BL-SCFB-6型流化床生物质快速热解设备的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流化床生物质快速热解技术是一种高效的化学转化方法,可以将品位较低的林木剩余物等生物质资源转化成高附加值的化工产品或者清洁能源。本文在总结现有的国内外关于生物质快速热解技术研究的基础上,从产业化中试的角度出发,对热解工艺进行优化、对关键设备进行设计、对设备安装及调试过程进行规划,为我国生物质快速热解技术产业化发展及解决设备放大后的设计和优化提供基础。
     研制出一套年处理能力为1000吨的BL-SCFB-6型流化床生物质快速热解设备,并合理优化了热解工艺流程;研发了一套处理量为150kg/h的螺旋进料器,集成关风器、冷却水套、密封件等关键部件,解决了进料器存在的物料反喷、进料管温度过高、轴端密封不严等问题。通过冷态实验,掌握了螺旋进料器的进料情况以及转速和压力对进料的影响;研发了分段式流化床反应器并对布风板进行了优化设计;研发了筛板式冷凝塔,并通过流体力学加以验算;按设计要求绘制了设备平面布置图并编制了设备安装及调试方案,初步制定了设备安装、试压检漏、单体调试、联动调试及投料试车等操作规程。
Fluidized bed biomass fast pyrolysis technology is a highly efficient chemical conversion method which can transform the low-grade biomass into high quality bio-fuel or high value-added chemical products. Based on the summary of the existing domestic and international research on biomass fast pyrolysis technologies, this study not only propose the optimization of pyrolysis process, the design of key equipment, the planning of equipment installation and commissioning process in a pilot's point of view, but also provide a theoretical basis for our industrial technology development of biomass fast pyrolysis and the design and optimization of the device amplified.
     Developed a set of annual processing capacity of1,000tons of BL-SCFB-6-type fluidized bed biomass fast pyrolysis equipment, and reasonable optimize the pyrolysis process. Design a handling capacity of150kg/h screw feeder and integrate key components of the airlock, the cooling water jacket, seal component, and solve anti-spray, high temperature of feed tube, the shaft end sealing and other issues. Through cold state experiment, comprehend the feeding state of the screw feeder, as well as the influence of the speed and pressure. Design segmented fluidized bed reactor and to optimize the design of air distribution plate; Design sieve-condensing tower, checking through fluid dynamics; According to the design requirements of the equipment installation and commissioning programs, drawn equipment layout plan and describe the operating procedures Preliminary include equipment installation, pressure test leak detection, monomer debugging, linkage commissioning and put to trial.
引文
[1]柏雪源,易维明,王丽红,等.玉米秸秆在等离子体加热硫化床上的快速热解液化研究[J].农业工程学报,2005,21(12):127-130.
    [2]常建民等.林木生物质资源与能源化利用技术[M].北京:科学出版社,2010.
    [3]戴先文,周肇秋,吴创之,等.循环流化床作为生物质热解液化反应器的实验研究[J].化学反应工程与工艺,2000,16(3):263-269.
    [4]郭海霞,左月明,张虎.生物质能利用技术的研究进展[J].农机化研究,2011,6:178-185.
    [5]何芳,易维明,柏雪源.国外利用生物质热解生产生物油的装置[J].山东工程学院学报,1999,13(3):61-64.
    [6]洪军.生物质热裂解制油机理试验研究及流化床闪速热裂解装置设计[D].浙江大学,2002.
    [7]金涌,祝京旭,等.流态化工程原理[M].北京:清华大学出版社,2001.
    [8]李玉柱.生物质热裂解制取生物油试验装置的研制[D].吉林农业大学,2005.
    [9]梁庚煌.运输机械手册[M].化学工业出版社,1983:466-518.
    [10]林木森.国外生物质快速热解反应器现状[J].化学工业与工程技术,2010,31(5):34-36.
    [11]刘靖,殷晓荣.热磨机螺旋进料器反喷故障的应对策略[J].西北林学院学报,2008,23(3):199-200.
