, but allele D not in Murray Grey as well. According to PIC at 3′-UTR of ADRB3, polymorphism was poor in Murray Grey and Red Poll with PIC of less than 0.25 and moderate in Angus and Hereford and South Devon with PIC ranged from 0.25 to 0.5, and higher in Simmental and Shorthorn with PIC morn than 0.5.
     No variation was detected at exon 1 of CAPN3 gene in Highland, Red Poll, Hereford, Angus and Simmental cattle from New Zealand, but two alleles A and B were observed in Chinese cattle and allele A was the most common allele with frequency of 96.98%. The mutation of c.54T>G detected at allele B resulted in a non-synonymous substitution of p.Met18Arg polymorphism relative to allele A. Genetic diversity was poor at the exon 1 of CAPN3 gene in Chinese cattle with PIC of 0.0568.
     No mutation was checked in exon 5-6 of CAPN4 in Salers cattle and Gannan yak, but two alleles A and B were found in Chinese cattle and allele A was the most common allele with a frequency of 96.14%. There was a substitution of c.411+24G>C detected at intron 5 in allele B relative to allele A. The exon 5-6 of CAPN4 in Chinese cattle showed low polymorphism with PIC of 0.0568.
     2. Effects of polymorphisms in 3′-UTR of ADRB3 gene on EBVs of some growth and carcass traits in cattle.
     Variations at the 3′-UTR of ADRB3 gene was not found to have a significant effect on birth weight EBV of investigated cattle breeds.
     Genotypes of ADRB3 were found to have a significant effect on 600-day and mature cow weight EBV of Hereford cattle (P<0.05) and Least significant difference revealed the individuals with genotype AB was higher (P<0.05 or P<0.01) than that with AC. The presence of allele A had a significantly negative effect on mature cow weight EBV (P<0.01), as well as the presence of allele C on 200-day weight EBV (P<0.05), 600-day weight EBV (P<0.01) and carcass weight EBV (P<0.01), respectively. Selection of the individuals with genotype AB would increase the 600-day weight and mature cow weight of their progenies.
     EBVs of growth and carcass traits were not significantly different between individuals with different genotypes of ADRB3 in Shorthorn. The presence of allele B had a significantly negative effects on 200-day weight EBV (P<0.01) and 600-day weight EBV (P<0.05), whereas the allele D had a significantly positive effect on mature cow weight EBV (P<0.05). As a result, 200-day and 600-day weight of progenies would increase by reducing the frequency of allele B in Shorthorn cattle, and the mature cow weight of progenies would be put on with adding the frequency of allele D as well.
     The individuals with genotype BB of ADRB3 was higher than that with AA (P<0.05 or P<0.01) in 400-day, 600-day, mature cow and carcass weight EBV of Angus cattle, while that with AB was found between the two. The presence of allele A had a significantly negative effects on 600-day and mature cow weight EBV (P<0.05) and carcass weight EBV (P<0.01), but the presence of allele B had a significantly positive effect on 400-day weight EBV. Considering the very low frequency of genotype BB suggesting a strong selection pressure being applied to individuals with that genotype in Angus, the selective reaction of other traits associated with ADRB3 gene need to be evaluated carefully as improvement of the growth and carcass traits by adding individuals with genotype BB in Angus cattle.
     Genotype of ADRB3 was not found to affect 200-day and 400-day weight EBV in Murray Grey cattle investigated. But individuals with genotype AB was higher in 600-day weight EBV than that with AA (P<0.05). Therefore, selection of individuals with genotype AB would increase 600-day weight of their progenies.
     Genotype and allelic presence of ADRB3 gene were not found to have significant effects on 200-day, 400-day and 600-day weight EBVs in South Devon cattle investigated.
     There were no significantly different in 200- to 600-day weight EBV among genotype of ADRB3 in Simmental cattle investigated. But presence of allele B had a significantly negative effect on 400-day and 600-day weight EBV (P<0.05).
     In summary, ADRB3, CAPN3 and CAPN4 gene appear to play a pivotal role in regulation of lipolytic and thermogenic in adipose tissue of mammal and proteolytic processes in muscles, respectively, thus those genes could be involved in bovine growth and carcass qualities. In this study we reported identification of novel mutations at the promoter region and 3′-UTR of ADRB3, exon 1 of CAPN3 and intron 5 of CAPN4 representing the genetic characteristics of three genes in cattle or yak populations investigated. The particular SNP at promoter region of ADRB3 in yak would contribute to molecular research for stronger cold tolerance of yak than cattle. It also provided a basis for Molecular Marker-assisted Selection (MAS) that the variations at 3′-UTR of ADRB3 showed different effects on EBVs of growth and carcass traits in investigated cattle breeds.
引文
[1] Lande R, Thompson R. Efficiency of marker-assisted selection in the improvement of quantitative traits [J]. Genetics.1990, 124: 743-756.
    [2] Perusse L, Rankunen T, Zeberi A, et al. The human obesity gene map: the 2004 update [J]. Besity Research. 2005, 13:381-490.
    [3] Muzzin P, Revelli JP, Kuhne F, et al. An adipose tissue-specificβ3-adrenergic receptor, Molecular cloning and down-regulation in obesity [J]. J. Biol. Chem. 1991, 266: 24053-24058.
    [4] Susulic VS, Frederich RC, Lawitts J, et al. Targeted disruption of the ?3-adrenergic receptor gene [J]. Journal of Biological Chemistry. 1995, 270: 29483-29492.
    [5] Revelli JP, Preitner F, Samec S, et al. Targeted gene disruption reveals a leptin-independent role for the mouse ?3-adrenoreceptor in the regulation of body composition [J]. Journal of Clinical Investigation. 1997, 100:1098–1106.
    [6] Strosberg AD. Theβ3-Adrenoreceptor [M]. Taylor & Francis, London: 2000.
    [7] Forrest RH,Hickford JGH, Hogan A,et al. Polymorphism at the ovineβ3-adrenergic receptor locus: Associations with birth weight, growth rate, carcass composition and cold survival [J]. Animal Genetics. 2003, 34:19–25.
    [8] Forrest RH, Hickford JG, Wynyard J, et al. Polymorphism at theβ3-adrenergic receptor (ADRB3) locus of Merino sheep and its association with lamb mortality [J]. Anim Genet. 2006, 37(5):465-468.
    [9] Hirose K, Nakamura M, Takizawa T, et al. An insertion/deletion variant of a thymine base in exon 2 of the porcine beta 3-adrenergic receptor gene associated with loin eye muscle area [J]. Anim Sci J. 2009, 80(6):624-630.
    [10] Forrest RH, Itenge-Mweza TO, McKenzie GW, et al. Polymorphism of the ovineβ3-adrenergic receptor gene (ADRB3) and its association with wool mean staple strength and yield [J]. Anim Genet.2009, 40: 958-962.
    [11] Connor EE, Ashwell MS, Schnabel R, et al. Comparative mapping of bovine chromosome 27 with human chromosome 8 near a dairy form QTL in cattle [J]. Cytogenet genome Res. 2006, 112: 98-102.
    [12] Pringle TD, Harrelson J M, West RL, et al. Calcium-activated tenderization of strip loin, top sirloin, and top round steak in diverse genotypes of cattle [J]. J Anim Sic Dec. 1999, 77: 3230-3237.
    [13] Showalter CJ, Engel AG. Acute quadriplegic myopathy: analysis of myosin isoforms and evidence for calpain-mediated proteolysis [J]. Muscle Nerve. 1997, 20(3):316-322.
    [14] Davis GP, Moore SS, Drinkwater RD, et al. QTL for meat tenderness in the M. longissimus lumborum of cattle [J]. Anim Genet 2008, 39(1):40-45.
    [15] Barendse W, Harrison BE, Bunch RJ, et al. Variation at the Calpain3 gene is associated with meat tenderness in zebu and composite breeds of cattle [J]. BMC Genetics. 2008, 9:41.
