基于电子动态调控的超快激光微纳制造新方法的第一性原理计算及其验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超快激光微纳制造是一个前沿的交叉学科领域,涉及机械、光学、物理、化学、材料等,在国防、生物、信息、医疗器件、汽车等领域应用广泛。超快激光指脉宽短于10ps (10-11s)的激光,具有超强和超快的独特优势,使制造过程在作用时间和峰值功率等趋于极端。超快激光制造中激光的能量密度一般大于10~(12)W/cm~2,非线性吸收(包括雪崩电离、多光子电离和隧道电离)等起主导作用,可控功率密度使选择性电离等电子动态调控成为可能。飞秒激光的脉宽大大短于电子-晶格弛豫时间(10-10~10-12s),激光能量的吸收在晶格变化(如升温)前已完成,电子与晶格处于非平衡状态,激光与材料相互作用过程决定于激光光子与电子相互作用的过程。非平衡态传热可极小化热影响区、微裂纹和重铸层,从而大大提高了加工质量;非平衡、非线性效应使超快激光制造机理完全不同于传统制造。因此,对超短激光加工的调控必须通过飞秒激光辐照过程中对电子动态的调控来实现。例如通过脉冲序列的设计,电离过程可以被控制、原子可以选择性地电离、分子中基态转动动力学可以被控制、化学反应过程可以被控制和飞秒脉冲下等离子体X射线的发射可以被显著地提高。
     随着制造品质要求不断推向新的极端,对超快激光微纳制造进一步提出了新的挑战,如更高的加工效率、跨尺度加工、选择性及可控性加工等。理论方面,当时间短到飞秒和尺寸小到纳米时,许多经典理论已经不再适用,材料光学和热力学特性的瞬时局部变化极为关键,需要引入量子力学;超快激光与材料相互作用过程是一个从纳米到毫米、从飞秒到微秒的非线性、非平衡的复杂多尺度过程,尚不存在一个完备的理论模型可以全面描述,这已成为超快激光微纳制造的瓶颈热点问题。针对以上科学问题和挑战,所在课题组提出了基于电子动态调控的制造新方法:利用超快激光超快和超强的优势,通过协同调控激光能量时域/空间分布和材料物态/性质,调控光子-电子相互作用过程以调控瞬时纳米尺度电子动态(密度、温度、激发态分布等),从而调控材料局部瞬时特性(光学和热力学特性等),进而调控材料相变等过程,实现高精度、高效率和高质量的制造方法。
     本文根据上述科学思路,开展超快激光与材料相互作用过程中材料瞬时局部电子动态的变化及其对加工过程影响的理论及实验研究,主要研究工作包括:(1)针对孤立系统(原子、分子和团簇)和晶体材料的不同,分别建立超快激光与材料相互作用的量子模型,理论上验证超快激光对材料局部瞬时电子动态(包括电子激发、电离、能量吸收、偶极矩、实空间的电子密度分布和自由电子占据等)调控的可行性;(2)运用超快激光与材料相互作用的量子模型,研究不同参数的超快激光作用下材料的电子动态的变化并分析总结其中的规律;(3)分析不同电离机制下材料的能量吸收过程,总结能量吸收与激光能量密度的关系;(4)根据理论结果和相关规律进行实验研究,分析不同飞秒激光脉冲(序列)参数和共振效应对加工结构的尺寸、加工形貌及重铸的影响,实验上验证基于电子动态调控的制造新方法的可行性。
     本论文所取得的主要创新成果如下:
     1.建立超快激光与原子、分子和团簇相互作用的量子模型(第一性原理计算),该模型能够很好地描述飞秒激光电离孤立系统的过程:通过模型计算得到的N_2分子的电离率与实验结果相吻合;研究了共振效应对飞秒激光作用下Li_4团簇电子动态的影响,发现在相同能量密度的飞秒激光作用下,共振效应电离出的电子和吸收的总能量高出非共振情况的结果近2个数量级;在低能量密度多光子电离机制占主导时,共振效应下才能够充分体现出来,而高能量密度隧道电离机制下共振效应不再明显。理论结果验证了通过共振效应可以提高超短激光微纳制造的加工效率。相关创新成果发表在Journal ofApplied Physics (2013,114:143105)上。
     2.由于超快激光作用到晶体材料表面时产生的自由电荷会抑制激光的作用,因此我们考虑了激光场和自由电子产生的感应电场的共同作用,并建立超快激光与晶体材料的量子模型(第一性原理计算)。运用上述模型,首次研究了不同参数的飞秒激光脉冲(序列)对典型晶体材料的电子动态影响并总结出相应的规律,以指导加工实验。相关创新成果发表在Physics Letters A (2011,375:3200-3204)、Journal of Physics:Condensed Matter (2012,24:275801,封面文章)和Energy Materials Nanotechnology FallMeeting (2013,会议封面)会议上。
     3.运用超快激光与晶体材料相互作用的量子模型(第一性原理计算),研究了从低通量(10~(12)W/cm~2)到高通量(1016W/cm~2)区间,从多光子电离到隧道电离机制占主导情况下金刚石材料电子动态的变化,首次归纳总结出吸收的总能量与激光通量之间的关系:当多光子电离机制占主导的情况下,吸收的总能量与激光能量密度大致成δE=c_MI~N(N为多光子电离所需要的电子数)的非线性关系;当隧道电离机制占主导的情况下,吸收的总能量与激光能量密度大致成δE=c_TI~n(n扩大模型的应用范围。相关创新成果发表在PhysicsLetters A (2012,376:3327-3331)和Journal of Applied Physics (2013,113:143106)上。
     4.运用超快激光与晶体材料的量子模型(第一性原理计算),首次解释了超快激光加工晶体材料实验中调节超快激光脉冲序列的时间间隔可以改变烧蚀体积,以及激光诱导周期性表面结构的深度随着脉冲延迟的改变呈现周期性波动的现象。相关创新成果发表在International Conference onAdvanced Laser Technologies (2013)会议上。
     5.搭建飞秒激光精密微纳加工系统,根据理论结果和相关规律进行实验研究,分析不同飞秒激光脉冲(序列)参数和共振效应对加工结构的尺寸、加工形貌及重铸的影响,实验上验证了基于电子动态调控的制造新方法的可行性,并总结出一套高质量、高精度和高效率的飞秒激光微纳加工工艺。相关创新成果发表在Conference on Lasersand Electro-Optics (2011)和International Photonics and Opto-Electronics Meetings (2012)会议上。
     本论文研究内容来源于以下科研项目:科技部“973”计划项目“激光微纳制造新方法和尺度极限基础研究(项目编号:2011CB013000)”、国家自然科学基金重大研究计划项目“基于脉冲序列设计和共振吸收激光微纳跨尺度制造及理论(项目编号:90923039)”以及国家自然科学基金杰出青年项目“激光微纳制造(项目编号:51025521)”。本文的主要创新成果发表在应用物理学、光学等国际主流杂志和学术会议上,其中SCI检索论文11篇,EI检索论文6篇,特邀报告6次,其中1篇为Journalof Physics: Condensed Matter杂志的封面文章,1篇为Energy Materials NanotechnologyFall Meeting (2013)的会议封面。
Ultrafast laser micro/nano fabrication is a frontier and interdisciplinary field, involvingmechanics, optics, physics, chemistry and materials. It is widely applied in the fields ofnational defense, biological science, information, medical appliances, and automobile. Anultrafast pulse laser, whose pulse duration time is short than10ps (10-11s), can easilyachieve very high peak power density, which makes the macro/nanofabrication process tendto extreme. The intensity of ultrafast laser is high than10~(12)W/cm~2and nonlinear absorptiondominate, including electron avalanche ionization, multiphoton ionization, and tunnelionization. The controlled laser intensity can selectively ionize electrons and the idea ofelectron dynamics control is feasible. Femtosecond laser pulse duration is much shorterthan