基于FLUENT软件的石油污染土壤浸取流化床的模拟与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕利用流态化浸取技术处理高浓度石油污染土壤展开讨论。以浸取流化床设备为研究对象,以水、土分别代替浸取剂和石油污染土壤进行冷漠试验,运用正交化方法对各试验因素经行设计,采用FLUENT流体力学模拟软件作为试验手段模拟浸取流化床内部流场,为流态化浸取设备的热模试验提供理论上的数据与支持。
     浸取流化床的结构直接影响其内部流态化浸取效果,通过对错流浸取流化床与现有逆流浸取流化床内部流场的放大模拟、比较及分析,错流浸取流化床存在局部流化速度过高,出口夹带量较大,泥浆大量流入进水口等问题,且无法通过调整初始操作条件进行改善,因此,本文选择流态化效果较好的逆流浸取流化床作为流态化浸取设备,其结构设计参数来源于现有小型逆流浸取流化床,各操作参数范围则可由广义流态化公式进行估算。
     现有的逆流浸取流化床结构设计虽较为合理,但其在进行流态化操作的过程中也存在着一些问题,如:进料扩大段对浆料的浓密作用不大,出水溢流不顺利等,尤其在进料土壤为40目的情况下体现较为明显。在出口处加装溢流堰,不仅使这些问题得到改善,而且使土壤颗粒在流态化浸取段分布更加均匀。
     通过对以上各实验方案的研究表明,带有溢流堰的逆流浸取流化床流态化效果较佳,且具有进一步优化的潜力和空间,其各项试验数据可以作为后期优化设计的有利依据。
The article mainly introduced the research on the treating high concentrated of petroleum
     contaminated soil by fluidized leaching technology. Experimental program were designed byorthogonal experiment assistant. FLUENT was adopted as the test means to simulate theinternal flow field of leaching fluidized bed. Instead of the leaching agent and oilcontaminated soil,the cold model test of the leaching fluidized bed equipment used water andsoil as the material, which can provide the theoretical data to the thermal model test.
     The structure of the leaching fluidized bed affects its internal operating result directly.Compared with the available countercurrent leaching fluidized bed, The cross-flow leachingfluidized bed had the problem that the partial fluidization velocity of mud was so high that alarge amount of which outflowed from the outlet, or flowed into the water inlet. And it cannot be improved by adjusting the initial operating conditions. Therefore, the countercurrentleaching fluidized bed whose structural design parameters derived from the existingsmall-scale countercurrent leaching fluidized bed was chose as the trial equipment, and therange of operating parameters can be estimated by the generalized fluidization formula.
     The design of the available countercurrent leaching fluidized bed was quite reasonable,but there were some problems in the process of fluidization, for instance, the expansionsection of the equipment densed slurry of little use, and water overflow was not smooth, andso on, especially in the case of feeding the40mesh soil. Installation of an overflow weir atthe outlet, not only to bring these issues to be improved and more uniform distribution of soilparticles in the fluidized leaching segment.
     Through comprehensive comparison of the above options,the effect of the countercurrentleaching fluidized bed with the overflow weir was better, and has the potential to furtheroptimize space, and its test data can be used as post-optimization design favorablebasis.
引文
[1]刘五星,骆永明,滕应,等.我国部分油田土壤及油泥的石油污染初步研究[J].土壤,2007,39(2):247-250
    [2]卜淑君.石油化学工业固体废物治理[M].北京:中国环境科学出版社,1992.12
    [3]李丹梅,王艳霞,余庆中,等.含油污泥调剖技术的研究与应用[J].石油钻采工艺,2003,3(25):745-762
    [4]何良菊,魏德洲,张维庆.土壤微生物处理石油污染的研究[J].环境科学进展,1999,7(3):110-115
    [5]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004
    [6] L Zhang, P Somasundaran, V Ososkov et a1. Flotation of hydrophohic contaminants fromsoil[J].Colloids and Surfaces,200l,1l7:235-246
    [7]刘光全,王蓉莎,肖遥.含油污泥处理技术研究[J].重庆环境科学,1999,21(3):49-52.