    [16] Zhou H, Hickford J.G.H, Frampton CM. Variation in ovine CAPN3 is not associated with meat tenderness [J]. Anim Genet. 2009, 40(2):251-252.
    [17] Zimmerman U-JP, Boring L, Park JH, et al. The calpain small subunit gene is essential: its inactivation results in embryonic lethality [J]. Iubmb Life.2000, 50: 63-68.
    [18] Arthur JS, Elce JS, Hegadorn C, et al. Disruption of the murine calpain small subunit gene, CAPN4:calpain is essential for embryonic development but not for cell growth and division [J]. Mol Cell Biol.2000, 20:4474-4481.
    [19] Shimada M, Greer PA, McMahon AP, et al. In vivo targeted deletion of calpain small subunit, CAPN4, in cells of the osteoblast lineage impairs cell proliferation, differentiation, and bone formation [J]. The Journal of Biological Chemistry. 2008, 283 (30):21002-21010.
    [20] Juszczuk-Kubiak E, Flisikowski K. Wicin′ska K. A new SNP in the 3′-UTR region of the bovine calpain small subunit (CAPNS1) gene [J]. Mol Biol Rep. 2010, 37:473-476.
    [21]李君灵,许尚忠,李武峰.杂种牛CAPN4基因第六内含子的遗传变异与牛肉嫩度的关联分析.山西农业大学学报. 2006, 26(3):247-249.
    [22] Bradley DG, Loftus RT, Cunningham P, et al. Genetics and domestic cattle origins [J]. Evol. Anthropol. 1998, 6: 79-86.
    [23] Bishop MD, Keppas SM, Keele J, et al. A genetic linkage map of cattle [J].Genet. 1994,136 (2): 619-639.
    [24] Barendse W, Armitage SM, Kossarek LM, et al. A genetic linkage map of the bovine genome [J].Nature Genetics. 1994, 6(3):227-235.
    [25] Georges M, Nielsen D, Mackinnon M, et al. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing[J].Genet. 1995,139 (2):907-920.
    [26] Ma RZ, Beever JE, Da Y, et al. A male linkage map of the cattle (Bos Taurus) genome [J]. Hered. 1996, 87 (4): 261-271.
    [27] Barendse W, Vaiman D, Kemp SJ, et al. A medium-density genetic linkage map of the bovine genome [J]. Mamm. Genomem. 1997, 8 (1):21-28.
    [28] Kappes SM, Keele JW, Stone RT, et al. A second-generation linkage map of the bovine genome [J].Genome Res. 1997, 7:235-249.
    [29] Snelling WM, Eduardo C, Roger TS, et al. Linkage mapping bovine EST-based SNP [J].BMC Genomic, 2005, 6 (1):74.
    [30] David LA. Insights and applications from sequencing the bovine genome [J]. Reproduction, Fertility and Development. 2008, 20: 54-60.
    [31] Womack JE. A whole-genome radiation hybrid panel for bovine gene mapping [J]. Mamm. Genome.1997, 8: 854-856.
    [32] Amaral ME, Kata SR, Womack JE. A radiation hybrid map of bovine X chromosome (BTAX) [J]. Mamm. Genome. 2002, 13:268-271.
    [33] Schibler L, Roig A, MahéMF, et al. A first generation bovine BAC-based physical map [J]. Genet Sel Evol. 2004, 36(1):105-22.
    [34] Itoh T, Watanabe T, Ihara N, et al. A comprehensive radiation hybrid map of the bovine genome comprising 5593 loci [J]. Genomics. 2005, 85 (4):413-424.
    [35]孙永巧,刘庆友.牛基因组研究进展[J].中国牛业科学. 2007,33(2): 14-19.
    [36]刘晓牧,吴乃科,王爱国,等.肉牛分子育种的研究进展[J].中国牛业科学.2007,35(5):66-71.
    [37] Flisikowski K, Maj A, Zwierzchowski L, et al. Nucleotide Sequence and Variation of IGF2 gene exon 6 in Bos Taurus and Bos indicus Cattle[J]. Animal Biotechnology. 2005,16:203-208.
    [38] Li C. Assessment of positional candidate genes myf5 and igf1 for growth on bovine chromosome 5 in commercial lines of Bos Taurus [J]. Anim Sci. 2004, 82:1-7.
    [39] Moody DE, Pomp D, Newman S. et al. Characterization of DNA polymorphisms in three populations of Hereford cattle and their associations with growth and maternal EPD in Line 1 Herefords [J]. Anim.Sci. 1996, 74:1784-1793.
    [40] Ge W, Davis ME, Hines HC, et al. Association of a genetic marker with blood serum insulinlike growth factor-I concentration and growth traits in Angus cattle [J]. Anim Sci. 2001, 79:1757-1762.
    [41] Lonergant SM. Relationship of restriction fragment length polymorphisms at t he bovine calpastatin locus to calpastatin activity and meat tenderness [J] .Anim Sci.1995, 73 : 3608.
    [42] Page BT, Casas E, Quaas RL, et al. Association of markers in the bovine CAPN1 gene with meat tenderness in large crossbred populations that sample influential industry sires [J]. Journal of Animal Science. 2004, 82:3474-3481.
    [43] Jurie C, Cassar-Malek I, Bonnet M, et al. Adipocyte fatty acid-binding protein and mitochondrial enzyme activities in muscles as relevant indicators of marbling in cattle [J]. Journal of Animal Science. 2007, 85:2660-2669.
    [44]李武峰,许尚忠,曹红鹤,等.3个杂交牛种H-FABP基因第二内含子的遗传变异与肉品质性状的相关分析[J].畜牧兽医学报,2004,35:252-255.
    [45] Barendse WJ. Assessing lipid metabolism [P]. International patent application PCT/AU98/00882, international patent publication WO 99/23248.1999.
    [46] Schenkel FS, Miller SP, Moore SS, et al. Association of SNPs in the leptin and leptin receptor genes with different fat depots in beef cattle [C]. Proceedings of the 8th World Congress on genetics applied to livestock production, Belo Horizonte. Minas Gerais, 2006, Brazil: 13-18.
    [47]钟金城,陈智华,字向东,等.牦牛数量性状主基因的研究[J].西南民族学院学报. 2001, 27(2):212-215.
    [48]姬秋梅.中国牦牛品种资源的研究进展[J].自然资源学报. 1994, 16(6): 564-570.
    [49]欧江涛,钟金城,赵益新,等.牦牛生长激素释放激素基因的克隆及序列分析[J].四川畜牧兽医. 2003. 30(5):27-28.
    [50]陈桂芳,李齐发,强巴央宗,等.西藏耗牛和黑白花奶牛生长激素基因Alu多态性的比较研究[J].畜牧与兽医. 2002, 34(11):15-16.
    [51]白晶晶,王继卿,胡江,等.甘南牦牛GH基因的SNP检测[J].中国牛业科学. 2009, 35(2):1-5.
    [52]魏伍川.许尚忠.牦牛FSHR基因第10外显子的序列测定及比较研究[J].甘肃农业大学学报. 2004. 39(2):101-105.
    [53] Wu JQ, XuY, Zhao SR, et al. Cloning and sequence analysis of encoding region and regulatory region of yak myostatin gene [C]. Proceedings of the 4th International Congress on yak. Chengdu: Sichuan Publishing Group, Sichuan Publishing House of Science & Technology, 2004,145-148.
    [54] Sulimova GE, Badagueva N, Udina IG. Polymorphism of the kappa-casein gene in populations of the subfamily Bovinae [J]. Genetic, 1996, 32:1576-1582.
    [55]樊宝良,赵志辉,李宁,等.牦牛α-乳清蛋白基因的克隆与序列分析[J].动物学报. 2001,47(6):691-698.
    [56]任春明,字向东,张重庆,杨其沅.麦洼牦牛和九龙牦牛FSHβ基因的PCR-SSCP分析[J].西南民族大学学报(自然科学版). 2007, 33(1):88-91.