the electron-lattice relaxation time (10-10~10-12s). Energy absorption is completedbefore lattice changes. Due to the significant electron-lattice nonequilibrium state,femtosecond laser material interaction including phase change and fabrication results isactually determined by laser-electron interaction. Recast, thermal damage (microcracks),and heat-affected-zone are greatly reduced during the nonequilibrium energy transfer andthe manufacturing quality can be improved. In ultrafast laser micro/nanofabrication, themechanisms of nonequilibrium and nonlinear absorption effects are significantly differentwith those in traditional manufacturing. Therefore, ultrafast laser fabrication improvementmust be implemented by electron dynamics control. For example, by using a shaped pulsetrain, chemical reactions can be controlled; the motion of bound electrons can be controlled;the high harmonic generation process can be significantly enhanced and the overallconversion efficiency can be improved; a single quantum dot spin can be completelyquantum controlled; ionization process can be controlled; the electron emission can bespectrally and temporally tuned and coherent phonon oscillations can be enhanced orcancelled.
     With the continuous requirements of extremely high-quality and precision, newchallenges are represented for ultrafast laser micro/nanofabrication, such as high-efficiency,cross-scale manufacturing, selective and controllable fabrication, and so on. In theoretical aspects, when the time is short to the femtosecond and the size is small to the nanometer,many classical theories failed in the applications for ultrafast laser material interactions.The transient localized changes of optical properties and thermodynamic properties of thematerial are critical. Consequently, quantum mechanics must be considered. Thelaser-material interaction is a nonlinear and nonequilibrium complex multiscale process,which involves from the nanometer to the millimeter and from the femtosecond to themicrosecond scale. Furthermore, there is no such a comprehensive theoretical model thatcan fully describe the process, which becomes the bottleneck of ultrafast lasermicro/nanofabrication. Based on these challenges and questions, our group has proposed anew ultrafast micro/nanofabrication method based on electron dynamic control. By usingthe unique characteristics of the ultrafast laser, we design spatial/temporal ultrafast laserpulse trains and material properties to control photon-electron interactions, then to controllocalized transient nanoscale electron dynamics (density, temperature, and electrondistribution), and phase change mechanisms to achieve high-quality and high-precisionmicro-/nano-scale manufacturing.
     Base on the aforementioned new method, this study presents theoretical andexperimental studies on the transient localized electron dynamics and its influence on thefollowing machining process during laser-material interactions. The main contents of thisthesis include the following four aspects:
     1. For isolated systems (atoms, molecules and clusters) and bulk materials, weestablish different quantum models to describe ultrafast laser-material interactionsrespectively, which are employed to theoretically validate the feasibility of the proposedidea to control localized transient nanoscale electron dynamics (excitation, ionization,energy absorption, multipole, densities, and distributions of free electrons).
     2. The quantum models are applied to simulate the nonlinear electron-photoninteractions during shaped ultrafast laser ablation of different materials. Effects of the keypulse parameters on the electron dynamics are discussed.
     3. For a certain laser wavelength, the intensity dependence of energy absorption onmultiphoton and/or tunnel ionization mechanisms is investigated. The relationship betweenthe energy absorption and laser intensity is given.
