中国对虾(Fenneropenaeus chinensis)基因组SNP标记的开发与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单核苷酸多态性(single nucleotide polymorphisms, SNPs)被认为是很有应用前景的分子标记技术。本研究在中国对虾(Fenneropenaeus chinensis)转录组454高通量GS FLX系统大规模测序的基础上,依据预测的SNP位点设计引物,利用四引物扩增受阻突变体系PCR(tetra-primer amplification refractory mutation system PCR, Tetra-primer ARMS-PCR),对单核苷酸突变进行检测。利用开发的SNP标记,以F_1家系为作图群体,构建了中国对虾遗传连锁图谱并对相关生长性状体长和体重进行了QTL分析。本研究的主要结果如下:
     1、完成了中国对虾转录组454高通量测序、contig的拼装和SNP位点的预测,该项在国家人类基因组南方研究中心帮助下完成。首先设计了80组ARMS-PCR引物,优化了四引物ARMS-PCR的扩增条件,为大规模引物设计筛选奠定了基础。其中有20组引物得到良好的分型效果。利用20组tetra-primer ARMS–PCR SNP引物对中国对虾6个家系共180个中国对虾个体基因组DNA进行扩增,均表现出多态性并分型成功。有效等位基因数分布范围1.127~1.993,平均1.600。期望杂合度和观测杂合度分布范围分别为0.505~0.609和0.373~0.487,多态信息含量分析显示20个位点的PIC值范围为0.145~0.373,低于标准值0.5,对于一个只有两个等位片段的标记或基因来说,多态信息含量较高,可以作为分子标记。通过哈迪-温博格平衡检验,结果显示只有8个群体位点明显偏离(P<0.05),93.3%群体位点符合哈迪-温博格平衡。表明四引物扩增受阻突变体系聚合酶链式反应是SNP基因分型的一种可行方法,可在中国对虾SNP遗传图谱构建、重要性状QTL定位以及分子标记辅助育种等研究中应用。
     2、构建了中国对虾父母本的遗传连锁图谱。共设计了800组tetra-primerARMS-PCR引物,能扩增出目的产物的引物中,经过PCR扩增、琼脂糖凝胶电泳检测,最终筛选出能扩增出不同基因型PCR产物的tetra-primerARMS-PCR引物310组。对作图群体的筛选表明,310组引物中符合中国对虾遗传连锁图谱构建的tetra-primerARMS-PCR引物200组。其中母本标记为119组,父本标记为115组。分别构建了中国对虾父母本的遗传连锁图谱,覆盖率分别为51.94%和53.77%。整合后的中国对虾连锁图谱包含16个连锁群,每个连锁群标记数6~24,共有180个标记,平均每个连锁群上有11.5个。连锁群长度范围36.3~106.8cM,图谱总长度是899.3cM,图谱平均间隔是5.2cM。
     对180个SNP标记在作图群体中的分型结果进行分析,有效等位基因数分布范围1.041~1.993,期望杂合度和观测杂合度分布范围分别为0.067~0.772和0.169~0.657,最小等位基因频率分布范围为0.021~0.492,多态信息含量分布范围为0.145~0.481,通过哈迪-温博格平衡检验,显示171个位点(95%)符合哈迪-温博格平衡。
     3、中国对虾家系体长、体重性状的测量值都显示出连续变异的特点,显示这些与生长相关的性状都是典型的数量性状或者多基因遗传。利用所构建的家系进行相关性状的QTL定位,在图谱中仅初步定位了1个与体重性状相关的QTL区间,分布在LG16连锁群上。利用最小二乘法对标记座位与中国对虾体重、体长性状进行连锁显著性检验,在180个SNP座位中,与体重显著相关的SNP位点有2个,分别是C2904-168和C12871-235。
     在中国对虾转录组454高通量测序GS FLX系统大规模测序的基础上,依据预测的SNP位点设计引物,通过四引物扩增受阻突变体系PCR技术(Tetra-primer ARMS-PCR)进行SNP位点多态性的验证,建立简便快捷的中国对虾SNP分型方法。验证了SNP分子标记构建中国对虾遗传连锁图谱的可行性,并构建了包含一定数目SNP分子标记的遗传连锁图谱。为中国对虾重要经济性状的QTL定位,早期鉴定具有优良性状的个体,筛选优良亲本,从而加快育种进程,缩短育种周期,进行分子标记辅助育种奠定基础。
Fenneropenaeus chinensis is a commercially important farmed species in China since the 1970s. Since the development of molecular biology techniques in the early 1990s, DNA markers have been widely applied to the structural and functional analysis of important genes, the analysis of population genetic structure, development of genetic linkage map, marker-assisted selection and QTL analysis. The purposes of this study were to identify the facticity of putative SNPs with amplification refractory mutation system (ARMS)-PCR method. Tetra-primer amplification refractory mutation system PCR (Tetra-primer ARMS PCR) technique is one of the better methods for SNP genotyping because of the lower cost and convenience.