    [57]姚玉妮,阎萍,梁春年,裴杰,等.不同地方品种牦牛IGF-1基因的PCR-SSCP分析[J].中国草食动物. 2008, 28(3):9-11.
    [58]马志杰,钟金城,字向东,等.三个牦牛群体激素敏感脂肪酶(HSL)基因外显子I的多态性[J].中国农业科学. 2009,42(1):370-376.
    [59]裴杰,阎萍,姬国红,等.天祝白牦牛LF基因克隆及分子特征分析[J].中国农业科学. 2009, 42(3):1030-1038.
    [60]裴杰,阎萍,程胜利,等.牦牛SRY基因克隆与分子特征[J].华北农学报. 2009, 24(4):50-56.
    [61]宋海峰,魏雅萍,马志杰,等.牦牛黑素皮质素受体-4基因的克隆和序列分析[J].青海大学学报(自然科学版). 2009, 27(3):43-50.
    [62]尹荣华,字向东,马志杰,等.牦牛生长分化因子-9基因cDNA克隆及序列分析[J].畜牧兽医学报. 2009, 40(7):999-1006.
    [63] Wong SK. G protein selectivity is regulated by multiple intracellular regions of GPCRs [J]. 2003, 12(1): 1-12.
    [64] Lands AM., Arnold A, Mcauliff JP, et al. Differentiation of receptor systems activated by sympathomimetic amines [J]. Nature. 1967, 214:597-598.
    [65] Lands AM, Luduena FP, Buzzo HJ. Differentiation of receptors responsive to isoproterenol [J]. Life Sciences. 1967, 6: 2241-2249.
    [66] Kaumann AJ. Four beta-adrenoreceptor subtypes in the mammalian heart [J]. Trends in Pharmacological Sciences. 1997, 18:70-76.
    [67] Galitzky J, Langin D, Verwaerde P, et al. Lipolytic effects of conventional beta 3-adrenoreceptor agonists and of CGP 12,177 in rat and human fat cells: preliminary pharmacological evidence for a putative beta 4-adrenoreceptor [J]. British Journal of Pharmacology. 1997, 122:1244-50.
    [68] Lafontan M, Berlan M. Fat cell adrenergic receptors and the control of white and brown fat cell function [J]. Journal of Lipid Research, 1993, 34:1057-1091.
    [69] Garland EM, Baiggioni I. Genetic polymorphism of adrenergic receptors [J]. Clinical Autonomic Research. 2001, 11: 67-78.
    [70] Johnson JA,Clark RB,Friedman J,et al. Identification of specific domain in theβ-adrenergic receptor reguired for phorbol ester-induced inhibition of catecholamine-stimulated adenylyl cyclase [J]. Mol Pharmacol. 1990, 38: 289-293.
    [71] Boutjdir M, Restivo M, Wei Y, et al. Alpha 1- and beta-adrenergic interactions on L-type calcium current [J]. In cardiac myocytes.1992, 421 (4):397-399.
    [72] Schachter JB, Wolfe BB. Cyclic AMP differentiates two separate but interacting pathways of phosphoinositide hydrolysis in the DDT1-MF2 smooth muscle cell line [J]. Mol Pharmacol. 1992, 41(3):587-97.
    [73] Arch JRS, Ainsworth AT, Cawthorne MA, et al. Atypical ?-adrenoreceptor on brown adipocytes as target for anti-obesity drugs [J]. Nature, 1984, 309:163-165.
    [74] Emorine LJ, Marullo S, Briend-Sutren MM, et al. Molecular characterization of new human ? adrenergic receptor involved in catecholamine control of metabolism [J]. Scienc.1989, 245:1118-1121.
    [75] Brian K, Richard AF, Thomas F,et al. cDNA for the humanβ-adrenergic receptor : A protein with multiple membrane-spannin domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-dericed growth factor [J]. Proc. Nati. Acad. Sci. 1987, 84:46-50.
    [76] Yang YT, McElligott MA. Multiple actions ofβ-adrenergic receptors [J]. Am J Physiol. 1989,153:586-600.
    [77] Giacobino JP.β3-adrenoceptor, an update [J]. European Journal of Endocrinology. 1995, 132: 377-385.
    [78]蒋淑君.β3-肾上腺素受体与脂肪代谢[M].医学理论与实践. 2004, 17(5):519-520.
    [79] McNeel RL, Mersmann HJ. Distribution and quantification of beta1,beta2-, and beta3-adrenergic receptor subtype transcripts in porcine tissue[J]. J Anim Sci.1999, 77:611-621.
    [80] Liggett SB, Freedman NJ, Schwinn DA, et al. Structural basis for receptor subtype-specific regulation revealed by a chimeric ?2/?3-adrenergic receptor[C]. Proceedings of the National Academy of Sciences, USA. 1993,90: 3665-3669.
    [81] Granneman JG, Lahners KN, Rao DD. Rodent and human beta 3-adrenergic receptor genes contain an intron within the protein-coding block [J]. Molecular Pharmacology. 1992, 42:964-970.
    [82] Moffett S, Mouillac B, Bonin H, et al. Altered phosphorylation and desensitization patterns of a humanβ2-adrenergic receptor lacking the palmitoylated Cys341 [J]. EMBO J. 1993, 12(1): 349-356.
    [83] Strosberg D, Pietri-Rouxel F. Function and regulation of theβ3-adrenoceptor[J]. Trends Pharmacol Sci. 1996, 17:373-381.
    [84] Skeberdis VA. Structure and function ofβ3-adrenergic receptors [J]. Medicina (Kaunas). 2004, 40(5):407-413.
    [85] Guan XM, Amend A. Strader CD. Determination of structural domains for G protein coupling and ligand binding in ?3-adrenergic receptor [J]. Molecular Pharmacology. 1995, 48:492- 498.
    [86] Gros J, Manning B, Piétri-Rouxel F, et al. Site-directed mutagenesis of the human beta-3 adrenoreceptor: transmembrane residues involved in ligand binding and signal transduction[J]. European Journalof Biochemistry. 1998, 251:590-596.
    [87] Nantel F, Bonin H, Emorine LJ, et al. The human ?3-adrenergic receptor is resistant to short-term agonist-promoted desensitization [J]. Molecular Pharmacology. 1993, 43: 548-555.
    [88] Nantel F, Marullo S, Krief S, et al. Cell specific down-regulation of the ?3-adrenergic receptor [J]. Journal of Biological Chemistry, 1994, 269: 13148–13155
    [89] Jockers R, Dasilva A, Strosberg AD, et al. New molecular and structural determinants involved in ?2-adrenergic receptor uncoupling and sequestration; delineation using chimeric ?3/?2-adrenergic receptors [J]. Journal of Biological Chemistry. 1996, 271: 9355-9362.
    [90] Forrest RH, Hickford JGH. Rapid communication: nucleotide sequences of the bovine, caprine and ovineβ3-adrenergic receptor genes [J]. Journal of Animal Science. 2000, 78: 1397-1398.
    [91] Strieleman PJ, Schalinske KL, Shrago E. Fatty acid activation of the reconstituted brown adipose tissue mitochondria uncoupling protein [J]. J Biol Chem. 1985,260 (25): 13402-13405.
    [92] Nicholls DG. A history of UCP1 [J]. Biochem Soc Trans. 2001, 29(Pt 6): 751.
    [93]修芸,曹济民. ?肾上腺素受体研究进展[J].医学研究杂志. 2007, 36(3): 80-82.
    [94] Reverte M. Pharmacological effects ofβ3-adrenoceptors. Additional physiological functions of theβ3-adrenoceptor [J]. TiPS. 1994,15:281-282.
    [95] Blin N, Nahmias C, Drumare MF et al. Mediation of most atypical effects by species homologues of theβ3-adrenoceptor [J]. Br J Pharmacol. 1994, 112: 911-919.
    [96] Enocksson S, Shimizu M, Lonnqvist F et al. Demonstration of an in vivo functionalβ3-adrenoceptor in man.J Clin Invest. 1995, 95: 2239-2245.