     4. According to the theoretical results, experimental research is carried out to discussthe effects of femtosecond laser pulse train parameters and resonance effect on the structuresize, morphology and recasting zones, which is applied to experimentally validate thefeasibility of the proposed new ultrafast micro/nanofabrication method based on electrondynamic control.
     The main innovations of the thesis are as followed:
     1. We establish quantum models to describe nonlinear and nonperturbative responsesof atoms, molecules and clusters induced by ultrafast laser, which provides an efficientmethod for the calculation of photoexcitation and ionization of isolated systems. Ourcalculation reproduces the relative ionization rates of a nitrogen molecule as well as thelaser intensity dependence, which are in agreement with the experimental results. Also, theresonant effects on nonlinear electron dynamics of Li_4cluster under femtosecond laserpulse irradiation are investigated. It is demonstrated that multiphoton ionization is stronglyenhanced if the laser is in resonance with the collective mode. For higher laser intensitieswhen tunnel ionization becomes significant, the relationship between the spectral crosssection and the number of ionized electrons, absorbed energy gradually disappears and theeffect of resonant enhancement on ionization and absorbed energy is not apparent. Theinnovation results were published in Journal of Applied Physics (2013,114:143105).
     2. To describe the nonlinear processes during ultrafast ablation of infinite periodicsystems, the surface charge effect must be taken into consideration. In consideration oflaser field and induced potential, we establish quantum models to describe nonlinear andnonperturbative responses of bulk materials induced by ultrafast laser. In addition, thequantum model is employed for the femtosecond laser pulse processing of bulk material inthis study. The impacts of the pulse parameters on electron dynamics are also investigated.The innovation results were published in Physics Letters A (2011,375:3200-3204), Journalof Physics: Condensed Matter (2012,24:275801, cover featured), and Energy MaterialsNanotechnology Fall Meeting (2013, cover featured).
     3. We present first-principles calculations for nonlinear photoionization of diamondinduced by the intense femtosecond laser field by the quantum model. For a certain laserwavelength, the intensity dependence of energy absorption on multiphoton and/or tunnel ionization mechanisms is first investigated, where laser intensity regions vary from10~(12)W/cm~2to1016W/cm~2. Theoretical results show that:(1) at the fixed laser wavelength, therelationship between the energy absorption and laser intensity shows a good fit ofδE=c_MI~N(N is the number of photons absorbed to free from the valence band) whenmultiphoton ionization dominates;(2) while when tunnel ionization becomes significant,the relationship coincides with the expression ofδE=c_TI~n(n     4. By the quantum models for ultrafast ablation bulk material, we first give theexplanations for the ablation volume changes by adjusting pulse delay, and the periodicfluctuations phenomenon of laser induced surface structures depths with the increase ofpulse delay. The innovation results were published in International Conference onAdvanced Laser Technologies (2013).
     5. We set up a femtosecond laser precision micro fabrication system. According to thetheoretical results, experiments are carried out to study the effects of femtosecond laserparameters and resonance effect on the structure size, morphology and recasting zones. Themicro/nano processing technology is obtained for high-quality, high-precision and highefficiency micro/nanofabrication. The innovation results were published in Conference onLasers and Electro-Optics (2011) and International Photonics and Opto-ElectronicsMeetings (2012).
     This thesis is based on the research projects supported by the National Basic ResearchProgram of China (973Program)(Grant No.2011CB013000) and National Natural ScienceFoundation of China (NSFC)(Grant Nos.90923039and51025521). The main innovationsof the thesis were all published in the international influential applied physical and opticaljournals, especially two articles which published in Journal of Physics: Condensed Matterand Energy Materials Nanotechnology Fall Meeting were featured as the cover articles.
引文
[1] Wang G B. Photonic manufacturing science&technology: overview and outlook [J]. J. Mech. Eng.,2011,21:157-169.
    [2] Kawata S, Sun H B, Tanaka T, Takada K. Finer features for functional microdevices-micromachinescan be created with higher resolution using two-photon absorption [J]. Nature,2001,412:697-698.
    [3] Tan D F, Li Y, Qi F J, Yang H, Gong Q H, Dong X Z, Duan X M. Reduction in feature size oftwo-photon polymerization using SCR500[J]. Appl. Phys. Lett.,2007,90:071106.
    [4] Maruo S, Nakamura O, Kawata S. Three-dimensional microfabrication with two-photon-absorbedphotopolymerization [J]. Opt. Lett.,1997,22:132-134.
    [5] Sun H B, Matsuo S, Misawa H. Three-dimensional photonic crystal structures achieved withtwo-photon-absorption photopolymerization of resin [J]. Appl. Phys. Lett.,1999,74:786-788.
    [6] Yokoyama S, Nakahama T, Miki H, Mashiko S. Two-photon-induced polymerization in a laser gainmedium for optical microstructure [J]. Appl. Phys. Lett.,2003,82:3221-3223.
    [7] Maruo S, Inoue H. Optically driven micropump produced by three-dimensional two-photonmicrofabrication [J]. Appl. Phys. Lett.,2006,89:44101.
    [8] Galajda P, Ormos P. Complex micromachines produced and driven by light [J]. Appl. Phys. Lett.,2001,78:249-251.
    [9] Kato J, Takeyasu N, Adachi Y, Sun H B, Kawata S. Multiple-spot parallel processing for lasermicronanofabrication [J]. Appl. Phys. Lett.,2005,86:044102.
