加压流化床流体力学性能研究及CFD数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气-固流化床广泛应用于许多工业过程,如催化裂化、S-zorb脱硫工艺等,了解并改善其流动行为有助于装置的平稳运行及目标产物收率的提高,对气-固流化床特别是气-固加压流化床压力脉动信号进行深入分析有助于更好地了解其流动行为。为了研究压力脉动信号与加压气-固流化床内流动行为的关系,以FCC催化剂为实验物料,采用密相段内径300mm、高度3800mm、扩大段内径600mm、高度800mm的加压流化床,改变系统压力,测量不同气速时各轴向位置处FCC催化剂的体积分率,考察压力对流态化行为的影响,并对压力脉动信号进行统计分析、快速傅里叶变换(FFT)和小波分析。
     压力升高,气相密度增大,气体对FCC颗粒曳力增加,使得流化床内颗粒浓度分布更加均匀,得到更加“平滑”的流态化。使用无量纲气速Frp表征不同气速和压力下的流态化,发现相同Frp时流态化状态相近。因此,可以在较高气速、较低压力和较低气速、较高压力下的得到相同的流态化。
     采用统计分析的方法得到流型转变速度u。,发现不同轴向位置的变化对于流型转变速度没有明显的影响。应用功率谱方法得出了气泡运动的特征频率为0.5-1.75Hz。压力升高,气泡的运动频率向高频区移动(1.5Hz-2.5Hz)。通过小波分析获得了代表气泡行为的特征频率(D5-D7);分析此频段能量特征值随表观气速的变化规律,得出了流型转变速度uc,并考察压力对uc的影响。结果表明:压力波动能量集中在低频,随着气速的增加能量特征值先增加后减小,压力升高uc减小。
     通过流体力学计算(CFD)软件,对三维流化床进行模拟,采用双流体模型,模拟了不同压力下流化床内FCC催化剂颗粒体积分率的分布,通过模拟发现:随着压力的增加,轴向分布更加均匀。高压能改变气-固流化系统中颗粒与颗粒之间、颗粒与气体之间的作用力,抑制气泡的生长,产生更加均匀的流态化行为。
Gas-solid fluidized bed is widely used in many industrial processes such as catalytic cracking, S-zorb desulfurization process, etc. Understanding and improving the flow behavior is helpful to operate the fluidized bed smoothly and increase the yield of target products. It is necessary to find out the flow behaviors in the reactor by analysis the pressure fluctuation in the gas-solid fluidized bed, especially the gas-solid pressurized fluidized bed. In order to investigate the relationship between the pressure fluctuation and the flow behavior in the pressured gas-solid fluidized bed. Experiments were conducted in pressurized fluidized bed of 300mm-i.d.×3800mm in high(with an expanded top section of 600mm-i.d.×800mm in high) with FCC materials. FCC catalyst volume fraction distribution at different axial positions under diffeerent air velocity and pressure were measured. Statistical analysis, fast Fourier transform (FFT), and wavelet analysis were also used to investigate the pressure fluctuations in the fluidized bed.
     With the increase of pressure, gas density increase, the drag force on the FCC particles increased, Making more uniform particle distribution in fluidized bed, a "smooth" the fluidization were found. The fluidization at different pressure and gas velocity can be characterized by a dimensionless parameters Frp. So, the same fluidization can be obtained at higher gas velocity,lower pressure or lower gas velocity,higher pressure.
     Through statistical analysis,flow regime transition velocity uc was determined, Axial position had no significant effect on uc. By analysis of power spectrum, characteristic frequency of bubbles(0.5Hz~1.75Hz) was obtained. By wavelet analysis, characteristic frequency of bubbles(D5-D7) was found.
     uc can be determined by analysising the energy distribution of this band changed with superficial gas velocity. The influence of pressure on uc was also discussed. The results showed that:power energy mainly concentrated in the low-frequency, With the increase of gas velocity, energy eigenvalue of the pressure fluctuation increased first and then decreased, When pressure increased uc decreased.