    [97] Emorine L, Blin N, Strosberg AD. The humanβ3-adrenoceptor: the search for a physiological function [J]. TiPS. 1994, 15: 3-7.
    [98] Shih MF, Taberner PV. Selective activation of brown adipocyte hormone sensitive lipase and cAMP production in the mouse by ?3-adrenoreceptor agonists [J]. Biochemical Pharmacology. 1995, 50: 601-608.
    [99] Spiegelman BM, Flier JS. Adipogenesis and obesity: rounding out the big picture [J]. Cell. 1996, 87: 377-389.
    [100] Arner P. Regulation of lipolysis in fat cells [J]. Diabetes Reviews. 1996, 4: 450-463.
    [101] Van Harmelen V, L?nnqvist F, Th?rne A, et al. Noradrenaline-induced lipolysis in isolated mesenteric, omental and subcutaneous adipocytes from obese subjects [J]. International Journal of Obesity and Related Metabolic Disorders. 1997, 21: 972-979.
    [102] Clement k, Vaisse C, Manning, B, et al. Genetic variation in theβ3-adrenergic receptor an increased capacity to gain weight in patient with morbid obesity [J]. New England Journal of Medicine. 1995, 333: 352-354.
    [103] Walston J, Silver K, Bogardus C et al. Time of onset of noninsulin-dependent diabetes mellitus and genetic variation in the beta 3-adrenergic-receptor gene [J]. N Engl J Med. 1995, 333: 343-347.
    [104] Mitchell BD, Blangero J, Comuzzie AG, et al. A paired sibling analysis of the beta-3 adrenergic receptor and obesity in Mexican Americans [J]. J Clin Invest. 1998, 01 (3): 584-587.
    [105] Bond RA, Clarke DE. Agonist and antagonist characterization of a putative adrenoceptor with distinct pharmacological properties from theα- andβ-subtypes [J]. Brit J Pharmacol. 1988, 95 (3):723-734.
    [106] Koike K, Takayanagi I, Muramatsu M, et al. Involvement ofβ3-adrenoceptor in the relaxation response in guinea pig taenia caecum [J]. Jpn J Pharmacol. 1994, 66(2):213-220.
    [107] Martin CA, Advenier C.β3-adrenoceptors and airways [J]. Fundam Clin Pharmacol. 1995, 9(2):114-118.
    [108] Berlan M, Galitzky J, Bousquet-Melou A, et al.β3-adrenoceptor-mediated increase in cutaneous blood flow in the dog [J]. JPET. 1994, 268:1444-1451.
    [109] Shen YT, Zhang H, Vatner SF. Peripheral vascular effects ofβ3-adrenergic receptor stimulation in conscious dogs [J]. JPET. 1994, 268:466-473.
    [110] Gauthier C, Tavernier G, Charpentier F, et al. Functionalβ3-adrenoceptor in the human heart [J]. J Clin Invest. 1996, 98(2):556-562.
    [111] Skeberdis VA, Jurevicius J, Fischmeister R.β3-adrenergic regulation of cardiac L-type Ca2+ current in human atrial myocytes [J]. Biophys J. 1999, 76(Pt 2):A343.
    [112] Nahmias C, Blin N, Elalouf JM, et al. Molecular characterization of the mouseβ3-adrenergic receptor: relationship with the atypical receptor of adiposities[J]. EMBO Journal. 1991, 10: 3271-3727.
    [113] Granneman JG, Lahners KN, Chaudhry A. Molecular cloning and expression of the rat beta 3-adrenergic receptor [J]. Mol Pharmacol. 1991. 40(6): 895-999.
    [114] Lenzen G, Pietri-Rouxel F, Drumare MF, et al. Genomic cloning and species-specific properties of the recombinant camine beta3-adrenoceptor [J]. European Journal of Pharmacology. 1998, 363(2-3): 217-227.
    [115] Lelias JM, Kaghad M, Rodreguez M, et al. Molecular cloning of aβ3-adrenergic receptor cDNA[J]. FEBS Letters. 1993, 324: 127-130.
    [116] Piétri-Rouxel F, Lenzen G, Kapoor A, et al. Molecular cloning and pharmacological characterization of the bovine ?3- adrenergic receptor[J]. European Journal of Biochemistry, 1995, 230: 350-358.
    [117] Walston J, Lowe AL, Silver K, et al. The ?3-adrenergic receptor in the obesity and diabetes prone rhesus monkey is very similar to human and contains arginine at codon 64 [J]. Gene. 1997, 188:207-213.
    [118] Van Spronsen A, Nahmias C, Krief S, et al. The human and mouse ?3-adrenergic receptor genes: promoter and intron/exon structure [J]. European Journal of Biochemistry, 1993, 213: 1117-1124.
    [119] Bensaid M, Kaghad M, Rodriguez M, et al. The rat beta3-adrenergic receptor gene contains an intron [J]. FEBS Letter. 1993, 318:223-226.
    [120] Granneman JG, Lahners KN, Chandley A. Characterization of the human ?3-adrenergic receptor gene [J]. Molecular Pharmacology. 1993, 44: 264-270.
    [121] Granneman JG, Lahners KN. Analysis of human and rodent ?3-adrenergic receptor messenger ribonucleic acids [J]. Endocrinology. 1994, 135: 1025-1031.
    [122] Fève B, Baude B, Krief S, et al. Dexamethasone down-regulates ?3-adrenergic receptors in 3T3-F442A adiposities [J]. Journal of Biological Chemistry. 1992, 267: 15909-15915.
    [123] Krief S, L?nnqvist F, Raimbault S, et al. Tissue distribution of ?3-adrenergic receptor mRNA in man [J]. Journal of Clinical Investigation, 1993, 91:344-349.
    [124] Fève B, Piétri-Rouxel F, El Hadri K, et al. Long-term phorbol ester treatment down-regulates the ?3-adrenergic receptor in 3TF442A adipocytes [J]. Journal of Biological Chemistry, 1995, 270: 10952–10959.
    [125] El Hadri K, Charon C, Pairault J, et al. Down-regulation of ?3-adrenergic receptor expression in rat adipose tissue during fasted/fed transition: evidence for a role of insulin [J]. Biochemical Journal, 1998, 323:359-364.
    [126] Thomas RF, Holt BD, Schwinn DA et al. Long-term agonist exposure induces up-regulation of ?3-AR exposure via multiple cAMP response elements [C]. Proceedings of the National Academy of Sciences, USA, 1992, 89:4490-4494.
    [127] Dixon TM, Daniel KW, Farmer SR, et al. CCAAT/enhancer-binding protein alpha is required for transcription of the beta 3-adrenergic receptor gene during adipogenesis [J]. J Biol Chem. 2001, 276(1): 722-728.
    [128] Susulic VS, LaVallette L, Duzic E, et al. Expression of the human beta (3)-adrenergic receptor gene in SK-N-MC cells is under the control of a distal enhancer [J]. Endocrinology, 2001, 142(5): 1935-1949.
    [129] Wilkie TM, Chen Y, Gilbert DJ, et al. Identification, chromosomal location, and genome organization of mammalian Gprotein-coupled receptors [J]. Genomics. 1993, 18: 175-184.
    [130] Strosberg AD. Association of beta 3-adrenoreceptor polymorphism with obesity and diabetes: current status [J]. Trends in Pharmacological Sciences. 1997, 18: 449-454.
    [131] McFarlane-Anderson N, Bennett F, Wilks R et al. The Trp64Arg mutation of the beta3-adrenergic receptor is associated with hyperglycemia and current body mass index in Jamaican women [J]. Metabolism. 1998, 47: 617-621.
    [132] Widen E, Lehto M, Kanninen T, et al. Association of a polymorphism in the beta3-adrenergic-receptor gene with features of the insulin resistance syndrome in Finns [J]. N Engl J Med. 1995, 333: 348-351.
    [133] Masuo K, Katsuya T, Fu Y et al. Beta2- and beta3-adrenergic receptor polymorphisms are related to the onset of weight gain and blood pressure elevation over 5 years [J]. Circulation. 2005, 111: 3429-3434.