    [10] Dong X Z, Zhao Z S, Duan X M. Micronanofabrication of assembled three-dimensionalmicrostructures by designable multiple beams multiphoton processing [J]. Appl. Phys. Lett.,2007,91:124103.
    [11] Hirano M, Kawamura K, Hosono H. Encoding of holographic grating and periodic nano-structureby femtosecond laser pulse [J]. Appl. Surf. Sci.,2002,197:688-698.
    [12] Kondo T, Mat S, Juodkazis S, Misawa H. Femtosecond laser interference technique with diffractivebeam splitter for fabrication of three-dimensional photonic crystals [J]. Appl. Phys. Lett.,2001,79:725-727.
    [13] Kawamura K, Sarukura N, Hirano M, Ito N, Hosono H. Periodic nanostructure array in crossedholographic gratings on silica glass by two interfered infrared-femtosecond laser pulses [J]. Appl. Phys.Lett.,2001,79:1228-1230.
    [14] Kondo T, Mat S, Juodkazis S. Mizeikis V, Misawa H. Multiphoton fabrication of periodicstructures by multibeam interference of femtosecond pulses [J]. Appl. Phys. Lett.,2003,82:2578-2580.
    [15] Shimotsuma Y, Kazansky P, Qiu J, Hirao K. Self-Organized Nanogratings in Glass Irradiated byUltrashort Light Pulses [J]. Phys. Rev. Lett.,2003,91:247405.
    [16] Yi K J, Yang Z Y, Lu Y F. Fabrication of nanostructures with high electrical conductivity on siliconsurfaces using a laser-assisted scanning tunneling microscope [J]. J. Appl. Phys.,2008,103:054307.
    [17] Jersch J, Dickmann K. Nanostructure fabrication using laser feld enhancement in the near feld of ascanning tunneling microscope tip [J]. Appl. Phys. Lett.,1996,68:868-870.
    [18] Lu Y F, Mai Z H, Qiu G, Chim W K. Laser-induced nano-oxidation on hydrogen-passivated Ge(100) surfaces under a scanning tunneling microscope tip [J]. Appl. Phys. Lett.,1999,75:2359-2361.
    [19] Boneberg J, Münzer H J, Tresp M, Ochmann M, Leiderer P. The mechanism of nanostructuringupon nanosecond laser irradiation of a STM tip [J]. Appl. Phys. A,1998,67:381-384.
    [20] Chimmalgi A, Choi T Y, Grigoropoulos C P, Komvopoulos K. Femtosecond laser aperturlessnear-feld nanomachining of metals assisted by scanning probe microscopy [J]. Appl. Phys. Lett.,2003,82:1146-1148.
    [21] Chimmalgi A, Hwang D J, Grigoropoulos C P. Near-field scanning optical microscopy basednanostructuring of glass [C]. J. Phys.: Conf. Ser.,2007,59:285.
    [22] Guo W, Wang Z B, Li L, Whitehead D J, Luk’yanchuk B S, Liu Z. Near-feld laser parallelnanofabrication of arbitrary-shaped patterns [J]. Appl. Phys. Lett.,2007,90:243101.
    [23] Singh R K, Narayan J. Pulsed laser evaporation technique for deposition of thin films: physics andtheoretical mode [J]. Phys. Rev. B,1990,41:8843-8859.
    [24] Guo R Q, Nishimura J, Higashihata M, Nakamura D, Okada T. Substrate effects on ZnOnanostructure growth via nanoparticle-assisted pulsed-laser deposition [J]. Appl. Surf. Sci.,2008,254:3100-3104.
    [25] Kim H, Anyeung R C Y, Pique A. Transparent conducting F-doped SnO2thin films grown bypulsed laser deposition [J]. Thin Solid Films,2008,516:5052-5056.
    [26] Katharria Y S, Kumar S, Choudhary R J, Prakash R, Singh F, Lalla N P, Phase D M, Kanjilal D.Pulsed laser deposition of SiC thin films at medium substrate temperatures [J]. Thin Solid Films,2008,516:6083-6087.
    [27] Hopp B, Smausz T, Kecskeméti G, Klini A, Bor Z. Femtosecond pulsed laser deposition ofbiological and biocompatible thin layers [J]. Appl. Surf. Sci.,2007,253:7806-7809.
    [28] D’Alessio L, De Bonis A, Galasso A, Morone A, Santagata A, Teghil R, Villani P, ZaccagninoaM. Characterisation of ultrashort pulse laser ablation of SmBaCuO [J]. Appl. Surf. Sci.,2005,248:295–298.
    [29] Teghil R, D’Alessio L, De Bonis A, Galasso A, Villani P, Zaccagnino M, Santagata A, Ferro D.Femtosecond pulsed laser ablation of group4carbides [J]. Appl. Surf. Sci.,2005,247:51–56.
    [30] Gamaly E G, Rode A V, Luther-Davies B. Ultrafast ablation with high-pulse-rate lasers. Part I:Theoretical considerations [J]. J. Appl. Phys.,1999,85:4213-4221.
    [31] Okoshi M, Higashikawa K, Hanabusa M. Pulsed laser deposition of ZnO thin films using afemtosecond laser [J]. Appl. Surf. Sci.,2000,154-155:424-427.
    [32] Ferro D, Rau J V, Rossi Albertini V, Generosi A, Teghil R, Barinov S M. Pulsed laser depositedhard TiC, ZrC, HfC and TaC films on titanium: Hardness and an energy-dispersive X-ray diffractionstudy [J]. Surf. Coat. Technol.,2008,202:1455-1461.