     1. Tetra-primer ARMA-PCR is introduced to investigate single nucleotide polymorphisms (SNPs) genotyping in Chinese shrimp (Fenneropenaeus chinensis) with 80 putative SNPs locus. For a SNP locus, 2 allele specific inner primers which their 3 ends matched to the two alleles and 2 flanking outer primers were designed, respectively. Primers were designed to amplify fragments of variying sizes for each allele band in order for them to be easily resolved using agarose gel electrophoresis. The SNP was successfully genotyped as PCR were conducted with Mg~(2+) 1.5mmol/L, dNTP 0.2mmol/L, Taq polymerase 0.5U, inner/outer primers 4/1 at annealing temperature in Ta and following touchdown profiles. 20 out of the 80 tetra-primer ARMA-PCR primer sets were validated and the outer and the expected inner bands were amplified. Homozygous and heterozygous were detected by agarose gel and the genotypes were obtained.
     Twenty SNP tetra-primer ARMA-PCR primer sets were validated and used to investigate the genetic structure of six selected families of marine shrimp F. chinensis. The effective number of alleles ranged from 1.127 to 1.993, with an average value of 1.600. The average values of expected and observed heterozygosities of the SNPs ranged from 0.505~0.609 and 0.373~0.487, respectively. Polymorphism information content (PIC) values ranged from 0.145 to 0.373. Among 120 population-locus cases (six populations×twenty loci), only 8 (6.7%) showed significant deviation (P<0.05), while the other 112 (93.3%) were in Hardy-Weinberg equilibrium (HWE) (P>0.05). The frequencies of minor alleles ranged from 0.378 to 0.497.
     2. Three hundred and ten SNP tetra-primer ARMA-PCR primer sets were validated of eight hundred primers and the polymorphic SNP primers were two hundred sets between the parents. The polymorphic markers presented in this study provide a useful tool for population genetics, pedigree analysis, linkage map construction and marker-assisted selection (MAS) of Fenneropenaeus chinensis. The genetic linkage map of Fenneropenaeus chinensis was constructed using 200 SNP markers. Linkage map was performed using one F_1 family, and a composite linkage map was generated by incorporating map information from the male and female map. The composite linkage map contained 180 markers covering 899.3cM with an average spacing of 5.2cM. The number of linkage groups in the intergrated linkage map was 16.
     One hundred and eighty SNP tetra-primer ARMA-PCR primer sets were validated and used to investigate the genetic structure of F_1 family. The effective number of alleles ranged from 1.041 to 1.962. The values of expected and observed heterozygosities of the SNPs ranged from 0.067~0.772 and 0.169~0.657, respectively. Polymorphism information content (PIC) values ranged from 0.135 to 0.481. The MAF ranged from 0.021 to 0.492.
     3、A GLM procedure was used to analyze the correlation between the 180 SNPs and body weight. Results uncovered that C2904-168 and C12871-235 had a significant impact on body weight. The detection and location of QTL were performed based on map. One putative QTL (LOD≥2.0) associated with the body weight was detected and located in the male map LG16. The location of QTLs with the growth would be very useful for molecular-assisted selection and map-based cloning of functional genes.
     The results indicated that tetra-primer ARMA-PCR is a simple, rapid and efficient method for SNP genotyping which make it useful in a broad aspects of Fenneropenaeus chinensis genetic and breeding studies. The genetic linkage map of Fenneropenaeus chinensis was constructed using SNP markers. In summary, the SNPs study of Fenneropenaeus.chinensis is encouraging and suggesting that SNP markers have been useful for genetic and breeding studies in Fenneropenaeus. chinensis.