    [134] Morita E, Taniguchi H, Sakau M. Trp64Arg polymorphism in beta3-adrenergic receptor gene is associated with decreased fat oxidation both in resting and aerobic exercise in the japanese male [J]. Experimental Diabetes Research. 2009:1-5.
    [135] Strazzullo P, Iacone R, Sinai A, et al. Relationship of the Trp64Arg polymorphism of theβ3-adrenoceptor gene to central adiposity and high blood pressure: interaction with age. Cross sectional and longitudinal findings of the Olivetti Prospective Heart Study [J]. J Hypertens. 2001, 19: 399-406.
    [136] Hsueh W, Cole SA, Shuldiner AR et al. Interactions between variants in theβ3-adrenergic receptor and peroxisome proliferators activated receptor-γ3 genes and obesity [J]. Diabetes Care. 2001, 24: 672-677.
    [137] Corella M, Guillén M, Portolés O, et al. Gender speciic associations of the Trp64Arg mutation in theβ2-adrenergic receptor gene with obesity-related phenotypes in a Mediterranean population: interaction with a common lipoprotein lipase gene variation [J]. Journal of Internal Medicine 2001: 348-360.
    [138] Higashi K, Ishikawa T, Ito T, et al. Association of a genetic variation in the beta 3-adrenergic receptor gene with coronary heart disease among Japanese[J]. Biochem Biophys Res Commun. 1997, 232 (3):728-730.
    [139] Zafarmand MH, van der Schouw YT, Grobbee DE, et al. T64A polymorphism inβ3-adrenergic receptor gene (ADRB3) and coronary heart disease: a case-cohort study and meta-analysis[J]. Journal of Internal Medicine. 2007, 263:79-89.
    [140] Himms-Hagen J, Ricquier D. Brown Adipose Tissue. In: Bray, G.A., Bouchard, C. And James, W.P.T. (Eds.), Handbook of Obesity [M]. Dekker, New York: 1998.
    [141] Loncar D. Convertible adipose tissue in mice [J]. Cell and Tissue Research. 1991, 266: 149-161.
    [142] Loncar, D. Development of thermogenic adipose tissue [J]. International Journal of Developmental Biology. 1991, 35: 321-333.
    [143] Morroni M, Barbatelli G, Zingaretti MC, et al. Immunohistochemical, ultrastructural and morphometric evidence for brown adipose tissue recruitment due to cold acclimation in old rats [J]. International Journal of Obesity. 1995, 19:126-131.
    [144] Cinti S, Frederich RC, Zingaretti MC, et al. Immunohistochemical localization of leptin and uncoupling protein in white and brown adipose tissue [J]. Endocrinology. 1997, 138: 797-804.
    [145] Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance [J]. Physiol Rev. 2004, 84: 277-359.
    [146] Sell H, Deshaies Y, Richard D. The brown adipocyte: update on its metabolic role [J]. The International Journal of Biochemistry & Cell Biology. 2004, 36: 2098-2104.
    [147] Nedergaard J, Golozoubova V, Matthias A, et al. UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency [J]. Biochimica et Biophysica Acta. 2001.1504: 82-106.
    [148] Lafontan M, Berlan M. Fat cell adrenergic receptors and the control of white and brown fat cell function [J]. Journal of Lipid Research. 1993, 34: 1057-1091.
    [149] Champigny O, Holloway BR, Ricquier D. Regulation of UCP gene expression in brown adipocytes differentiated in primary culture. Effects of a new beta-adrenoceptor agonist [J]. Mol Cell Endocrinol. 1992, 86(1-2): 73-82.
    [150] Himms-Hagen J, Cui J, Danforth E, et al. Effect of CL-316, 243, a thermogenic ?3-agonist, on energy balance and brown and white adipose tissues in rats [J]. American Journal of Physiology. 1994, 266:R1371-1382.
    [151] Kozak UC, Kopecky J, Teisinger J, et al. An upstream enhancer regulating brown-fat-specific expression of the mitochondrial uncoupling protein gene [J]. Molecular and Cellular Biology. 1994, 14, 59-67.
    [152] Roesler WJ, Vandenbark GR, Hanson RW. Cyclic AMP and the induction of eukaryotic gene transcription[J]. J Biol Chem. 1988, 263: 9063-9066.
    [153] Liggett SB, Schwinn DA. Multiple potential regulatory elements in the 5' flanking region of the beta 3-adrenergic receptor [J]. DNA Seq. 1991. 2 (1): 61-63.
    [154] Collins S, Bouvier M, Bolanowski MA, et al. Cyclic AMP stimulates transcription of the ?2-adrenergic receptor gene in response to short term agonist exposure [C]. Proceedings of the National Academy of Sciences, USA. 1989, 86: 4853-4857.
    [155] Antras J, Lasnier F, Pairault J. Beta-adrenergic-cyclic AMP signalling pathway modulates cell function at the transcriptional level in 3T3-F442A adipocytes [J]. Mol Cell Endocrinol. 1991, 82 (2-3): 183-190.
    [156] Mohell N, Connolly E, Nedergaard J. Distinction between mechanisms underlying alpha 1- and beta-adrenergic respiratory stimulation in brown fat cells [J]. Am J Physiol. 1987, 253 (2Pt1): C301-308.
    [157] Obregon MJ, Mills I, Silva JE, et al. Catecholamine stimulation of iodothyronine 5'-deiodinase activity in rat dispersed brown adipocytes [J]. Endocrinology. 1987, 120: 1069-1072.
    [158] Bianco AC, Silva JE. Intracellular conversion of thyroxine to triiodothyronine is required for the optimal thermogenic function of brown adipose tissue [J]. J Clin Invest. 1987, 79: 295-300.
    [159] Bianco AC, Silva JE. Nuclear 3, 5 ,3'-triiodothyronine (T3) in brown adipose tissue: receptor occupancy and sources of T3 as determined by in vivo techniques [J]. Endocrinology. 1987. 120: 55-62.
    [160] Silva JE. Thyroid hormone control of thermogenesis and energy balance [J]. Thyroid. 1995, 5(6):481-492.
    [161] Nicholls DG, Locke RM. Thermogenic mechanisms in brown fat [J]. Physiological Reviews. 1984, 64:1-64.
    [162] Commins SP, Watson PM, Padgett MA, et al. Induction of uncoupling protein expression in brown and white adipose tissue by leptin [J]. Endocrinology. 1999, 140: 292-300.
    [163] Arvaniti K, Ricquier D, Champigny O, et al. Leptin and corticosterone have opposite effects on food intake and the expression of UCP1 mRNA in brown adipose tissue of lep (b)/lep (ob) mice[J]. Endocrinology.1998, 139: 4000-4003.
    [164] Klingenspor M. Cold-induced recruitment of brown adipose tissue Thermogenesis [J]. Experimental Physiology. 2003, 88(1): 141-148.
    [165] Himms-Hagen J. Brown adipose tissue thermogenesis and obesity [J]. Progress in Lipid Research. 1989, 28: 67-115.
    [166] Alexander G, Williams D. Shivering and non-shivering thermogenesis during summit metabolism in young lambs [J]. Journal of physiology (London). 1968, 198: 251-276.
    [167] Alexander G, Bennett JW, Gennell RT. Brow adipose tissue in the newborn calf(Bos Taurus)[J]. Journal of Physiology. 1975, 244:223-234.
    [168] Buckley BA, Baker JF, Dickerson GE, et al. Body composition and tissue distribution from birth to 14 months for three biological types of heifers [J]. Journal of Animal Science. 1990, 68:3109-3123.
    [169] Carstens GE. Cold thermoregulation in the newborn calf [J]. Vet Clin North Am Food Anim Pract. 1994. 10: 69-106.
    [170] Himms-Hagen J. Brown adipose tissue thermogenesis: Interdisciplinary studies. FASEB J. 1990. 4:2890-2898.