    [33] Ebihara K, Park S M, Fujii K, Ikegami T. Separated pulsed laser deposition for nanostructured thinfilms [J]. Diam. Relat. Mater.,2006,15:989-993.
    [34] Bartel R, Backus S, Zeek E, Misoguti L, Vdovin G, Christov I P, Murnane M M, Kapteyn H C.Shaped-pulse optimization of coherent emission of high-harmonic soft X-ray [J]. Nature,2000,406(6792):164.
    [35] Lindinger A, Lupulescu C, Plewicki M, Vetter F, Merli A, Weber S M, W ste L. Isotope selectiveionization by optimal control using shaped femtosecond laser pulses [J]. Phys. Rev. Lett.,2004,93(3):033001.
    [36] Renard M, Hertz E, Lavorel B, Faucher O. Controlling groundstate rotational dynamics ofmolecules by shaped femtosecond laser pulses [J]. Phys. Rev. A,2004,69:043401.
    [37] Andreev A A, Limpouch J, Iskakov A B, Nakano H. Enhancement of X-ray line emission fromplasmas produced by short high-intensity laser double pulses [J]. Phys. Rev. E,2002,65:026403.
    [38] Herman P R, Oettl A, Chen K P, Marjoribanks R S. Laser micromachining of transparent fusedsilica with1-ps pulses and pulse trains [C]. SPIE Conf.,1999,3616:148-155.
    [39] Bartels R, Backus S, Zeek E, Misoguti L, Vdovin G, Christov I P, Murnane M M, Kapteyn H C.Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays [J]. Nature,2000,406:164-166.
    [40] Press D, Ladd T D, Zhang B Y, Yamamoto Y. Complete quantum control of a single quantum dotspin using ultrafast optical pulses [J]. Nature,2008,456:218-221.
    [41] Wollenhaupt M, Baumert T. Ultrafast laser control of electron dynamics in atoms, molecules andsolids [J]. Faraday Discuss,2011,153:9-26.
    [42] Lindinger A, Lupulescu C, Plewicki M, Vetter F, Merli A, Weber S M, W ste L. Isotope selectiveionization by optimal control using shaped femtosecond laser pulses [J]. Phys. Rev. Lett.,2004,93:033001.
    [43] Kling M F, Siedschlag C, Verhoef A J, Khan J I, Schultze M, Uphues T, Ni Y, Uiberacker M,Drescher M, Krausz F, Vrakking M J J. Control of electron localization in molecular dissociation [J].Science,2006,246:248.
    [44] Wortmann D, Ramme M, Gottmann J. Refractive index modification using fs-laser double pulses[J]. Opt. Express,2007,15(16):10149-53.
    [45] Liebig C M, Wang Y, Xu X. Controlling phase change through ultrafast excitation of coherentphonons [J]. Opt. Express,2010,18(19):20498-504.
    [46] Svensson S, Eriksson B, Martensson N, Wendin G, Gelius U J. Electron shake-up and correlationsatellites and continuum shake-off distributions in X-Ray photoelectron spectra of the rare gas atoms [J].J. Electron Spectrosc. Relat. Phenom.,1988,47:327-384.
    [47] Hu S X, Collins L A. Attosecond pump probe: exploring ultrafast electron motion inside an atom [J].Phys. Rev. Lett.,2006,96:073004.
    [48] Eckle P, Pfeiffer A N, Cirelli C, Staudte A, D rner R, Muller H G, Büttiker M, Keller U.Attosecond ionization and tunneling delay time measurements in helium [J]. Science,2008,322:1525-1529.
    [49] Kaplan A E. Subfemtosecond pulses in mode-locked2π solitons of the cascade stimulated ramanscatterring [J]. Phys. Rev. Lett.,1994,73(9):1243-1246.
    [50] Lan P F, Lu P X, Cao W, Wang X L. Attosecond and zeptosecond x-ray pulses via nonlinearThomson backscattering [J]. Phys. Rev. E,2005,72(6):066501.
    [51] Antoine P, L'Huillier A, Lewenstein M. Attosecond pulse trains using high-order harmonics [J].Phys. Rev. Lett.,1996,77:1234-1237.
    [52] Raz O, Pedatzur O, Bruner B D, Dudovich N. Spectral caustics in attosecond science [J]. Nat.Photonics,2012,6:170-173.
    [53] Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A,Westerwalbesloh T, Kleineberg U, Heinzmann U, Drescher M, Krausz F. Atomic transient recorder [J].Nature,2004,427:817-821.
    [54] Cavalieri A L, Müller N, Uphues T, Yakovlev V S, Baltuka A, Horvath B, Schmidt B, Blümel L,Holzwarth R, Hendel S, Drescher M, Kleineberg U, Echenique P M, Kienberger R, Krausz F,Heinzmann U. Attosecond spectroscopy in condensed matter [J]. Nature,2007,449:1029-1032.
    [55] Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T,Azzeer A M, Kling M F, Leone S R, Krausz F. Real-time observation of valence electron motion [J].Nature,2010,466:739-744.
    [56] Haessler S, Caillat J, Boutu W, Giovanetti-Teixeira C, Ruchon T, Auguste T, Diveki Z, Breger P,Maquet A, Carré B, Ta eb R, Salières P. Attosecond imaging of molecular electronic wavepackets [J].Nat. Phys.,2010,6:200-206.
