碳纤维布加固H型钢梁的试验研究和数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维复合材料(FRP)以其轻质高强、耐腐蚀、施工性能好等优越性能在工程加固中应用普遍,并开始以各种形式应用到各类土建结构工程中,目前主要用于加固混凝土结构。国内外有相关人员对碳纤维(CFRP)加固钢结构进行了研究,但是仅对CFRP加固钢梁和组合梁进行了部分试验研究和理论分析,缺乏基于试验验证的大量的系统化的精细有限元分析和模拟,以及对其在各种构件参数和材料参数下的构件承载力状态进行系统化研究。对其开裂强度模型,塑性状态下的开裂机理,破坏模式和参数等方面的研究也不够。
     本文对CFRP加固H型钢梁进行了两组对比试验;结合断裂力学提出三种试验计算模型,通过模型和试验比较,确定模型破坏参数;并采用其中一种模型进行了参数分析。所做工作包括:
     1、在查阅国内外文献的基础上,总结前人所做的理论与试验研究,提出课题的研究目的和主要内容。了解粘结过程,归纳各种粘结强度模型。
     2、对不同加载方式和不同加固模式下的CFRP加固H型钢梁进行了两组比较试验,并对试验结果进行了综合分析。通过对试验结果的比较分析,给出了各种加固方式下的钢梁的极限承载力变化及CFRP布和钢梁的各项力学性能和详细数据。并通过对试验结果的比较分析,得出了一些具有工程指导意义的结论。
     3、比较已有模型的优缺点,结合断裂力学理论,提出用内聚力接触、内聚力单元、扩展有限元模拟界面开裂,对比试验结果,确定模型破坏参数。
     4、在ABAQUS中用内聚力接触模型进行数值模型参数分析,比较模型高跨比、CFRP粘贴量、加载方式对钢梁极限承载力、CFRP布有效粘结长度和粘结正应力、粘结剪应力的影响,对考虑塑性变形的极限状态设计给予指导。
Fiber reinforced polymer (FRP) has been greatly used in engineering because of its low weight, high qualities in strength, anti-corrosion and construction. It is being used in civil and structural engineering in all kinds of shapes, and mainly for concrete strengthening. Researchers from home and abroad have made researches on steel structures strengthened with carbon fiber reinforced polymer (CFRP), but they just did some experimental researches and theories on steel beams or composite beams strengthened with CFRP. There is lack of systematic experimental and FEM analysis. The analysis of crack intensity model and interfacial crack mechanism in plasticity is still not enough.
     In this paper, we compared experiments of H-shaped beams strengthened with CFRP, and raised three models combined with Fracture Mechanics for simulation. We defined parameters of fracture mechanism comparing the results of simulation with experiment, and made parameter analysis using one of the three models. The whole work is as follows:
     1 We made conclusions of formal theoretical and experimental researches by referring to papers, made sure of the research targets and main contents; got knowledge of cohesion period and the formal cohesive models.
     2 We compared experiments of H-shaped beams bonded with CFRP in different loading conditions and different reinforced methods and gave out details such as ultimate bearing capacity and the specimens’mechanical properties by comparing test with analysis. Through the compared test results’ analysis, we presented some useful conclusions in engineering applications.
     3 We compared formal FEM models, used cohesive surface, cohesive element and XFEM to simulate the interfacial combined with Fracture Mechanics, made sure of damage parameters by comparison with experimental results.
     4 We used cohesive surface in ABAQUS to do parameter analysis, compared the influence made by different beam depth-span ratio, length of CFRP and loading conditions to CFRP’s effective length, interfacial normal and shear stress. We presented some useful conclusions of ultimate situation in plasticity.
引文
[1]霍立兴,王东坡,王文先.提高焊接接头疲劳性能的研究进展和最新技术[C].中国机械工程学会焊接学会成立四十周年、中国焊接协会成立十五周年纪念文集.北京,2002.
    [2]叶列平,冯鹏. FRP在工程结构中的应用与发展[J].土木工程学报,2006,39(3):24-36.
    [3]叶列平,陆新征,滕锦光,陈建飞. FRP片材加固混凝土梁剥离承载力计算及设计[J].建筑结构,2007,37(12):79-82.
    [4]完海鹰,郭裴. CFRP加固钢结构的现状与发展[J].安徽建筑工业学院学报,2006,14(6):1-4.
    [5]彭福明,郝际平,岳清瑞,张宁.碳纤维增强复合材料(CFRP)加固修复损伤钢结构[J].工业建筑,2003,33(9):7-10.