    [171] Carstens GE, Mostyn PC, Lammoglia MA, et al. Genotypic effects on norepinephrine-induced changes in thermogenesis, metabolic hormones, and metabolites in newborn calves [J]. J. Anim. Sci. 1997, 75:1746-1755.
    [172] Godfrey RW, Smith SD, Guthrie MG, et al. Physiological responses of newborn Bos indicus and Bos indicus×B?os taurus calves after exposure to cold [J]. J. Anim. Sci. 1991, 69:258-263.
    [173] Smith SB, Carstens GE, Randel RD, et al. Brown adipose tissue development and metabolism in ruminants [J]. J. Anim. Sci. 2004. 82:942-954.
    [174] Stott AW, Slee J. The effect of litter size, sex, age, body weight, dam age and genetic selection for cold resistance on the physiological responses to cold exposure of Scottish Blackface lambs in a progressively cooled water bath [J]. Animal production. 1987, 45:477-491.
    [175] Slee J, Simpson SP, Woolliam JA. Metabolic rate responses to cold and to exogenous noradrenaline in newborn Scottish Blackface lambs genetically selected for high or low resistance to cold [J]. Animal Production. 1987, 45: 69-74.
    [176] Lowell BB, Susulic VS, Grujic D, et al. Using transgenic and gene knockout techniques to assessβ3 adrenoreceptor function. In: Theβ3-Adrenoreceptor (Ed. by Strosberg A.D.), London: Taylor and Francis, 2000.
    [177] Forrest R. Polymorphism of the ovineβ3-adrenergic receptor gene [D]. Lincoln University, New Zealand, 2002:26.
    [178] Watanabe M, Yamamoto T, Mori C, et al. Cold-induced changes in gene expression in brown adipose tissue: implications for the activation of thermogenesis [J]. Biol. Pharm. Bull. 2008, 31(5):775-784.
    [179] Daikoku T, Shinohara Y, Shima A. Specific elevation of transcript levels of particular protein subtypes induced in brown adipose tissue by cold exposure [J]. Biochimica et Biophysica Acta.2000, 1457: 263-272.
    [180] Watanabe M, Yamamoto T, Mori C, et al. Cold-induced changes in gene expression in brown adipose tissue: implications for the activation of thermogenesis [J]. Biol. Pharm. Bull.2008, 31(5) 775-784.
    [181] Griffiths M, Payne PR, Stunkard AJ, et al. Metabolic rate and physical development in children at risk of obesity [J]. Lancet. 1990,336:76-78.
    [182] Rothwell NJ, Stock MJ. Diet-induced thermogenesis [J]. Advances in Nutritional Research. 1983, 5: 201-220.
    [183] Danforth EJR, Himms-Hagen J. Obesity and diabetes and the ?3-adrenergic receptor [J]. European Journal of Endocrinology.1997, 136: 362-365.
    [184] Rothwell NJ, Stock MJ. A role for brown adipose tissue in diet-induced thermogenesis [J]. Nature. 1979, 281(5726): 31-35.
    [185] Leblanc J, Labrie AA. Possible role for palatability of the food in diet-induced thermogenesis [J]. International Journal of Obesity and Related Metabolic Disorders. 1997, 21: 1100–1103.
    [186] Himms-Hagen J.β3-Adrenoreceptors in brown and white adipocytes. In, AD Stroberg (Ed.), Theβ3-Adrenoreceptors. London: Taylor and Francis, 2000.
    [187] Melnyk A, Harper ME, Himms-Hagen J. Raising at thermoneutrality prevents both obesity and hyperphagia in brown adipose tissue (BAT)-ablated transgenic mice [J]. American Journal of Physiology. 1997, 272: R1088- 1093.
    [188] Alexander G, Williams D. Teat seeking activity in newborn lamb: the effect of cold [J]. Journal of Agricultural Science (Combridge). 1966, 67: 181-189.
    [189] Olsen DP, Parker CF, Lea Master BK, et al. Responses of pregnant ewes and young lambs to cold exposure [J]. Canadian Veterinary Journal. 1987, 28:181-186.
    [190] Collins S, Daniel KW, Rohlfs EM, et al. Impaired expression and functional activity of the beta 3-and beta 1- adrenergic receptors in adipose tissue of congenitally obese (C57BL/6J ob/ ob) mice [J]. Molecular Endocrinology. 1994, 8:518-527.
    [191] Charon C, Krief S, Diot-Dupuy F, et al. Early alteration in the brown adipose tissue adenylate cyclase system of pre-obese Zucker fa/fa rat pups: decreased G-proteins and beta3-adrenoceptor activities [J]. Biochemical Journal (London). 1995, 312(3):781-788.
    [192] Collins S, Daniel KW, Rohlfs EM. Depressed expression of adipocyteβ-adrenergic receptor is a common feature of congenital and diet-induced obesity in rodents [J]. International Journal of Obesity. 1999, 23: 669-677.
    [193] Strosberg AD. Structure and function of theβ3-adrenergic receptor [J]. Animal review of Pharmacology and Toxicology. 1997,37:421-450.
    [194]谭宁,李浪,陈纪言,等.中国人群β3-肾上腺素能受体基因Tpr64Arg突变与冠心病关系的研究.中华心血管病杂志. 2003,31:38-41.
    [195] Kogure A,Yohsida T,Skanae N,et al. Snyegric effect of polymorphism in uncopulnig protein 1 and beta 3- adrenergic receptor gene on weight loss in obese Japanese [J]. Dibetologia. 1998, 4l: 1399.
    [196] Urhammer SA,Hansen T, Borch JK, et al. Studies of the synergistic effect of the Trp/Arg64 polymorphism of the beta 3- adrenergic receptor gene and the -3826 A->G variant of the uncoupling protein-1 gene on feature of obesity and insulin resistance in a population-based sample of 379 young Danish subjects [J]. J Clin Endocrinol Metab. 2000, 85:3151-3154.
    [197] Benecke H, Topak H, von zur Muhlen A, et al. A study on the genetics of obesity: influence of polymorphisms of the bate3-adrenergic receptor and insulin receptor substrate 1 in relation to weight loss, waist to lip ratio and frequencies of common cardiovascular risk factors [J]. Exp Clin Endocrinol Diabetes. 2000, 108:86-92.
    [198] Hsueh WC, Cole SA, Shuldiner AR, et al. In eractions between variants in theβ3-adrenergic receptorand peroxisome proliferators-activate receptor-γ2 genes and obesity [J]. Diabetes Care. 2001, 24:672-677.
    [199] Aoyama M, Shidoji Y, Saimei M, et al. Phenotypic linkage between single-nucleotide polymorpism of beta3-adrenergic receptor gene and NADH dehydrogenase subunit-2 gene, with special reference to eating behavior [J]. Biochem Biophys Res Commun. 2003, 309:261-265.
    [200] Koda M, Ando F, Niino N, et al. Association of cholecystokinin I receptor and beta3-adrenergic receptor polymorphisms with midife weight gain [J]. Obesity research. 2004, 12:1212-1216.
    [201] Sui Y, Weng JP, Xiu LL, et al. Additive effects of the variants in the beta3-adrenergic receptor and uncoupling protein-2 genes on obesity in Chinese [J]. Chinese Journal of Medical genetics. 2004, 21:229-232.
    [202] Horrell A, Forrest RH, Zhou H, et al. Association of the ADRB3 gene with birth weight and growth rate to weaning in New Zealand Romney sheep. Anim Genet. 2009, 40(2):251.
    [203] Forrest RH,Hickford JGH, Frampton C. Polymorphism at the ovine ?3-adrenergic receptor locus (ADRB3) and its association with lamb mortality. J Anim Sci 2007.85:2801-2806.
    [204] Yang G, Zhou H, Hu J, et al. Extensive diversity of the ADRB3 gene in Chinese sheep identified by PCR-SSCP. Biochem Genet. 2009, 47(7-8):498-502.
    [205] Byun SO, Fang Q, Zhou H, et al. Rapid genotyping of the ovine ADRB3 gene by polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP). Molecular and Cellular Probes. 2008, 22:69-70.