引文
[1] Alain V, Denis M, Magali SC, AndréE. A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol, 2002, 34: 275-305.
    [2] Aranishi F, Okimoto T, Izumi S. Identification of gadoid species(Pisces, Gadidae) by PCR-RFLP analysis. J Appl Genet, 2005, 46(1): 69-73.
    [3] Barbazuk W. B., Emrich S. J., Chen H. D., Li L., Schnable P. S.. SNP discovery via 454 transcriptome sequencing. The Plant Journal, 2007, 51: 910-918.
    [5] Benjamin D H, John F C, Lisa A C, Joseph B M. High-Resolution Characterization of Linkage Disequilibrium Structure and Selection of Tagging Single Nucleotide Polymorphisms: Application
    [6]Bo Dong, Jian-Hai Xiang. Discovery of genes involved in defense/immunity functions in a haemocytes cDNA library from Fenneropenaeus chinensis by ESTs annotation. Aquaculture, 2007, 272: 208–215
    [7]Bostein D, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32(3): 314-31.
    [8]Brookes A, Day I. SNP attack on complex traits. Nat Genet, 1998, 20(3): 217-218. Brumfield R T, Beerli P, Nickerson D A, Edwards S V. The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol Evol, 2003, 18: 249-256.
    [9]C1aire L S,Joanne K,Lee M B. A central resource for accurate allele frequency estimation from pooled DNA genotyped on DNA microarrays. Nucleic Acids Research, 2005, 33: 3.
    [10]Carl T. W, Gudrun H. R, Cameron N. G, Joshua G. V, Robert J. P. High-Resolution Genotyping by Amplicon Melting Analysis Using LCGreen. Clinical Chemistry, 2003, 49(6): 853–860.
    [11]Cecilia C S, Timothy P S, Ralph T W, et al. Single nucleotide polymorphism discovery in rainbow trout by deep sequencing of a reduced representation library[J].BMC Genom, 2009, 10: 559–566.
    [12]Chow S, Okamoto H, Uozumi, et al. Genetic stock structure of the swordfish(Xiphias gladius) inferred by PCR-RFLP analysis of the mitochondrial DNA control region[J]. Marine Biology, 1997, 127: 359-367.
    [13]Daryl J. S., Robert K., Mariko M., Andrew W. Mining single-nucleotide polymorphisms from hexaploid wheat ESTs. Genome, 2003, 49: 431-437. Du Z Q, Ciobanu D C, Onteru S K, Gorbach D, Mileham A J, Jaramillo G, Rothschild
    [14]M F. A gene-based SNP linkage map for pacific white shrimp, Litopenaeus vannamei. Anim Genet. 2009, 41: 286-294.
    [15]Ellis L A, Taylor C F, Taylor G R. A comparison of fluorescent SSCP and denaturing HPLC for high throughput mutation scanning. Hum Mutat, 2000, 15(6): 556-564.
    [16]Excoffier, L. G. Laval, and S. Schneider. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 2005, 1:47-50.
    [11]Fasano T, Bocchi L, Pisciotta L. Denaturing high-performance liquid chromatography in the detection of ABCA1 gene mutations in familial HDI deficiency. J Lipid Res, 2005, 46(4): 817-822.
    [18]Fischer S G, Lerman L S. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci U S A, 1983, 80(6): 1579-1583.
    [19]Fukushima-Uesaka H, Saito Y, Tohkin M, et al. Genetic variations and haplotype structures of the ABC transporter gene ABCC1 in a Japanese population. Drug Metabolism and Pharmacokinetics, 2007, 22(1):48-60
    [20]Gao, T., Li, J., Wang, Q. et al. Partial sequence analysis of mitochondrial COI gene of t he Chinese shrimp, Fenneropenaeus chinensis. Journal of Ocean University of Qingdao, 2003.12 (3) : 167-170
    [21]Gaudet M, Fara G, Sabatti M. Single-reaction for SNP Genotyping on Agarose Gel by Allele-specific PCR in Black Poplar (Populus nigra L.). Plant Molecular Biology Reporter, 2007, 25: 1-9.
    [22]Glenn K L, Grapes L, Suwanasopee T. SNP analysis of AMY2 and CTSL genes in Ltopenaeus vannamei and Penaeus monodon shrimp. Anim Genet, 2005, 36(3): 235-236.