    [6] Erdogan F ,Arin K. A Sandwich Plate with a Part-through and a Debonding Crack[J]. Engineering Fracture Mechanics,1972 ,4 (3) :449-458.
    [7] Keer L M,Lin C T,Mura T. Fracture Analysis of Adhesively Bonded Sheets[J]. Applied Mechanics,1976 ,43 (4) :652-656.
    [8] Sebastian W M. Nonlinear proportionality of shear-bond stress to shear force in partially plastic regions of asymmetric FRC-laminated steel members[J]. International Journal of Solids and Structures,2003,40(1): 25-46.
    [9]吴小林,高永寿.缺损平板贴补加强后的效果[J].航空学报,1990 ,11 (2) :15-22.
    [10] Jones R ,Callinan R J . Finite Element Analysis of Patched Cracks[J]. Journal Structure Mechanics ,1979 ,7 (2) :107-130.
    [11] Jones R ,Callinan R J . A Design Study in Crack Patching[J]. Fiber Science and Technology ,1981 ,14 (1) :99-111.
    [12] Chandra R ,Guruprasad K. Numerical Estimation of Stress Intensity Factors in Patched Cracked Plates[J]. Engineering Fracture Mechanics ,1987 ,27 (6) :559-569.
    [13] Tran J Q ,Shek KL. Analysis of Cracked Plates with a Bonded Patch[J]. Engineering Fracture Mechanics ,1991 ,40 (6) :1055-1065.
    [14] Chue C H ,Chang L C ,Tsai J S.Bonded Repair of a Plate with Inclined Central Crack under Biaxial Loading[J]. Composites Structures , 1994 , 28 (1) :39-45.
    [15] Sun C T, Klug J ,Arendt C. Analysis of Cracked Aluminum Plates Repaired with Bonded Composite Patches[J]. AIAA Journal ,1996 ,34 (2):369-374.
    [16]蒋金龙,赵名泮.含裂纹板的复合材料胶接修补分析[J].航空学报,1991 ,12 (2) :61-67.
    [17]徐建新.损伤金属结构的复合材料胶接修补技术研究: [D] .南京:南京航空航天大学,1996.
    [18]孙洪涛.损伤金属板复合材料胶接修补的热-力分析与试验研究[D] .西安:西北工业大学,1998.
    [19]彭福明,郝际平等. CFRP加固钢梁的有限元分析[J].西安建筑科技大学学报(自然科学版) 2006,38(1):18-23.
    [20]郑云,叶列平,岳清瑞. CFRP加固疲劳损伤钢结构的断裂力学分析[J].工业建筑,2005,35(10):79-82.
    [21]王伟佳. CFRP加固工字型钢梁非线性有限元数值模拟分析[D].合肥:合肥工业大学,2009.
    [22] Abshaggur M, EL Damatty A A. Testing of steel sections retrofitted using FRP sheets[C]. Annual Conference of the Canadian Society for Civil Engineer. Moncton, Nouveau Brunswick Canada: 2003.
    [23] Patnaik A. K,.Bauer CL. Strengthening of Steel Beams with Carbon FRP Laminates[J]. Advanced Composite Materials in Bridges and Structures. Calgary ,Alberta. 2004.
    [24] Alawi H ,Saleh. Fatigue Crack Growth Retardation by Bonding Patches[J]. Engineering Fracture Mechanics,1992 ,42 (5) :861-868.
    [25] Shulley S B ,Huang X ,Karbhari V M,ET AL . Fundamental consideration of design and durability in composite rehabilitation schemes for steel girders with web distress[C]. Proceedings of the Third Materials Engineering Conference. San Diego ,California :1994 .
    [26] Baker A A. Repair Efficiency in Fatigue Cracked Aluminum Components Reinforced with Boron/PEpoxy Patches[J]. Fatigue Fracture of Engineering Materials and Structures,1993 ,16 (7) :753-765.
    [27]徐德新,李鹏.纤维材料加固钢梁的试验研究[J].工业建筑,2004,34(7):91-92.
    [28]侯发亮.建筑结构粘贴加固的理论与实践[M].武汉:武汉大学出版社,2003.
    [29]岳清瑞,张宁,彭福明,郑云.碳纤维增强复合材料(CFRP)加固修复钢结构性能研究与工程应用[M].北京:中国工业出版社,2009.
    [30]马建勋等.粘贴碳纤维布加固钢构件受拉承载力试验研究[J].工业建筑,2003 ,33 (2) :1-4.
    [31]王孟钟,黄应昌.胶粘剂应用手册[M].北京:化学工业出版社,2002.
    [32]胡高平,袁红英,肖卫东金属用胶粘剂及胶接技术[M].北京:化学工业出版社,2003.