    [57] Borot A, Malvache A, Chen X W, Jullien A, Geindre J P, Audebert P, Mourou G, Quéré F,Lopez-Martens R. Attosecond control of collective electron motion in plasmas [J]. Nat. Phys.,2012,8:416-421.
    [58] Lugovskoy A V, Bray I. Ultrafast electron dynamics in metals under laser irradiation [J]. Phys. Rev.B,1999,60:3279-3288.
    [59] Lenzner M, Krüger J, Sartania S, Cheng Z, Spielmann C, Mourou G, Kautek W, Krausz F.Femtosecond optical breakdown in dielectrics [J]. Phys. Rev. Lett.,1998,80:4076-4079.
    [60] Decker C D, Mori W B, Dawson J M, Katsouleas T.1994. Nonlinear collisional absorption inlaser-driven plasmas [J]. Phys. Plasmas,1994,1:4043-4049.
    [61] Wolff-Rottke B, Ihlemann J, Schmidt H, Scholl A. Influence of the laser-spot diameter onphoto-ablation rates [J]. Appl. Phys. A,1995,60:13-17.
    [62] Rethfeld B, Kaiser A, Vicanek M, Simon G. Ultrafast dynamics of nonequilibrium electrons inmetals under femtosecond laser irradiation [J]. Phys. Rev. B,2002,65:214303–214313.
    [63] Qiu T Q, Tien C L. Short-pulse laser heating on metals [J]. Int. J. Heat Mass. Tran.,1992,35:719-726.
    [64] Anisimov S I, Kapeliovich B L, Perel’man T L. Electron emission from metal surfaces exposed toultrashort laser pulses [J]. Sov. Phys. JETP,1974,39:375-377.
    [65] Jiang L, Tsai H L. Improved two-temperature model and its application in ultrashort laser heating ofmetal films [J]. ASME J. Heat Tran.,2005,127:1167-1173.
    [66] Kaiser A, Rethfeld B, Vicanek M, Simon G. Microscopic processes in dielectrics under irradiationby subpicosecond laser pulses [J]. Phys. Rev. B,2000,61:11437-11450.
    [67] Li S S, Semiconductor Physical Electronics [M], Plenum, New York,1993.
    [68] Kaiser A, Rethfeld B, Vicanek M, Simon G. Microscopic processes in dielectrics under irradiationby subpicosecond laser pulses [J]. Phys. Rev. B,2000,61:11437-11450.
    [69] Pronko P P, VanRompay P, Horvath A, Loesel C F, Juhasz T, Liu X, Mourou G. Avalancheionization and dielectric breakdown in silicon with ultrafast laser pulses [J]. Phys. Rev. B,1998,58:2387-2390.
    [70] Guy S, Joubert M F, Jacquier B, Bouazaoui M. Excited-state absorption in BaY2F8:Nd3+[J]. Phys.Rev. B,1993,47:11001–11006.
    [71] Il'insky Y A, Keldysh L V. Electromagnetic response of material media [M]. Plenum, New York,1994.
    [72] Keldysh L V. Ionization in the field of a strong electromagnetic wave [J]. Sov. Phys. JETP,1965,20:1307-1314.
    [73] Du D, Liu X, Korn G, Squier J, Mourou G. Laser-induced breakdown by impact ionization in SiO2with pulse widths from7ns to150fs [J]. Appl. Phys. Lett.,1994,64:3071-3073.
    [74] Li M, Menon S, Nibarger J P, Gibson G N. Ultrafast electron dynamics in femtosecond opticalbreakdown of dielectrics [J]. Phys. Rev. Lett.,1999,82:2394-2397.
    [75] Pronko P P, VanRompay P A, Horvath C, Loesel F, Juhasz T, Liu X, Mourou G. Avalancheionization and dielectric breakdown in silicon with ultrafast laser pulses [J]. Phys. Rev. B,1998,58:2387-2390.
    [76] Xu S Z, Jia T Q, Sun H Y, Li C B, Li X X, Feng D H, Qiu J R, Xu Z Z. Mechanisms of femtosecondlaser-induced breakdown and damage in MgO [J]. Opt. Commun.,2006,259:274-280.
    [77] Sun H Y, Jia T Q, Li C B, Li X X, Xu S Z, Feng D H, Wang X F, Ge X C, Xu Z Z. Mechanisms offemtosecond laser-induced damage in magnesium fluoride [J]. Solid State Commun.,2007,141:127-131.
    [78] Rethfeld B. Unified model for the free-electron avalanche in laser-irradiated dielectrics [J]. Phys.Rev. Lett.,2004,92:187401-187404.
    [79] Petrov G M, Davis J. Interaction of intense ultra-short laser pulses with dielectrics [J]. J. Phys. B: At.Mol. Opt. Phys.,2008,41:025601.
    [80] Lenzner M, Krüger J, Sartania S, Cheng Z, Spielmann C, Mourou G, Kautek W, Krausz F.Femtosecond optical breakdown in dielectrics [J]. Phys. Rev. Lett.,1998,80:4076-4079.
    [81] Ladieu F, Martin P, Guizard S. Measuring thermal effects in femtosecond laser-induced breakdownof dielectrics [J]. Appl. Phys. Lett.,2002,81:957-959.
    [82] Quéré F, Guizard S, Martin P. Time-resolved study of laser-induced breakdown in dielectrics [J].Europhys. Lett.,2001,56:138.
    [83] Ladieu F, Martin P, Guizard S. Measuring thermal effects in femtosecond laser-induced breakdownof dielectrics [J]. Appl. Phys. Lett.,2002,81:957-959.