    [206] Jiang Hu, Huitong Zhou, Anna Smyth, et al. Polymorphism of the bovine ADRB3 gene. Mol Biol Rep. 2009, Epub.
    [207] Chikuni K, Horiuchi A, Ide H, et al. Nucleotide sequence polymorphisms of beta1-, beta2-, and beta3-adrenergic receptor genes on Jinhua, Meishan, Duroc and Landrace pigs. Animal Science Journal. 2008, 79: 665-672.
    [208] Cieslak J, Nowacka-Woszuk J, Bartz M, et al. Association studies on the porcine RETN, UCP1, UCP3 and ADRB3 genes polymorphism with fatness traits. Meat Science. 2009, 83: 551-554.
    [209] Gufrff GA. Netural, caldium-activated proteinase from the soluble fraction of rat brain [J]. J Biol Chem. 1964, 239:149-55.
    [210] Cottin P, Vidalenc PL, Ducastaing A. Ca2+-dependent association between a Ca2+-activated neutral proteinase (CaANP) and its specific inhibitor [J]. FEBS Lett. 1981,136 (2):221-224.
    [211] Sorimachi H, Suzuki K. The structure of calpain [J]. J Biochem. 2001, 129:653-664.
    [212] Huang Y, Wang KKW. The calpain family and human disease [J]. Trend Mol Med. 2001, 7:355-362.
    [213]隋立森,刘恩重.依钙蛋白酶及其抑制剂的研究近况[J].哈尔滨医科大学学报. 2000, 34(3): 230-232.
    [214] Tompa P, Emori Y, Sorimachi H, et al. DomainⅢof calpain is a Ca2+-regulated phospholipid-binding domain [J]. Biochem Biophys Res Commun, 2001, 280: 1333-1339.
    [215] Suzuki K, Hata S, Kawabata Y, et al. Structure, Activation, and Biology of Calpain. Diabetes. 2004, 53:s12-s18.
    [216] Goll DE, Thompson VF, Li HQ, et al. The Calpain System [J]. Physiol Rev. 2003, 83: 731-801.
    [217] Baki A, Alexa A, Tompa P, et al. Autolysis parallels activation ofμ-calpain [J]. Biochem J, 1996, 318: 897-901.
    [218] Suzuki K, Sorimachi H. A novel aspect of calpain activation [J]. FEBS Lett. 1998, 433: 1-4.
    [219] Gilter D, Spira ME. Real time imaging of calcium-induced localized proteolytic activity after axotomy and its relation to growth cone formation [J]. Neuron. 1998, 20:1123-1135.
    [220] Ilian MA, Morton JD, Kent MP, et al. Intermuscular variation in tenderness: Association with the ubiquitous and muscle specific calpains [J]. J.Anim.Sci. 2001, 79:122-132.
    [221] Koohmaraie M, Shackelford DD, Wheeler TL, et al. A muscle hypertrophy condition in lamb (callipyge): characterization of effects on muscle growth and meat quality traits [J]. J Anim Sci. 1995 73: 3596-3607.
    [222] Delgado EF , Geesin GH , Marchello JA ,et al . The calpain system in three muscles of normal and callipyge sheep [J]. J Anim Sci. 2001, 79:398-412.
    [223] Wingertzahn MA. Proceedings of the society for experimental [J]. Biology and Medicine. 1998, 218(3):244-250.
    [224] Tanaka K, Yoshimura T, Ichihara A, et al. Molecular organization of a high molecular weight multi-protease complex from rat liver [J]. J Mol Biol. 1988, 203(4):985-996.
    [225]王金勇.钙蛋白系统对肉嫩度的改善[J].四川畜牧兽医,2004(5): 34-35.
    [226] Koohmaraie MSD, Shackelford NE, Muggli-Cockett, et al. Effect of theβ-adrenergic agonist L on muscle growth, endogenous proteinase activities, and postmortem proteolysis in wether lambs [J]. J Anim Sci. 1991, 69: 4823-4835.
    [227] Duguez S, Bartoli M, Richard I. Calpain3: a key regulator of the sarcomere. FEBS journal. 2006, 273:3427-3436.
    [228] Ma H, Fukiage C, Azuma M, et al. Cloning and expression of mRNA for calpain Lp82 from rat lens: splice variant of p94 [J]. Invest Ophtalmol Vis Sci. 1998, 39: 451-461.
    [229] Nakamura Y, Fukiage C, Shih M, et al. Contribution of calpain Lp82-induced proteolysis to experimental cataractogenesis in mice [J]. Invest Ophthalmol Vis Sci. 2000, 41:1460-1466.
    [230] Nakamura Y, Fukiage C, Ma H, et al. Decreased sensitivity of lens-specific calpain Lp82 to calpastatin inhibitor [J]. Exp Eye Res. 1999, 69: 155-162.
    [231] Kinbara K, Sorimachi H, Ishiura S, et al. Skeletal muscle specific calpain, p49: structure and physiological function. Biochem Pharmacol. 1998, 56:415-20.
    [232] Rey MA, Davies PL. The protease core of the muscle-specific calpain, p94, undergoes Ca2+ dependent intramolecular autolysis. FEBS Lett. 2002, 532: 401-406.
    [233] Herasse M, Ono Y, Fougerousse F, et al. Expression and functional characteristics of calpain 3 isoforms generated through tissue-specific transcriptional and posttranscriptional events [J]. Mol Cell Biol. 1999, 19: 4047-4055.
    [234] Sorimachi H, Toyama-Sorimachi N, Saido TC, et al. Muscle specific calpain, p94, is degraded by autolysis immediately after translation, resulting in disappearance from muscle. J Biol Chem. 1993, 268: 10593-10605.
    [235] Richard I, Broux O, Allamand V, et al. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell. 1995, 81:27-40.
    [236] Labeit S, Kolmerer B, Linke W. The giant protein titin: emerging roles in physiology and pathophysiology [J]. Circulation Research.1997, 80: 284-290.
    [237] Ilian MA, Morton JD, Kent MP, et al. Intermuscular variation in tenderness association with theubiquitous and muscle-specific calpain [J]. Journal of Animal Science. 2001a, 79:122-132.
    [238] Ilian MA, Morton JD, Bekhit A, et al. Effect of preslaughter feed withdrawal period on longissimus tenderness and the expression of calpains in the ovine [J]. Journal of Agricultural and Food Chemistry. 2001b, 49: 1990-1998.
    [239] Ilian MA, Bekhit A and Bickerstaffe. 2003. The relationship between meat tenderization myofibril fragmentation and autolysis of calpain3 during post-mortem aging [J]. Meat Science. 2003, 66:387-397.
    [240] Stevenson BJ, Morton JD, Ilian MA, et al. Effect of muscle stretching on titin and calpain3: implication for tenderness [C]. In Proceedings 48th International Congress of Meat Science and Technology. Rome, Italy, 2002:598-599.
    [241] Ilian MA, Bekhit A, Stevenson B, et al. Up- and down-regulation of longissimus tenderness parallels changes in the myofibril-bound calpain3 protein [J]. Meat Science. 2004. 67: 433-445.
    [242] Parr T, Sensky PL, Scothern GP, et al. relationship between skeletal muscle-specific calpain and tenderness of conditioned porcine longissimus muscle [J]. Journal of Animal Science. 1999, 77: 661-668.
    [243] Zhou H, Hickford J.G.H, Fang Q. Single nucleotide polymorphisms of the ovine calpain 3 (CAPN3) gene [J]. Molecular and Cellular Probes. 2007, 21: 78-79.
    [244] Elce JS ,Methods in Molecular Biology: Calpain Methods and Protocols[M], Totowa, NJ Humana:2000.
    [245] Arthur JSC, Crawford C, Investigation of the interaction of calpain with phospholipids, Biochim. Biophys. 1996,1293:201-206.
    [246] Moldveanu T, Hosfield CM, Lim D, et al: A Ca2+switch align the active site of calpain. Cell. 2002, 108:649-660.