    [8]黄松芝,刘真凯,赖晓雪.孤东油田含油污泥现状及处理技术[J].油气田环境保护,2002,12(1):25-27
    [9]常银环,任红宇,宋迎来.油田含油泥砂的处理[J].油气田地面工程。1996,5(2):33-34,37
    [10]赵玉霞,杨珂.石油污染土壤修复技术研究综述[J].环境科技,2009,22(A1):60-63
    [11]纪录,张晖.原位化学氧化法在土壤和地下水修复中的研究进展[J].环境污染治理技术与设备,2003,4(6):37-40.
    [12]骆永明.污染土壤修复技术研究现状与趋势[J].化学进展,2009,21(2/3):559-565
    [13]孙铁衍,宋玉芳,许华夏,等.植物法生物修复多环芳烃和矿物油污染土壤的调控研究[J].应用生态学报,1999,10(2):225-229.
    [14]时钧,汪家鼎等.化学工程手册[D].北京:化学工业出版社,1996
    [15]曹雁平,刘玉德.用L型螺旋式连续逆流浸取器研究了绿茶连续逆流浸取的工艺[J].食品科学,2001,22(11):43-46
    [16]刘玉德,曹雁平,夏阁堂等.红茶连续逆流浸取工艺研究[J].北京工商大学学报:自然科学版,2003,21(3):10-13
    [17]陈明功,崔敏,陶虹.连续逆流浸取器提取天然烟碱的研究[J].淮南工业学院学报,2002,22(3):29-33
    [18]程伟,曹雁平,张慧等.植物有效成分的连续逆流浸取技术研究现状[J].食品科学,2007,28(10):616-620
    [19]龚乾胡洁雪.硫代硫酸盐法处理含铜硫化床金精矿[J].化工冶金,1990,2:145-152.
    [20]刘大川,张亮,刘红丹.花生浓缩蛋白的制备工艺研究[J].中国油脂,2009,34(9):23-25.
    [21]高云中,张晖,袁俊,等.响应面法优化醇法花生蛋白提取工艺及其氨基酸分析[J].中国油脂,2009,34(5):17-20.
    [22]喻新平.盐酸浸取高岭土中氧化铝的研究[J].矿产综合利用,2002,2:10-12.
    [23]吴岳琴,兰树荣.流态化—一门高效率的工程技术[J].石油与天然气化工,1998,27(01):10-14,18
    [24]刘翀.流态化技术在石化工业中的应用[J].石油和化工设备,2005,5:15-17
    [25] P.Basu, A.A.Avidan. Circulating Fluidized Bed Technology IV[J]. AIChE.1993.
    [26] P.Basu, S.A.Fraser. Circulating Fluidized Bed Boiler[M]. Boston:Butterworths-Heine-mann,1991.
    [27] A.Thurnhofer, M.Schachinger, F.Winter. Iron Ore Reduction in a Laboratory Scale Fluidized BedReactor—Effect of Pre-reduction on Final Reduction Degree[J]. ISIJ,2005,45(2):151-158.
    [28]郭慕孙.流态化浸取和洗涤[M].北京:科学出版社,1979.
    [29]王秋霞,李琦,马化龙,等.难选铜钼矿铜钼分离新工艺研究[J].有色金属(冶炼部分),2003,5:18-20.
    [30]赵世民,王淀佐,胡岳华,等.铝土矿脱硅研究现状[J].矿业研究与开发,2004,(10):3744.
    [31]杨波,王京刚,张亦飞,等.常压下高浓度NaOH浸取铝土矿预脱硅[J].过程工程学报,2007,7(5):922-927.
    [32]朱申红,吴德礼.化学浸洗法处理黄铁矿烧渣的研究[J].化工矿物与加工,2004,8:12-14.
    [33] RN Rickles. Liquid-solid extraction[J]. Chem. Eng,1965,72(6):157-172.