    [84] Stoian R, Rosenfeld A, Ashkenasi D, Hertel I V, Bulgakova N M, Campbell E E B. Surfacecharging and impulsive ion ejection during ultrashort pulsed laser ablation [J]. Phys. Rev. Lett.,2002,88:097603-097606.
    [85] Ye M, Grigoropoulos C P. Time-of-flight and emission spectroscopy study of femtosecond laserablation of titanium [J], J. Appl. Phys.,2001,89:5183-5190.
    [86] Jiang L, Tsai H L. Prediction of crater shape in femtosecond laser ablation of dielectrics [J]. J. Phys.D,2004,37:1492-1496.
    [87] Jiang L, Li L S, Wang S M, Tsai H L. Microscopic energy transport throughphoton-electron-phonon interactions during ultrashort laser ablation of wide bandgap materials Part Ι:photon absorption [J], Chinese J. Lasers,2009,36(4):779-789.
    [88] Hohenberg P, Kohn W. Inhomogeneous Electron Gas [J]. Phys. Rev.,1964,136: B864-B871.
    [89] Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys.Rev.,1965,140: A1133-A1138.
    [90] Dreizler R M, Gross E K U. Density Functional Theory, Berlin:Springer-Vertag,1990.
    [91] Jones R O, Gunnarsson O. The density functional formalism, its applications and prospects [J]. Rev.Mod. Phys.,1989,61:689-746.
    [92] Segall M D, Payne M C, Ellis S W, Tucker G T, Boyes R N. First principles calculation of theactivity of cytochrome P450[J]. Phys. Rev. E,1998,57:4618-4621.
    [93] Shah R, Payne M C, Lee M-H, Gale J D. Understanding the Catalytic Behavior of Zeolites: AFirst-Principles Study of the Adsorption of Methanol [J]. Science,1996,271:1395-1397.
    [94] Rutter M J, Heine V. Phonon free energy and devil's staircases in the origin of polytypes [J]. J. Phys.Cond. Matter,1997,9:2009-2024.
    [95] Zeng W S, Heine V, Jepsen O. The structure of barium in the hexagonal close-packed phase underhigh pressure [J]. J. Phys, Cond. Matter,1997,9:3489-3502.
    [96] Kirchhoff F, Gillan M J, Holender J M, Kresse G, Hafner J. Structure and bonding of liquid Se [J]. J.Phys. Cond. Matter,1996,8:9353-9357.
    [97] Bockstedte M, Kley A, Neugebauer J, Scheffler M. Density-functional theory calculations forpoly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics[J]. Comput. Phys. Commun,1997,107:187-222.
    [98] Dirac P A M. Note on Exchange Phenomena in the Thomas Atom [J]. Proc. Cambridge Phil.Soc.,1930,26:376.
    [99] Lowdin P O. Quantum theory of many-particle systems. I. physical interpretations by means ofdensity matrices, natural spin-orbitals, and convergence problems in the method of configurationalinteraction [J]. Phys. Rev.,1955,97:1474-1489.
    [100] Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Phys. Rev.,1964, V136: B864-B871.
    [101] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. Phys.Rev.,1965, V140: A1133-A1138.
    [102] Yabana K. Time-dependent local-density approximation in real time [J]. Phys. Rev.B,1996, V54:4484-4487.
    [103] Langreth D C, Perdew J P. Theory of nonuniform electronic systems I: Analysis of the gradientapproximation and a generalization that works [J]. Phys. Rev.B,1980, V21:5469-5493.
    [104] Langreth D C, Mehl M J. Beyond the local-density approximation in calculations of groud-stateelectronic properties [J]. Phys. Rev.B,1983, V28:1804-1834.
    [105] Perdew J P, Wang Y. Accurate and simple density functional for the electronic exchange energy:Generalized gradient approximation [J]. Phys. Rev.B,1986, V33:8800-8802.
    [106] Slater J C. A Simplification of the Hatree-Fock Method [J]. Phys. Rev.,1951, V81:385-390.
    [107] Runge E, Gross E K U. Density-Functional Theory for Time-Dependent Systems [J], Phys. Rev.Lett.,1984,52(12):997.
    [108] Fermi E. Sopra lo spostamento per pressione delle righe elevate delle serie spettrali [J]. NuovoCimento,1934,11:157-166.
    [109] Pickett W E. Psedopotential methods in condensed matter applications [J]. Comp. Phys. Reports.,1989,9:115-198.
    [110] Chelikowsky J R, Troullier N, Saad Y. Finite-difference-pseudopotential method: Electronicstructure calculations without a basis [J]. Phys. Rev. Lett.,1994,72:1240-1243.
    [111] Chelikowsky J R, Troullier N, Wu K, Saad Y. Higher-order finite-difference pseudopotentialmethod: An application to diatomic molecules [J]. Phys. Rev. B,1994,50:11355-11364.
    [112] Briggs E L, Sullivan D J, Bernholc J. Large-scale electronic-structure calculations with multigridacceleration [J]. Phys. Rev. B,1995,52: R5471-R5474.
    [113] Baroni S, Giannozzi P. Towards very large-scale electronic-structure calculations [J]. Europhys.Lett.,1992,17:547-552.
    [114] Iyer K A, Merrick M P, Beck T L. Application of a distributed nucleus approximation in grid basedminimization of the Kohn–Sham energy functional [J]. J. Chem. Phys.,1995,103:227-233.
    [115] Hoshi T, Arai M, Fujiwara T. Density-functional molecular dynamics with real-space finitedifference [J]. Phys. Rev. B,1995,52: R5459-R5462.