    [12]刘明华.生物质的开发与利用[M].北京:化学工业出版社,2012.
    [13]刘荣厚.生物质快速热裂解制取生物油技术的研究进展[J].沈阳农业大学学报,2007,38(1):3-7.
    [14]刘世锋,王述洋,姜年勇,等.生物质立式螺旋进料器的设计应用[J].机电产品开发与创新,2006,19(4):52-59.
    [15]龙恩深,马校飞,王亮等.生物质热解液化装置输料系统特性试验[J].重庆建筑大学学报,2005,27(6):76-79.
    [16]庞美容.慢速螺旋输送机的功率探讨[J].饲料工业,1994,15(11):17-18.
    [17]钱伯章.生物质能技术与应用[M].北京:科学出版社,2010.
    [18]邱钟明,陈砺.生物质气化技术研究现状及发展前景[J].可再生能源,2002(4):16-19.
    [19]任学勇,常建民,王鹏起,等.喷动循环流化床生物质快速热解设备的特性分析与发展研究综述[J].林产化学与工业,2009,29(5):122-126.
    [20]司慧,王霄.移动式生物质快速热解反应器的设计及流态化模拟[J].科技导报,2011,29(33):47-51.
    [21]隋倩倩,杨忠连,汪娟,等.生物质快速热解液化工艺研究进展[JJ.化学与生物工程,2012,29(33):1-4.
    [22]佟立成.生物质热裂解液化制备酚醛树脂关键技术研究[D].北京林业大学,2012.
    [23]王丰华,陈庆辉.生物质能利用技术研究进展[J].化学工业与工程技术,2009,30(3):32-35.
    [24]王洪志,陈攀峰,刘朝.生物质热解研究进展(综述)[J].河北科技师范学院学报,2006,2(3):75-79.
    [25]王鹏起,常建民,杜洪双,等.落叶松树皮喷动循环流化床快速热解的影响因素[J].林业科学,2009,45(10):126-129.
    [26]王鹏起,常建民,杜洪双,等.喷动流化床在生物质快速热解技术中的应用[J].北华大学学报,2007,8(1):92-96.
    [27]魏新利,贺心燕,张军,等.生物质热解装置螺旋加料系统研究[J].可生能源,2007,25(6):17-20.
    [28]徐莹,王铁军,马隆龙,等.真空热解松木粉制备生物油[J].农业工程学报,2013,29(1):196-201.
    [29]闫桂焕,许敏,孙荣峰.生物质螺旋给料机的设计[J].可再生能源,2007,25(1):73-74.
    [30]杨士春,刘荣厚.流化床生物质快速裂解制液体燃料[J].精细化工原料及中间体,2005,7:13-16.
    [31]《运输机械设计选用手册》编辑委员会.运输机械设计选用手册[M].北京:1999.
    [32]张军,高希培,贺心燕,等.生物质热解液化装置结焦成因及除结焦研究[J].林业机械与木工设备,2008,36(10):16-18.
    [33]张立塔.喷动流化床快速热解关键技术及产物应用研究[D].北京:北京林业大学,2010.
    [34]赵杏新,刘伟民.喷动床技术研究进展[J].农业机械学报,2006,37(7):189-193.
    [35]朱斌听.粮食装卸运输机械[M].北京:中国财政经济出版社,1984:236-256.
    [36]朱锡锋,陆强,郑冀鲁,等.生物质热解与生物油的特性研究[J].太阳能报,2006,27(12):1285-1289.
    [37]朱锡锋,陆强.生物质快速热解制备生物油[J].科技导报,2007,25(21)70-75.
    [38]朱锡锋,朱建萍.生物质热解液化技术经济分析[J].能源工程,2004,(6):32-34.
    [39]Babu B V,Chaurasia A S.Pyrolysis of biomass:improved models for simultaneous kinetics and transport of heat,mass and momentum[J]. Energy Conversion and Management.2004,45(9-10): 1297-1327.