    [34] K.Plinszky.Use of Fluidized Layer Method for washing and Concentration of PigmentSuspension[J].Zh Prikl Khim,1966,39(1):225-227.
    [35] I. A. Yakubovich, E. P. Tyuftin,V. A. Tolkachev. Separation and washing of sediment in a columnwith fluidized bed[J]. Chemical and Petroleum Engineering,1970,6(9):735-737.
    [36] V.I.Korsunski.Calculation of the Fluidized-Bed Leaching of Zinc Sinters with Consideration of Mixingof the Solid Phase[J].Tsvet.Metal,1970,43(5):21-26.
    [37] I.A.Burovoi.Semi-Industrial Testing of the Fluidized-Bed Acid Leaching of ZincCalcine[J].Tsvet.Metal,1971,44(10):16-19.
    [38]郭慕孙,郭铨.日新月异的流态化技术[J].百科知识,1990,11:45-48
    [39]傅铁铮.流态化洗涤工艺在活性白土生产中的应用试验[J].非金属矿,1991,4:23-25.
    [40]李小斌,李斌,彭志宏,等.赤泥流态化洗涤[J].过程工程学报,2010,10(3):445-450
    [41]王伟文,周忠涛,陈光辉,等.流态化过程模拟的研究进展[J].化工进展,2011,30(1):58-64.
    [42]魏淑贤,沈跃,黄延军.计算流体力学的发展及应用[J].河北理工学院学报,2005,27(2):115-117,122
    [43] P.J.罗奇著,钟锡昌,刘学宗译.计算流体力学[M].北京:科学出版社,1983.
    [44]姚征,陈康民.CFD通用软件综述[J].上海理工大学学报,2002,24(2):137-144
    [45]严敬.工程流体力学[M].重庆:重庆大学出版社,2007.
    [46]杨建国,张兆营,鞠晓丽,等.工程流体力学[M].北京:北京大学出版社,2010.
    [47]温正,石良辰,任毅如. FLUENT流体计算应用教程[M].北京:清华大学出版社,2009
    [48]黄永春,唐军,谢清若,等.计算流体力学在化学工程中的应用[J].现代化工,2007,27(5):65-68,74.
    [49]约翰D.安德森(JohnD.Anderson)著,吴颂平,刘赵森译.计算流体力学基础及其应用[M].北京:机械工业出版社,2007.
    [50]于勇,张俊明,姜连田. FLUENT入门与进阶教程[M].北京:北京理工大学出版社,2008
    [51]余江洪,肖金生,朱宗柏. Fluent软件的多重网格并行算法及其性能[J].武汉理工大学学报:交通科学与工程版,2009,1:133-136.
    [52]朱红钧,林无华,谢龙汉. FLUENT流体分析及仿真实用教程[M].北京:人民邮电出版社,2010.
    [53]李进良,李承曦,胡仁喜.精通FLUENT6.3流场分析[M].北京:化学工业出版社,2009.
    [54]朱红钧,林无华,谢龙汉. Fluent12流体分析及工程仿真[M].北京:清华大学出版社,2011
    [55]顾正萌,郭烈锦,高晖.沉流式滤筒除尘器气固两相流动的数值模拟与分析[J].化工机械,2002,29(4):197-202.
    [56]金颖,周伟国,阮应君.烟气扩散的CFD数值模拟[J].安全与环境学报,2002,2(1):21-23.
    [57]汪小憨,陈恩鉴,林伯川.喷射器结构分析及两类喷射器性能比较[J].工业锅炉,2001,6:31-34.
    [58]刘霞,葛新锋.FLUENT软件及其在我国的应用[J].能源研究与利用,2003(2):36-39.
    [59]张彦婷,高广德,操波.FLUENT软件在我国环保设备领域中的应用[J].能源与环境,2008,1:83-85
    [60]李洪钟.流态化技术与计算机模拟[J].计算机与应用化学,2008,25(9):1047-1052.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700