     By computational fluid dynamics (CFD) software, two-dimensional and three-dimensional fluidized bed were simulated. Two-fluid model was adopted to simulate FCC catalyst particle distribution under different pressure in the fluidizedbed. Through simulation:With the pressure increased, more uniform axial distribution was found.Pressure can change the force between gas-particles and particles- articles, inhibit the growth of the bubble, resulting in a more uniform fluidization
引文
[1]陈甘棠.多相流反应工程[M].杭州:浙江大学出版社,1996
    [2]Lewis W K, Gilliland E R, Bauer W C. Characteristics of Fluidized Particles[J]. Industrial and Engineering Chemistry,1949,41(6):1104-1117
    [3]Toomey R D, Johnstone H F. Gaseous Fluidization of Solid Particles[J]. Chemical Engineering Progress,1952,48(5):220-226
    [4]Davidson J F, Harrison D. Fluidised Particles[M]. New York:Cambridge Unversity Press, 1963
    [5]Werther J. Measurement Techniques in Fluidized Beds[J]. Powder Technology,1999,102(1): 15-36
    [6]程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,1998
    [7]赵贵兵,阳永荣.流化床压力波动多尺度多分形特征[J].高校化学工程学报,2003,17(006):648-654
    [8]Leva M. Fluidization[M]. New York:McGraw-Hill,1959
    [9]Ergun S. Flow through Packed Columns[J]. Chemical Engineering Progress 1952,48(2):89
    [10]Wen C, Yu Y. Mechanics of Fluidization[J]. AIChE Chemical Engineering Progress Symposium Series,1966, (62):100-105
    [11]景慧敏,程中虎,王鸿瑜.压力下流化床流动特性的实验研究[J].燃料化学学报,2008,36(001):104-107
    [12]陈伟,阳永荣,洪良斌.加压流态化Ⅲ压力脉动与分形研究[J].化学反应工程与工艺,1998,
    [13]梁卫华,王金福,韩禄等.压力脉动法预测硅粉颗粒最小流化速度的实验[J].过程工程学报,2002,2(01):1-5
    [14]Felipe C, Rocha S. Prediction of Minimum Fluidization Velocity of Gas-Solid Fluidized Beds by Pressure Fluctuation Measurements--Analysis of the Standard Deviation Methodology [J]. Powder technology,2007,174(3):104-113
    [15]Yang G Q, Du B, Fan L S. Bubble Formation and Dynamics in Gas-Liquid-Solid Fluidization--a Review[J]. Chemical Engineering Science,2007,62(1-2):2-27
    [16]Geldart D. Types of Gas Fluidization[J]. Powder Technology,1973,7(5):285-292
    [17]Mawatari Y, Kawai A, Tatemoto Y, et al. Minimum Bubbling Velocity and Homogeneous Fluidization Region under Reduced Pressure for Group-A Powders[J]. Journal of chemical engineering of Japan,2004,37(1):89-94
    [18]Mutsers S M P, Rietema K. The Effect of Interparticle Forces on the Expansion of a Homogeneous Gas-Fluidized Bed[J]. Powder Technology,1977,18(2):239-248
    [19]Pun ocha M, Draho J, ermak J, et al. Evaluation of Minimum Fluidizing Velocity in Gas Fluidized Bed from Pressure Fluctuations[J]. Chemical Engineering Communications,1985, 35(1):81-87
    [20]秦霁光.流化床中气泡的汇合长大和床层膨胀[J].化工学报,1980,31(1):83-94
    [21]曹晏,邓金明.加压流化床冷态模拟初探(Ⅰ)—压力及内部构件对细颗粒物料初始流化状态的影响[J].化学工业与工程,1995,12(004):8-15
    [22]陈沙鹏,俞芷青.操作压力对鼓泡流态化向湍动流态化转变的影响[J].石油化工,1990,19(10):696-700
    [23]Cao J, Cheng Z, Fang Y, et al. Simulation and Experimental Studies on Fluidization Properties in a Pressurized Jetting Fluidized Bed[J]. Powder technology,2008,183(1): 127-132
    [24]汪智国,魏飞.固含率对气体混合行为的影响[M].中国颗粒学会首届年会论文集.北京.1999:396-400
    [25]Foka M, Chaouki J, Guy C, et al. Gas Phase Hydrodynamics of a Gas-Solid Turbulent Fluidized Bed Reactor[J]. Chemical Engineering Science,1996,51(5):713-723
    [26]Ellis N, Bi H T, Lim C J, et al. Hydrodynamics of Turbulent Fluidized Beds of Different Diameters[J]. Powder technology,2004,141(1-2):124-136
    [27]Bi H, Fan L S. Existence of Turbulent Regime in Gas-Solid Fluidization [J]. American Institute of Chemical Engineers Journal,1992,38(2):297-301
    [28]Kehoe P, Davidson J. Continuously Slugging Fluidized Beds[J]. Powder technology,1970, (70):97-116
    [29]Yerushalmi J, Cankurt N T. Further Studies of the Regimes of Fluidization[J]. Powder Technology,1979,24(2):187-205
    [30]Bi H, Grace J, Lim K. Transition from Bubbling to Turbulent Fluidization[J]. International Journal of Multiphase Flow,1996,22(1001):113-113