    [23]Gross R, Nilsson J. Restriction fragment length polymorphism at the growth hormone 1 gene in Atlantic salmon(Salmo salar L.) and its association with weight among the offspring of a hatchery stock. Aquaculture, 1999, 173: 73-80.
    [24]Gudrun H. R, Carl T. W. Sensitivity and Specificity of Single-Nucleotide Polymorphism Scanning by High-Resolution Melting Analysis. Clinical Chemistry, 2004, 50(10):1748–1754.
    [25]Guldberg P, Romano V, Ceratto N. Mutational spectrum of phenylalanine hydroxylase deficiency in Sicily:implications for diagnosis of hyperphenylalaninemia in southern Europe. Hum Mol Genet. 1993, 2(10): 1703-1707.
    [26]Halush M K, Fan J B, Bentley K. Hsie L, Shen N, Weder A, Cooper R, Lipshutz R T, Chakravarti A. Patterns of single nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat Genet, 1999, 22: 239-247.
    [27]Hayashi K. PCR-SSCP: a method for detection of mutations. Getet Anal Tech Appl, 1992, 9(3): 73-79.
    [28]Hongxia Wang, Fuhua Li, Jianhai Xiang. Polymorphic EST–SSR markers and their mode of inheritance in Fenneropenaeus chinensis. Aquaculture, 2005, 249: 107– 114.
    [29]Hu Z, Wang H, Shao M, et al. Genetic variants in MGMT and risk of lung cancer in Southeastern Chinese: a haplotype-based analysis. Human Mutation, 2007, 28(5):431-440.
    [30]Itoi S, Nakaya M, Kaneko G, et al. Rapid identification of eels Anguilla japonica and Anguilla anguilla by polymerase chain reaction with single nucleotide polymorphism-based specific probes. Fish Sci, 2005, 71: 1356-1364.
    [31]Jansen R C, Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics, 1994, 136: 1447-1455.
    [32]Kang J H, Lee S J, Park S R, Ryu H Y. DNA polymorphism in the growth hormone gene and its association with weight in olive flounder paralichthys olivaceus.Fish Sci, 2002, 68: 494-498.
    [33]Kelly J D, Gepts P, Miklas P N, et al. Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic important in bean and cowpea. Field Crops Res, 2003, 82: 135-154
    [34]Kevin MB, J Bradford E, Joan PB. A major zebrafish polymorphism resource for genetic mapping. Genome Biology, 2007, 8(4): R55.
    [35]Kim S , Misra A. SNP genotyping : technologies and biomedical applications.Annu Rev Biomed Eng, 2007, 9: 289-320.
    [36]Kong J, Gao H. Analysis of tandem repeats in the genome of Chinese shrimp Fenneropenaeus chinensis. Chinese Science Bulletin, 2005, 50(14): 1462-1469
    [37]Kosambi D D. The estimate of map distance from recombination values. Ann Eugen, 1944, 12: 172-175.
    [38]Kryuglyak L. The use of a genetic map of biallelic markers in linkage studies. Nat Genet, 1997, 17: 21-24.
    [39]Li Zhaoxia, Li Jian, Wang Qingyin, He Yuying, Liu Ping. AFLP-based genetic linkage map of marine shrimp Penaeus (Fenneropenaeus) chinensis. Aquaculture, 2006, 261: 463-472.
    [40]Little S. ARMS analysis of point mutation. In Taylor G R. (ed.) Laboratory Methods for the Detection of Mutations and Polymorphisms in DNA. CRC press, Boca Raton, F L, 1997, 45-51.
    [41]Liu Bo, Wang Qingyin, Li Jian, Liu Ping, He Yuying. A genetic linkage map of marine shrimp Penaeus (Fenneropenaeus) chinensis based on AFLP, SSR, and RAPD markers. Chinese Journal of Oceanology and Limnology, 2010, 28(4): 815-825.
    [42]Liu S Zh, Xi M G. Development and validation of single nucleotide polymorphism markers in the eastern oyster Crassostrea virginica Gmelin by mining ESTs and resequencing. Aquaculture, 2010, 302: 124–129.
    [43]Liu W T,Mirzabekov A D,Stahl D A.0ptimization of an Oligonucleotide microchip for microbia1 identification studies: a non-equ1ibrium dissociation approach. Environ Microbi0l, 2001, 3(10): 619-629.