    [247] Elce JS, Davies PL, Hegadorn C, et al. The effects of truncation of the small subunit on m-calpain activity and heterodimer formation [J]. J. Biochem. 1997, 326: 31-38.
    [248] Sorimachi H, Amano S, Ishiura S, et al. Primary sequences of ratμ-calpain large and small subunits are respectively, moderately and highly similar to those of human [J]. Biochim Biophys.1996, Acta 1309: 37-41.
    [249] Emori Y, Kawasaki H, Imajoh S, et al. Isolation and sequence analysis of cDNA clones for the small subunit of rabbit calcium-dependent protease [J]. J. Biol.Chem.1986, 261:9472-9476.
    [250] Ohno S, Emori Y, Suzuki K. Nucleotide sequence of a cDNA coding for the small subunit of human calcium-dependent protease [J]. Nucleic Acids Res.1986, 14:5559.
    [251] Sakihama T, Kakidani H, Zenita K, et al. A putative Ca2+ binding protein: structure of the light subunit of porcine calpain elucidated by molecular cloning and protein sequence analysis [J]. Proc. Natl. Acad. Sci. U.S.A.1985, 82:6075-6079.
    [252] Dr?gemüller C, Leeb T. Molecular characterization of the porcine gene CAPNS1 encoding the small subunit 1 of calpain on SSC6q1.1-->q1.2 [J]. Cytogenet Genome Res. 2002, 98(2-3):206-209.
    [253] McCelland P, Lash JA, Hathaway DR. Identification of major autolytic cleavage sites in the regulatory subunit of vascular calpain: a comparison of partial amino-terminalsequences to deduced sequence from complementary DNA [J]. J. Biol. Chem. 1989, 264: 17428-17431.
    [254] Zhang HM,Denise SK. Ax RL. Rapid communication: a novel DNA Polymorphism of the bovinecalpain gene detected by PCR-RFLP analysis [J]. J Anim Sci.1996, 74(6):1441.
    [255] Zhou H, Hickford JGH, Fang Q. A two-step procedure for extracting genomic DNA from dried blood spots on filter paper for PCR amplification [J]. Anal Biochem. 2006, 354:159-161.
    [256] Byun SO, Fang Q, Zhou H, et al. An effective method for silver-staining DNA in large numbers of polyacrylamide gels. Anal. Biochem. 2009, 385:174-175.
    [257] Cai X, Chen H, Lei C, et al. mtDNA Diversity and genetic lineages of eighteen cattle breeds from Bos taurus and Bos indicus in China. Genetica. 2007, 131:175-183.
    [258]张容昶.中国的牦牛.兰州:甘肃省科学技术出版社,1989.
    [259] Chen JM, Fe′rec C, Cooper DN. A systematic analysis of disease-associated variants in the 30 regulatory regions of human protein-coding genes I: general principles and overview [J]. Hum Genet. 2006, 120:1–21.
    [260] Cheong HS, Yoon DH, Park BL, et al. A single nucleotide polymorphism in CAPN1 associated with marbling score in Korean cattle [J]. BMC Genetics.2008, 9:33
    [261]邹荣婕,昝林森,姜向阳,张佳兰,申光磊.中国荷斯坦奶牛LOX21基因3′-UTR的PCR-SSCP分析[J].西北农林科技大学学报(自然科学版). 2007, 35(12): 16-20.
    [262]昝林森,邹荣婕,田万强,姜向阳.中国荷斯坦奶牛DGAT1基因3′-UTR的PCR-SSCP分析[J].西北农业学报. 2007, 16(4): 13-20.
    [263] Goll DE, Thompson VF. The calpain system. Physiol Rev.2003, 83:731-801.
    [264]陈宏,邱怀,詹铁生,等.中国四个地方黄牛品种性染色体多态性的研究[J].遗传,1993,15(4):14-17.
    [265]雷初朝,陈宏,杨公社,等.中国部分黄牛品种mtDNA遗传多态性研究[J].遗传学报. 2004, 31 (1): 57-62.
    [266]刘榜.家畜育种学[M].北京:中国农业出版社, 2007.
    [267] Lee BK, Lin BF, Croaker BA, et al. Association of somatotropin (bst) gene polymorphism at the 5th exon with selection for milk yield in Holstein cows [J]. Domestic animal endocrinology. 1996, 13(4):373-381.
    [268] Aggrey SE, Yao J, Sabour MP, et al. Markers within the regulatory region of the growth hormone receptor gene and their association with milk-related traits in Holsteins[J]. The Journal of Heredity. 1999, 90(1):148-151.
    [269] Martinez-Royo A, Jurado JJ, Smulders JP, et al. A deletion in the bone morphogenetic protein 15 gene causes sterility and increased prolificacy in Rasa Aragonesa sheep [J]. Animal Genetics.2008, 39: 294-297.
    [270] Bellows RA, Short, RE, Anderson DC, et al. Cause and effect relationships associated with calving difficulty and calf birth weight [J]. J. Anita. Sci.1971, 33:407.
    [271] Woldehawariat G, Talamantes MA, Petty RR, et al. A summary of genetic and environmental statistics for growth and conformation characters in young beef cattle. (II Ed.). Texas Agr. Exp. Sta., Dept.Tech. Rep.1977, No. 103.
    [272] Vermorel M, Dardillat C, Vernet J, et al .Energy metabolism and thermoregulation in the newborn calf [J]. Ann Rech Vet. 1983,14(4):382-389.
    [273] Gunn TR, Gluckman PD. The endocrine control of the onset of thermogenesis at birth [J]. Bailie′re’s Clinical Endocrinology and Metabolism. 1989, 3:869-86.
    [274] Urhammer SA, Clausen JO, Hansen T, et al. Insulin sensitivity and body weight changes in youngwhite carriers of the codon 54 amino acid polymorphism ofβ3-adreenergic receptor gene [J]. Diabetes. 1996, 45(8): 1115-1120.
    [275] Kaps M, Herring WO, Lamberson WR. Genetic and environmental parameters for mature weight in Angus cattle [J]. Journal of Animal Science. 1999, 77(3):569-574.
    [276] Meyer, K. Covariance matrices for growth traits of Australian Polled Hereford Cattle [J]. Anim. Prod. 1993, 57:374?5.
    [277] Fiss CF, Wilton JW. Contribution of breed, cow weight, and milk yield to the traits of heifers and cows in four beef breeding systems [J]. J. Anim. Sci. 1992, 70:3686-3696.
    [278] MacNeil MD, Newman S, Enns RM, et al. Relative economic values for Canadian beef production using specialized sire and dam lines [J]. Can. J. Anim. Sci. 1994, 74:411-417.
    [279] Sasaki N, Uchida E, Niiyama M, et al. Anti-obesity effects of selective agonists to theβ3-adrenergic receptor in dogs-I: The presence of canine 3-adrenergic receptor and in vivo lipomobilization by its agonists. Journal of Veterinary Medical Science. 1998a, 60(4):459-463.
    [280] Sasaki N, Uchida E, Niiyama M, et al. Anti-obesity effects of selective agonists to theβ3-adrenergic receptor in dogs-Ⅱ: Recruitment of thermogenic brown adipocytes and reduction of adiposity after chronic treatment with aβ3-adrenergic agonist. Journal of Veterinary Medical Science. 1998b, 60(4):465-469.
    [281] Mersmann HJ. Overview of the effects of beta-adrenergic receptor agonists on animal growth including mechanisms of action [J]. J Anim Sci. 1998, 76(1):160-172.
    [282] Reverter A, Johnston DJ, Graser HU, et al. Genetic analyses of live-animal ultrasound and abattoir carcass traits in Australian Angus and Hereford cattle [J]. J Anim Sci. 2000, 78:1786-1795.
    [283] Williams JL, Eggen A, Ferretti L, et al. A bovine whole-genome radiation hybrid panel and outline map [J]. Mamm Genome. 2002, 13: 469-474.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700