    [31]Li J, Kuipers J A M. Effect of Pressure on Gas-Solid Flow Behavior in Dense Gas-Fluidized Beds:A Discrete Particle Simulation Study[J]. Powder Technology,2002,127(2):173-184
    [32]Yerushalmi J, Cankurt N. Further Studies of the Regimes of Fluidization[J]. Powder Technology,1979,24(2):187-205
    [33]Schnitzlein M G, Weinstein H. Flow Characterization in High-Velocity Fluidized Beds Using Pressure Fluctuations [J]. Chemical Engineering Science,1988,43(10):2605-2614
    [34]Yerushalmi J, Cankurt N, Geldart D, et al. Further studies of the regimes of fluidization[J]. Powder Technology,1979,24(2):187-205
    [35]Bae D H, Ryu H J, Shun D, et al. Effect of Temperature on Transition Velocity from Turbulent Fluidization to Fast Fluidization in a Gas Fluidized Bed[J]. Journal-Korean Institute of Chemical Engineers,2001,39(4):456-464
    [36]Li Y, Kwauk M. The Dynamics of Fast Fluidization[M]. Plenum Press:New York.1980: 537-544
    [37]Chehbouni A, Chaouki J, Guy C, et al. Characterization of the Flow Transition between Bubbling and Turbulent Fluidization[J]. Industrial & engineering chemistry research,1994, 33(8):1889-1896
    [38]Le Palude T, Zenz F. Supercritical Phase Behaviour of Fluidparticle Systems[J]. Fluidization Ⅵ,1989,
    [39]Kawabata J U N I, Yumiyama M, Tazaki Y, et al. Characteristics of Gas-Fluidized Beds under Pressure[J]. Journal of chemical engineering of Japan,1981,14(2):85-89
    [40]Olowson P A, Almstedt A E. Influence of Pressure and Fluidization Velocity on the Bubble Behaviour and Gas Flow Distribution in a Fluidized Bed[J]. Chemical Engineering Science, 1990,45(7):1733-1741
    [41]Gilbertson M A, Cheesman D J, Yates J G. Observations and Measurements of Isolated Bubbles in a Pressurized Gas-Fluidized Bed[M]. FAN S, KNOWLTON T. Fluidization Ⅸ, edited by Durango; Engineering Foundation.1998
    [42]Sidorenko I, Rhodes M J. Influence of Pressure on Fluidization Properties[J]. Powder technology,2004,141(1-2):137-154
    [43]张永民,卢春喜,时铭显.催化裂化新型环流汽提器的大型冷模实验[J].高校化学工程学报,2004,18(003):377-380
    [44]Abrahamsen A R, Geldart D. Behaviour of Gas-Fluidized Beds of Fine Powders Part Ⅰ. Homogeneous Expansion[J]. Powder technology,1980,26(1):35-46
    [45]Richtberg M, Richter R, Wirth K E. Characterization of the Flow Patterns in a Pressurized Circulating Fluidized Bed[J]. Powder technology,2005,155(2):145-152
    [46]高成,余啸海Matla小波分析与应用[M].国防工业出版社,2007
    [47]马丽萍,石炎福,余华瑞.小波分析及其在化工信号分析处理中的应用及展望[J].化工进展,2005,24(002):147-153
    [48]冀海峰,黄志尧.基于小波变换的气固流化床压力流动信号的分析[J].高校化学工程学报,2000,14(006):553-557
    [49]Lu X, Li H. Wavelet Analysis of Pressure Fluctuation Signals in a Bubbling Fluidized Bed[J]. Chemical Engineering Journal,1999,75(2):113-119
    [50]Mudde R F, Simonin O. Two and Three Dimensional Simulations of a Bubble Plume Using a Two-Fluidized Model[J]. Chemical Engineering Science,1999,54(5061):5069-5072
    [51]Wang J, Van der Hoef M, Kuipers J. Why the Two-Fluid Model Fails to Predict the Bed Expansion Characteristics of Geldart a Particles in Gas-Fluidized Beds:A Tentative Answer[J]. Chemical Engineering Science,2009,64(3):622-625
    [52]Bai D, Shibuya E, Nakagawa N, et al. Characterization of Gas Fluidization Regimes Using Pressure Fluctuations[J]. Powder technology,1996,87(2):105-111
    [53]Al-Zahrani A A, Daous M A. Bed Expansion and Average Bubble Rise Velocity in a Gas-Solid Fluidized Bed[J]. Powder technology,1996,87:255-257
    [54]Botterill J, Desai M. Limiting Factors in Gas-Fluidized Bed Heat Transfer[J]. Powder technology,1972,6(4):231-238
    [55]Kawabata J U N I, Yumiyama M, Tazaki Y, et al. Characteristics of Gas-Fluidised Beds under Pressure[J]. Journal of chemical engineering of Japan,1981,14(2):85-89
    [56]Rowe P, Foscolo P, Hoffmann A, et al. X-Ray Observation of Gas Fluidized Beds under Pressure[J]. Chemieal Engineering Progress,1983, (47):53-60