    [44]Moen T, Fjalestad K T, Munck H, et al. A multistage testing strategy for detectionof quantitative trait loci affecting disease resistance in Atlantic salmon. Genetics, 2004, 167: 851-858
    [45]Naruse K, Fukamachi S, Mitani H, et al. A detailed linkage map of Medaka, Oryzias latipes: compatative genomics and genome evolution.Genetics, 2000, 154: 1779-1784
    [46] Nguyen M T, Andrew C B, Peter B M, et al. Single nucleotide polymorphisms in the actin and crustacean hyperglycemic hormone genes and their correlation with individual growth performance in giant freshwater prawn Macrobrachium rosenbergii. Aquaculture, 2010, 301: 7–15.
    [47]Oefner P J,Underhill P A. Comparative DNA sequencing by denaturing high-performance liquid chromatography (DHPLC). Am J Hum Genet, 1995, 57(Supp1): A266.
    [48]Ohtsuka M, Makino S, Yoda K, Wada H, Naruse K. et al. Construction of a linkage map of the medaka (Oryzias latipes) and mapping of the Da mutant locus defective in dorsoventral patterning. Genome Res, 1999, 9: 1277-1287.
    [49]Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA, 1989, 86: 2766-2770.
    [50]Orita M, Suzuki Y, Sekiya T. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics, 1989, 5: 874-879.
    [51]Postlethwait J H,Johnson S.Midson C N.et al.J AGenetie Linkage Map for the Zebraftsh. Science, 1994, 264(29): 699-703.
    [52]Pritchard J K, Przeworski M. Linkage disequilibrium in humans: models and data. Am J Hum Genet, 2001, 69: 1-14.
    [53]Prudence M, Moal J, Boudry P, et al. An amylase gene poly morphism is associated with growth differences in the Pacific cupped oyster Crassostrea gigas. Anim Genet, 2006, 37: 348-351.
    [54]Qingli Zhang, Fuhua Lia, Bing Wang, et al. The mitochondrial manganese superoxide dismutase gene in Chinese shrimp Fenneropenaeus chinensis: Cloning,distribution and expression. Developmental and Comparative Immunology, 2007, 31: 429-440
    [55]Quan, J., Lv, X., Zhuang, Z., Dai, J., Deng, J., and Zhang, Y. Low genetic diversity of Penaeus chinensis as revealed by mitochondrial COI and 16s rRNA gene sequences. Biochemical Genetics, 2001, 39: 279-284
    [56]Shirui Dong, Jie Kong, Xianhong Meng, Qingwen Zhang, Tianshi Zhang, Rucai Wang. Microsatellite DNA markers associated with resistance to WSSV in Penaeus (Fenneropenaeus) chinensis. Aquaculture, 2008, 282: 138–141
    [57]Smith C T, Templin W D, Seeb J E, et al. Single nucleotide polymorphisms provide rapid and accurate estimates of the proportions of U.S. and Canadian Chinook salmon caught in Yukon River fisheries. North American J Fish Manag, 2005, 25: 944-953.
    [58]Stickney H L, Schmutz J, Woods L G, et al. Rapid mapping of zebrafish mutations with SNPs and oligonucleotide microarrays. Genome Res, 2002, 12: 1929-1934.
    [59]Sun Zhaoning, Liu Ping, Li Jian, Meng Xianhong, Zhang Xiumei. Construction of a genetic linkage map in Fenneropenaeus chinensis (Osbeck) using RAPD and SSR markers. Hydrobiologia, 2008, 596:133–141.
    [60]Syvanen A C. Accessing genetic variation : genotyping single nucleotide polymorphisms. Nat Rev Genet, 2001, 2: 930-942.
    [61]Talbot WS, Trevarrow B, Halpern ME, Melby AE, Farr G, Postlethwait JH, Jowett T, Kimmel CB, Kimelman D. A homeobox gene essential for zebrafish notochord development. Nature, 1995, 378: 150-157.
    [62]Tao W J, Boulding E G. Association between single nucleotide polymorphisms in candidate genes and growth rate in Arctic charr (Salvelinus alpinus L.). Heredity, 2003, 91: 60-69.