    [116] Otobe T, Yabana K, Iwata J–I. First-principles calculations for the tunnel ionization rate of atomsand molecules [J]. Phys. Rev. A,2004,69(5):053404.
    [117] Calvayrac F, Reinhard P-G, Suraud E, Ullrich C A. Nonlinear electron dynamics in metal clusters[J]. Phys. Rep.,2000,337:493-578.
    [118] Ammosov M V, Delone N B, Krainov V P. Tunnel ionization of complex atoms and of atomic ionsin an alternating electromagnetic field [J]. Sov. Phys. JETP,1986,64(6):1191-1194.
    [119] Faisal F H M. Multiple absorption of laser photons by atoms [J]. J. Phys. B: At. Mol. Phys.,1973,6(4): L89.
    [120] Reiss H R. Effect of an intense electromagnetic field on a weakly bound system [J]. Phys. Rev. A,1980,22:1786-1813.
    [121] Kotani T, Schilfgaarde M V. Impact ionization rates for Si, GaAs, InAs, ZnS, and GaN in the GWapproximation [J]. Phys. Rev. B,2010,81:125201.
    [122] Perdew J P, Zunger A. Self-interaction correction to density-functional approximations formany-electron systems [J]. Phys. Rev. B,1981,23(10):5048-5079.
    [123] Troullier N, Martins J L. Efficient pseudopotentials for plane-wave calculations [J]. Phys. Rev. B,1991,43(3):1993-2006.
    [124] Bubb D M, Johnson S L, Belmont R, Schriver K E, Haglund Jr. R F, Antonacci C, Yeung L-S.Mode-specific effects in resonant infrared ablation and deposition of polystyrene [J], Appl. Phys. A,2006,83:147.
    [125] Wang L, Borthwick I S, Jennings R, McCombes P T, Ledingham K W D, Singhal R P, McLean CJ. Observations and analysis of resonant laser ablation of GaAs [J]. Appl. Phys. B,1991,53:34.
    [126] Beckmann H O, Koutecky J, Bona i Koutecky V. Electronic and geometric structure of Li4andNa4clusters [J]. J. Chem. Phys.,1980,73:5182.
    [127] Yabana K, Nakatsukasa T, Iwata J-I. Bertsch G F. Real-time real-space implementation of thelinear response time-dependent density-functional theory [J]. Phys. Status Solidi B,2006,243(5):1121–1138.
    [128] Otobe T, Yamagiwa M, Iwata J-I, Yabana K, Nakatsukasa T, Bertsch G F. First-principleselectron dynamics simulation for optical breakdown of dielectrics under an intense laser field [J]. Phys.Rev. B,2008,77:165104.
    [129] Shinohara Y, Kawashita Y, Iwata J-I, Yabana K, T Otobe, Bertsch G F. First-principlesdescription for coherent phonon generation in diamond [J]. J. Phys.: Condens. Matter,2010,22:384212.
    [130] Otobe T. First-principles calculations for multiphoton absorption in α-quartz under intense shortlaser irradiation [J]. J. Phys.: Condens. Matter,2010,22:384204.
    [131] Shinohara Y, Yabana K, Kawashita Y, Iwata J-I, Otobe T, Bertsch G F. Coherent phonongeneration in time-dependent density functional theory [J]. Phys. Rev. B,2010,82:155110.
    [132] Wang C, Jiang L, Wang F, Li X, Yuan Y P, Xiao H, Tsai H L, Lu Y F. First-principles electrondynamics simulation of diamond under femtosecond laser pulse train irradiation [J], J. Phys.: Condens.Matter,2012,24(27):275801.
    [133] Wang C, Jiang L, Li X, Wang F, Yuan Y P, Qu L T, Lu Y F. Nonlinear ionization mechanismdependence of energy absorption in diamond under femtosecond laser irradiation [J], J. Appl. Phys.,2013,113(16):143106.
    [134] Castro A, Marques M A L, Rubio A. Propagators for the time-dependent Kohn–Sham equations [J].J. Chem. Phys.,2004,121:3425.
    [135] Jiang L, Tsai H L. Prediction of crater shape in femtosecond laser ablation of dielectrics [J]. J.Phys. D,2004,37(10):1492-1496.
    [136] Jiang L, Tsai H L. Repeatable nanostructures in dielectrics by femtosecond laser pulse trains [J].Appl. Phys. Lett.,2005,87(15):151104-151106.
    [137] Jiang L, Tsai H L. Plasma modeling for ultrashort pulse laser ablation of dielectrics [J]. J. Appl.Phys.,2006,100(2):023116.
    [138] Jiang L, Tsai H L. A plasma model combined with an improved two-temperature equation forultrafast laser ablation of dielectrics [J]. J. Appl. Phys.,2008,104(9):093101
    [139] Bucksbaum P H. The future of attosecond spectroscopy [J]. Science,2007,317(5839):766-769.
    [140] Kienberger R, Hentschel M, Uiberacker M, Spielmann Ch, Kitzler M, Scrinzi A, Wieland M,Westerwalbesloh Th, Kleineberg U, Heinzmann U, Drescher M, Krausz F. Steering attosecond electronwave packets with light [J]. Science,2002,297(5584):1144-1148.
    [141] Johnsson P, Remetter T, L'Huillier A, Mauritsson J, Schafer K J. Attosecond control of ionizationby wave-packet interference [J]. Phys. Rev. Lett.,2007,99:233001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700