    [33]翟海潮,李印柏,林新松.粘接与表面粘涂技术[M].北京:化学工业出版社,1997.
    [34] Deng J , Lee M M K,Moy S S J. Stress analysis of steel beams reinforced with a bonded CFRP plate [J]. Composite Structures, 2004, 65(2) : 205-215.
    [35] Neubauer U., Rostasy F. S. Bond failure of concrete fiber reinforced polymer plates at inclined cracks-experiments and fracture mechanics model[C]. Proc. of 4th International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures ACI, Farmington Hills, Michigan, 1999. 369-382.
    [36] Nakaba K., Toshiyuki K., Tomoki F., Hiroyuki Y. Bond behavior between fiber-reinforced polymer laminates and concrete[J]. ACI Structural Journal. 2001. 98 (3). 359-367.
    [37] Savioa M., Farracuti B., C.Mazzotti. Non-linear bond-slip law for FRP-concrete interface[C]. Proc. 6th International Symposium on FRP Reinforcement for Concrete Structures World Scientific Publications, Singapore, 2003 163-172.
    [38] Monti M., Renzelli M., Luciani P., FRP adhesion in uncracked and cracked concrete zones[C]. Proc. 6th International Symposium on FRP Reinforcement for Concrete Structures World Scientific Publications, Singapore, 2003.
    [39] Dai J. G., Ueda T., Local bond stress slip relations for FRP sheets-concrete interfaces[C]. Proc. 6th International Symposium on FRP Reinforcement for Concrete Structures World Scientific Publications, Singapore, 2003 143-152.
    [40] Ueda T., Dai J. G., Sato Y., A nonlinear bond stress-slip relationship for FRP sheet-concrete interface[C]. Proc. International Symposium on Latest Achievement of Technology and Research on Retrofitting Concrete Structures, Kyoto, Japan, 2003 113-120.
    [41]碳纤维片材加固修复钢筋混凝土结构技术规程(CECS146).北京:中国计划出版社,2003.
    [42] Chen J. F., Teng J. G. Anchorage strength models for FRP and steel plates bonded to concrete[J]. Journal of Structural Engineering, ASCE. 2001. 127 (7). 784-791.
    [43] GB/T3354-1999.定向纤维增强塑料拉伸性能试验方法[S].
    [44] GB50367-2006.混凝土结构加固设计规范[S].
    [45] GB18583-2001.室内装饰材料胶粘剂中的有害物质限量[S].
    [46] GB/T228-2002.金属材料室温拉伸试验方法[S].
    [47] Tavakkolizadeh, Saadtmanesh. Strengthening of steel-concrete composite girders using carbon fiber reinforced polymers sheets[J]. Journal of Structural Engineering. 2003, 129 (1):30-40.
    [48]王天稳.土木工程结构试验[M].武汉:武汉理工大学出版社,2003.
    [49] Sayed Mukhtar Homan. Fiber Reinfored Polymers(FRP) and FRP-Conerete Composite Subjected to Various Loads and Environmental Exposures[D]. Canada. University of Toronto. 2005.
    [50] Naboulsi S, Mall S. Modeling of cracked metallic structure with bonded composite patch using three layer technique[J]. Composite Structure, 1996,35(3):295-308.
    [51]彭福明,郝际平等. CFRP加固钢梁的有限元分析[J].西安建筑科技大学学报(自然科学版) 2006,38(1):18-23.
    [52]沈成康,解明芳.断裂力学[M].上海:同济出版社, 1996.
    [53] Abaqus User’s Manual 11.4.2.
    [54] Erdogan & Sih, 1963. F. Erdogan and G.C. Sih, On the crack extension in plates under plane loading and transverse shear[J]. Basic Eng. 1963, 85, pp. 519–527.
    [55] Maiti and Smith, 1983 S.K. Maiti and R.A. Smith, Theoretical and experimental studies on the extension of crack subjected to concentrated loading near their faces to compare the criteria for mixed mode brittle fracture[J]. Mech. Phys. Solids 31 (1983), pp. 389–403.
    [56] Palaniswamy, K. and Knauss, W. G. On the problem of crack extension in brittle solids under general loading[J]. Mechanics Today. 1978,Vol. 4, pp. 87-148.
    [57] M.A. Hussain, S.L. Pu and J. Underwood. Fracture Analysis. ASTM STP 560 (1974) 2-28.
    [58] G.C.M. Sih .Stress Intensity Factor Handbook[M]. 1973.