    [63]Thomas M, Ben H, Matthew B, Paul RB, Sissel K, Ben FK, Willie SD, Stig WO, Sigbj?rn L. A linkage map of the Atlantic salmon (Salmo salar) based on EST-derived SNP markers. BMC Genomics, 2008, 9: 223-236
    [64]Tyasi S, Kramer FR. Molecular beacons:probes that fluoresce upon hybridization. Nature Bioteehnol, 1996, 14: 303-308
    [65]Wang H, Elbein SC. Detection of allelic imbalance in gene expression using pyrosequencing. Methods Mol Biol, 2006, 373: 157-176
    [66]Wang Q Y, Li J, Kong J, et al. Seeking better growth and disease resistance for Chinese shrimp. Asian Aquaculture Magazine, 2003. 4:19~21
    [67]WANG W J, ZHANG T Sh, YANG C H, LUAN Sh, KONG J, WANG Q Y. QTL associated with WSSV-resistance and growth-related traits in the Chinese shrimp Fenneropenaeus chinensis. Acta Zoologica Sinica, 2008, 54(6): 1075-1081
    [68]Xin-Jun Du, Xiao-Fan Zhao, Jin-Xing Wang. Molecular cloning and characterization of a lipopolysaccharide andβ-1,3-glucan binding protein from fleshy prawn (Fenneropenaeus chinensis). Molecular Immunology, 2007, 44: 1085-1094
    [69]Xu YX, Zhu ZY, Luo LC, Wang CM, Lin G, Feng F, Yue GH. Characterization of two parvalbumin genes and their association with growth traits in Asian seabass(Lates calcarifer). Anim Genet, 2006, 37: 266-268
    [70]Ye S, Dhillon S, Ke X, Andrew R C. An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res, 2001, 29(17): E88-8
    [71]Yu Shanshan, Kong Xiaoyu, Li Yulong, and Xu Hui. The Complete Sequence of Mitochondrial COII Gene of Fenneropenaeus chinensis and Its Applicability as a Marker for Phylogenetic Analysis. Journal of Ocean University of China, 2007, 6(20): 187-192
    [72]Zhang W, Collins A, Maniatis N, Tapper W, Morton NE. Properties of linkage disequilibrium (LD) maps. Proc Natl Acad Sci USA, 2002, 99: 17004-17007
    [73]Zhu Y. L , Song Q. J., Hyten D. L. et al. Single-nucleotide polymorphisms in soybean. Genetics, 2003, 163 (3): 1123-1134
    [74]卜莹,古卓良,张晓丹,周国华.四引物PCR扩增反应的单管SNP快速测定法.中国生物化学与分子生物学报,2004,20(2):252-256
    [75]邓景耀,叶昌臣,刘永昌.1990.渤、黄海的对虾及其资源管理.北京:海洋出版社.
    [76]董世瑞,孔杰,张庆文,刘萍,孟宪红,王如才.微卫星分型方法进行中国明对虾家系系谱鉴定.海洋学报,2006,28(5):157-161
    [77]高天翔,李健,王清印,刘进贤.中国对虾线粒体16S rRNA基因序列分析.中国水产科学,2003,10(5):359-364
    [78]何玉英,刘萍,李健,等.中国明对虾快速生长选育群体的RAPD分析.海洋水产研究,2005,26(4):8-13
    [79]何玉英,刘萍,李健,王清印.中国对虾与生长性状相关SCAR标记的筛选.海洋与湖沼,2007,38(1):42-48
    [80]孔杰,高焕,于飞,罗坤,王伟继,孟宪红,刘萍,张天时.微卫星三重PCR基因扫描技术在中国明对虾家系标识中的应用.中国水产科学,2007,14(1):59-66
    [81]李朝霞,李健,何玉英,刘萍,王清印.中国对虾人工选育快速生长群体不同世代间的AFLP分析.高技术通讯,2006,16(4):435-440
    [82]李健,高天翔,柳广东,等.中国对虾人工选育群体的同工酶分析.海洋水产研究,2003,24(2):1-8
    [83]李健,刘萍,王清印,李朝霞,孙昭宁,何玉英.中国对虾遗传连锁图谱的构建.水产学报,2008,32(2):161-173
    [84]李莉.长牡蛎的分子标记筛选和遗传图谱构建.中国科学院博士学位论文. 2003.