    [40]C.D.Blasi,G.Signorelli,C.D.Russo,G.Rea.Product distribution from pyrolysis of wood and Agri cultural residues[J].Ind.Eng.Chem.Res,1999,38:2216-2224.
    [41]D. Vamvuka. Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes—An overview[J]. International Journal of Energy Research,2010.
    [42]Diebold J P, Czernik S, Scahill J W, et al. Hot-gas filtration to remove char from pyrolysis vapours produced in the vortex reactor at NREL[C]. NREL,1994:90-108.
    [43]Diebold JP, Bridgwater AV. Developments in Thermochemical Biomass Conversion[J].Overv iew of fast pyrolysis of biomass for the production of liquid fuels,1997,1:5-26.
    [44]E.Apaydin-Varol, E.Putun, A.E.Putun.Slow pyrolysis of pistachio shell[J].Fuel,2007,86:1892-1 899.
    [45]Eom I Y, Kim K H, Kim J Y, et al. Characterization of primary thermal degradation featu res of lignocellulosic biomass after removal of inorganic metals by diverse solvents[J].Bioresourc e Technology,2011,102(3):3437-3444.
    [46]Eriksson G, Kjellstrem B. Combustion of wood hydrolysis residue in a 150 kW powder burner [J]. Fuel,2004,(83):1635-1641.
    [47]Jianjun Dai, John R. Grace. Biomass granular screw feeding:An experimental investigation [J]. biomass and bioenergy,2011,35:942-955.
    [48]Jun Zhang, Zhen-wei Yuan, Xin-li Wei.An automatic shake mechanism for the biomass pyrolysis feeding system[J].PowderTechnology,2011,207:348-352.
    [49]Klass DL.Fuels and Chemicals[J].Biomass for Renewable Energy,1998,495-497.
    [50]Lee Sun-Hoon,Eom Min-Seop, Yoo Kyung-Seun,et al.The yields and composition of bio-oil produced from Quercus Acutissimain a bubbling fluidzed bed pyrolyzer[J]. Journal of Analytical and Applied Pyrolysis,2008,83(1):110-114.
    [51]Onay O, Kockar O M. Slow, fast and fash pyrolysis of rapeseed[J].Renewable Energy 2003,28(15): 2417-2433.
    [52]Sebastien Baumlin. Francois Broust. Monigue Ferrer, et al.The continuous self-stirred tank reactor:measurement of the cracking kinetics of biomass pyrolysis vapours[J].Chemical Engineering Science,2005,60:41-55.
    [53]Sharma R K, Bakhshi N N. Catalytic upgrading of pyrolysis oil[J].Energy & Fuels,1993,7: 306-314.
    [54]Sipilae K, Kuoppala E, Fagernas L, et al.Characterization of biomass-based flash pyrolysis oils[J]. Biomass and Bioencrgy,1998,1(14):103-113.
    [55]Tomoaki Minowa, Teruo Kondo, Soetrisno T Sudirjo, et al.Thermochemical liquefaction of indonesian biomass residues[J].Biomass and Bioenergy,1998,1(14):517-524.
    [56]WAGENAAR B M, PRINS W, VANSWAAIJ M W P. Pyrolysis of biomass in the rotating cone reactor:Modeling and experimental justification[J].Chemical Engineering Science,1994,49(24):5109-5126.
    [57]Wang Ding-neng, Stefan Czernik, Esteban Chornet, et al.Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oils[J].Energy Fuels,1998,12(1):19-24.
    [58]Wilson N G, Williams P T.Investigation into the potential of a novel superacid catalyst for the catalytic upgrading of pyrolytic bio-oil[J].International Journal of Energy Research,2003,27(2): 131-143.
    [59]Zhu ping, et al. A study of pyrolysis and pyrolysis products of flame-retardant cotton fabrics by DSC.TGA and PY-GC_MS[J]Journal of Analytical and Applied Pyrolysis,2004,71(2):645-655.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700