    [57]Olowson P, Almstedt A. Influence of Pressure and Fluidization Velocity on the Bubble Behaviour and Gas Flow Distribution in a Fluidized Bed[J]. Chemical Engineering Science, 1990,45(7):1733-1741
    [58]Rong D, Horio M. Behavior of Particles and Bubbles around Immersed Tubes in a Fluidized Bed at High Temperature and Pressure:A Dem Simulation[J]. International Journal of Multiphase Flow,2001,27(1):89-105
    [59]Yates J. Effects of Temperature and Pressure on Gas-Solid Fluidization[J]. Chemical Engineering Science,1996,51(2):167-205
    [60]Roy M, Kumar V R, Kulkarni B, et al. Simple Denoising Algorithm Using Wavelet Transform[J]. American Institute of Chemical Engineers Journal,1999,45(11):2461-2466
    [61]van Ommen J R, de Korte R J, van den Bleek C M. Rapid Detection of Defluidization Using the Standard Deviation of Pressure Fluctuations[J]. Chemical engineering and processing, 2004,43(10):1329-1335
    [62]Van der Schaaf J, Schouten J, Van den Bleek C. Origin, Propagation and Attenuation of Pressure Waves in Gas--Solid Fluidized Beds[J]. Powder technology,1998,95(3):220-233
    [63]Yates J, Simons S. Experimental Methods in Fluidization Research[J]. International Journal of Multiphase Flow,1994,20:297-330
    [64]Davidson J. The Two-Phase Theory of Fluidization:Successes and Opportunities, F,1991 [C].
    [65]Fan L, Ho T C, Hiraoka S, et al. Pressure Fluctuations in a Fluidized Bed[J]. AIChE Journal, 1981,27(3):388-396
    [66]van Ommen J R, Schouten J C, van den Bleek C M. An Early-Warning-Method for Detecting Bed Agglomeration in Fluidized Bed Combustors, F,1999 [C]. ASME New York,
    [67]Bai D, Grace J R, Zhu J X. Characterization of Gas Fluidized Beds of Group C, a and B Particles Based on Pressure Fluctuations[J]. The Canadian Journal of Chemical Engineering, 1999,77(2):319-324
    [68]Roy R, Davidson J, Tuponogov V. The Velocity of Sound in Fluidised Beds[J]. Chemical Engineering Science,1990,45(11):3233-3245
    [69]Hong S, Jo B, Doh D, et al. Determination of Minimum Fluidization Velocity by the Statistical Analysis of Pressure Fluctuations in a Gas--Solid Fluidized Bed[J]. Powder technology,1990,60(3):215-221
    [70]Yang T Y, Leu L. Study of Transition Velocities from Bubbling to Turbulent Fluidization by Statistic and Wavelet Multi-Resolution Analysis on Absolute Pressure Fluctuations [J]. Chemical Engineering Science,2008,63(7):1950-1970
    [71]Kage H, Iwasaki N, Yamaguchi H, et al. Frequency Analysis of Pressure Fluctuation in Fluidized Bed Plenum[J]. Journal of chemical engineering of Japan,1991,24(1):76-81
    [72]Parise M, Kurka P, Taranto O. The Gaussian Spectral Pressure Distribution Applied to a Fluidized Bed[J]. Chemical Engineering and Processing:Process Intensification,2009,48(1): 120-125
    [73]Yang T Y, Leu L P. Multi-Resolution Analysis of Wavelet Transform on Pressure Fluctuations in an L-Valve[J]. International Journal of Multiphase Flow,2008,34(6): 567-579
    [74]蔡平,金涌,俞芷青.气一固密相流化床流型转变的机理模型[J].化学反应工程与工艺,1992,9(3):289-301
    [75]陈沙鹏,俞芷青,金涌.操作压力对鼓泡流态化向湍动流态化转变的影响[J].石油化工,1990,19(10):696-699
    [76]蔡平,金涌,俞芷青.鼓泡流态化向湍动流态化过渡的判别[J].化工学报,1986(46),391-400
    [77]程易,金涌.气固两相流动数值模拟及其非线性动力学分析[D].北京;清华大学,2000
    [78]Syamlal M, o'Brien T J. Computer Simulation of Bubbles in a Fluidized Bed[J]. American Institute of Chemical Engineers symposium series,1989,85(270):22-31
    [79]Wen C Y, Yu Y H. Meehanies of Fluidization[J]. ChemEng, Prog Symp series,1966, (62):100-111
    [80]S E. Fluid Flow Thlough Paeked Colunnns[J]. Chemieal Engineering Progress,1952,48: 89-93
    [81]Zhang Y, Reese J M. The Drag Force in Two Fluid Models of Gas-Solid Flows[J]. Chemical Engineering Science,2003, (28):1641-1644
    [82]肖海涛,祁海鹰,由长福.循环流化床气固曳力模型[J].计算物理,2003,20(001):25-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700