    [85]李太武,相建海,刘瑞玉.中国对虾cDNA文库的构建.动物学报,1998,l44 (2):237-238
    [86]李晓静,王伟继,孔杰,等.利用中国明对虾单对杂交亲本及其F2群体构建RAPD遗传连锁图谱.中国水产科学,2007,14(5):770-777
    [87]刘萍,何玉英,孙昭宁,李健,王清印.中国对虾生长性状相关遗传标记的筛选与克隆.海洋水产研究,2007,28(8):1-6
    [88]刘萍,李健,何玉英,孔杰,王清印.中国明对虾种质资源研究现状与保护策略.海洋水产研究,2004,25(5):80-85
    [89]刘萍,麦明,王清印,等.中国对虾染色体及核型分析.海洋水产研究,992,13:29-434
    [90]刘萍,孟宪红,孔杰,李健,王清印.中国对虾部分基因组文库构建和微卫星DNA的筛选.高技术通讯, 2004,14(2):87-90
    [91]刘萍,孟宪红,孔杰,庄志猛,马春艳,王清印.中国对虾微卫星DNA多态性分析.自然科学进展,2004,14(2):150-155
    [92]刘振辉,孔杰,刘萍,等. RAPD技术在中国对虾群体鉴别上的应用.海洋学报,2003,24 (4):67-71
    [93]孟鹏,刘晓敏,王伟继,孔杰,李晓静,王清印.中国对虾家系水平遗传多样性的AFLP分析.海洋水产研究,2008,29(3):21-26
    [94]孟宪红,孔杰,刘萍,等.中国明对虾抗白斑综合症病毒分子标记的筛选[J].中国水产科学,2005,12(1):14-19
    [95]孟宪红,马春燕,刘萍,等.黄渤海中国对虾6个地理群的遗传结构及其遗传分化.高技术通讯,2004,4:97-102
    [96]倪静,尤锋,张培军,徐冬冬,徐永立.牙鲆GH基因外显子多态性与生长性状关系的初步研究.高技术通讯,2006,16(3):307-312
    [97]邱高峰,常林瑞,徐巧婷,方雄英,楼允东.中国对虾16S rRNA基因序列多态性的研究.动物学研究,22000,1(1):35-40
    [98]石拓,孔杰,庄志猛.中国对虾遗传多样性分析——朝鲜半岛西海岸群体的DNA多态性.海洋与湖沼,1999,30(6):609-615
    [99]石拓,孔杰,庄志猛.中国对虾遗传多样性的RAPD分析.自然科学进展,2001,11(4):360-364
    [100]孙昭宁,刘萍,李健,等. RAPD和SSR两种标记构建的中国对虾遗传连锁图谱.动物学研究,2006,27(3):317-324
    [101]孙昭宁,刘萍,李健,何玉英,张秀梅.微卫星DNA标记用于中国对虾亲子关系的鉴定.海洋水产研究,2007,28(3):8-14
    [102]孙昭宁,刘萍,李健,何玉英,张秀梅.微卫星DNA技术用于中国对虾家系构建中的系谱认证.中国水产科学,2005,12(6):694-701
    [103]田燚,孔杰,王伟继.中国对虾遗传连锁图谱的构建.科学通报,2008,53(5):544-555
    [104]田燚,王立新,陈宏,蓝贤勇,张润锋,胡沈荣,苏利红.六个鲫鱼品系线粒体Cytb基因PCR-RFLP分析.水产科学,2004,23(8):18-21
    [105]汪登强,危起伟,王朝明,等. 13种鲟形目鱼类线粒体DNA的PCR-RFLP分析.中国水产科学,2005,12(4):383-389
    [106]王鸿霞,张晓军,李富花,相建海.应用微卫星标记分析野生中国明对虾的亲权关系.水生生物学报,2008,32(1):42-46
    [107]王默进,周光,王玲,李园,张鹏,张益,崔长富,周斌.运用TaqMan探针实时荧光PCR技术检测AKAPIO基因2073A/G单核苷酸多态性.四川大学学报,2009,40(2):275-278
    [108]王清印.我国对虾业养殖和育种概况[J].科学养鱼,2008,4:1-3
    [109]王维新,史成银,黄倢.中国明对虾鳃细胞全长cDNA文库的构建.海洋水产研究,2004,25(5):6-11
    [110]王伟继,高焕,孔杰,王清印.利用AFLP技术分析中国明对虾的韩国南海种群和养殖群体的遗传差异.高技术通讯,2005,15 (9):81-86
    [111]王伟继,孔杰,董世瑞,栾生,王清印.中国明对虾AFLP分子标记遗传连锁图谱的构建.动物学报,2006,52(3):575-584
    [112]王伟继,孔杰. ISSR-PCR技术在对虾中的应用初步研究[J].海洋水产研究,2002,23(1):1-4
    [113]王伟继,张天时,杨翠华,栾生,孔杰,王清印.中国对虾抗WSSV及其它经济性状的QTL定位初步研究.动物学报,2008,54(6):1075-1081
    [114]王伟继.I中国对虾(Fenneropenaeus chinensis)AFLP分子标记遗传连锁图谱的构建以及相关性状的QTL定位研究:Ⅱ蓝鳃太阳鱼(Lepornis macrochirus)AFLP分子标记遗传连锁图谱的构建及性别决定机制初探[D].青岛:中国海洋大学,2008
    [115]王永飞,马三梅,刘翠萍,等.分子标记在植物遗传育种中的应用原理及现状.西北农林科技大学学报(自然科学版) (增刊),2001,29:106-113
    [116]卫波,景蕊莲,王成社,等.用等位基因特异PCR检测普通小麦(Triticum aestivum L.)的单核苷酸多态性.中国农业科学,2006,39(70):1313–1320
    [117]邢晶晶.分子遗传标记及其技术在水产生物中的研究与应用[J].水产学杂志,2002,15(1):61- 70
    [118]徐鹏,周岭华,田丽萍,相建海.从中国对虾ESTs中筛选微卫星标记的研究.水产学报,2003,27(3):213-218
    [119]徐鹏,周岭华,相建海.中国对虾微卫星DNA的筛选.海洋与湖沼,2001,32(3)255-259
    [120]郇聘.利用荧光原位杂交技术(FISH)对中国对虾和栉孔扇贝若干重要基因定位的研究:[硕士学位论文].青岛:中国科学院研究生院(海洋研究所),2009.
    [121]颜志强,杨胜利,龚毅. PCR及其衍生技术在基因突变检测中的应用.遗传,2003,25(2):198-200
    [122]杨东,刘红艳,张繁荣,余来宁.尼罗罗非鱼Sox基因PCR-SSCP分析.江西农业学报,2008,20(9):99-101
    [123]于凌云,白俊杰,叶星,李胜杰,李小慧.大口黑鲈MyoD基因结构和单核苷酸多态性位点的筛选.水产学报,2009,33(1):1-8
    [124]岳志芹,王伟继,孔杰,戴继勋.用AFLP方法分析中国对虾抗病选育群体的遗传变异.水产学报,2005,29(1):13-19
    [125]岳志芹,王伟继,孔杰,等. AFLP分子标记构建中国对虾遗传连锁图谱的初步研究.高技术通讯,2004,5:88-93
    [126]曾地刚,陈晓汉,彭敏,李咏梅,杨春玲,马宁,蒋伟明,黎铭.用焦磷酸测序技术检测凡纳滨对虾组织蛋白酶基因单核苷酸多态性.水产学报,2008,32(5):684-689
    [127]张留所,孔晓瑜,喻子牛,孔杰,相建海.基于SAMPL的一种微卫星筛选方法在中国明对虾中的尝试.海洋科学,2006,30(2):1-4
    [128]张绍萍,张晓军,相建海.热休克蛋白70(HSP70)基因在中国对虾染色体上的定位.中国水产科学,2004,11(6):497-500
    [129]张天时,刘萍,李健,孔杰,王清印.用微卫星DNA技术对中国对虾人工选育群体遗传多样性的研究.水产学报,2005,29(1):6-12
    [130]张小燕,左明雪,张占军.用基因芯片检测单核苷酸多态性反应原理.中国生物工程杂志,2005,25(11):52-56.
    [131]张晓军,王兵,张绍萍,等.中国对虾6种组织cDNA文库的构建.海洋学报,2005,27(5):92-95
    [132]张哲,许德义,蒋晓飞.变性梯度凝胶电泳检测鲍曼不动杆菌中SHV基因单核苷酸多态性.现代实用医学,2009,21(8):799-803

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700