    [59] P.S. Theocaris and J.G. Michopoulos. Generalization of the theory of far-field caustics by the catastrophe theory[J] Appl. Opt. 1982 ,21, 1080-1091.
    [60] Hayashi,K.,Nemat-Nasser,S. Energy-release rate and crack kinking under combined loading. ASME Journal of Applied Mechanics 1981,48,520-524.
    [61] He, M.Y., Hutchinson, J.W. Crack Deflection at an Interface Between Dissimilar Elastic Materials[J]. Int. J. Solids Structures. 1989,25, 1053-1067.
    [62] He, M.Y., Hutchinson, J.W. Kinking of a Crack Out of an Interface[J]. Jour. Applied Mechanics, 1989,56, 270-278.
    [63] Barenblatt G I. Mathematical theory of equilibrium cracks in brittle fracture[J].Adv Appl Mech,1962,7:55-25.
    [64] Dugdale D S.Yielding of steel sheets containing slits[J]. Mech Phys Solids,1960,8(2):100-04.
    [65] Needleman A. Micromechanical modeling of interfacial de-cohesion[J]. Ultramicroscopy, 1992, 40: 203-214.
    [66] Tvergaard V, Hutchinson J W. Effect of strain depen-dent cohesive zone model on predictions of interface crack growth[J]. physique IV. 1996. 6: 1651727.
    [67] Tvergaard V,Hutchinson J W.The relation between crack growth resistance and fracture process parameters in elastic-plastic solids[J].Mech Phys Solids,1992,40(6):1377-139.
    [68] Xu X P,Needleman A.Void nucleation by inclusion debonding in a crystal matrix[J].Modell Simul Mater Sci Eng,1993,1(2):111-132.
    [69] Camacho G T, Ortiz M. Adaptive lagrangian modelling of ballistic penetration of metallic targets[J]. ComPv,t Meth Appl Mech Engin.1997, 142: 269-301.
    [70] Geubelle PH, Baylor J. Impact-induced delamination of laminated composites: a 2D simulation[J]. Composites Part B Engineering 1998; 29:589-602.
    [71] Ungsuwarungsru, T. and W. G. Knauss. The Role of Damage-Softened Material Behaviour in the Fracture of Composites and Adhesives[J]. International Journal of Fracture. 1987.35:221-41.
    [72] Daudeville, L., O. Allix, and P. Ladevèze. Delamination Analysis by Damage Mechanics: Some Applications[J]. Composites Engineering 1995.5(1):17-24.
    [73] Laura De Lorenzis Giorgio Zavarise. Cohesive zone modeling of interfacial stresses in plated beams[J]. International Journal of Solids and Structures. 2009,46, 4181-4191.
    [74] Camanho,P.P., and C.G. Davila. Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials[R]. NASA/TM-2002–211737, pp. 1–37, 2002.
    [75] Wu, E. M., and R. C. Reuter Jr. Crack Extension in Fiberglass Reinforced Plastics[R] T and M Report, University of Illinois, vol. 275, 1965.
    [76] Benzeggagh.M.L, M.Kenane. Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus[J] Composites Science and Technology, vol. 56, pp. 439–449, 1996.
    [77] Reeder, J., S. Kyongchan, P. B. Chunchu, and D. R. Ambur. Postbuckling and Growth of Delaminations in Composite Plates Subjected to Axial Compression[C]. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, Colorado, vol. 1746, p. 10, 2002.
    [78] Abaqus User’s Manual 11.4.3.
    [79] Belytschko T, Black T. Elastic crack growth in finite elements with minimal remashing[J]. International Jounal for Numberical Methods in Engineering. 1999; 45(5):601-620.
    [80] Mo?s N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing[J]. International Jounal for Numberical Methods in Engineering 1999; 46: 131-150.
    [81]李录贤,王铁军.扩展有限元法(XFEM)及其应用[J].力学进展.2005,35(1):5-20.
    [82] Melenk J M,Bubska1.The partition of the unity finite element method:basic theory and applieations[J].Coputer Methods in Applied Mechanics and Engineering. 1996,139:289-314.
    [83] Duarte C A,Oden J T.An H-P adaPtive method using clouds[J]. Coputer Methods in Applied Mechanics and Engineering. 1996,139:237-262.
    [84] Stolarska M, Chopp DL, Mo?s N, Belytschko T. Modelling crack growth by level sets in theextended finite element method[J]. International Journal for Numerical Methods in Engineering 2001; 51:943–960.
    [85] Ted Belytschko, Robert Gracie, Giulio Ventura. A review of extended/generalized finite element methods for material modeling[J]. Modelling and Simulation in Materials Science and Engineering. 2009,17:1-24.
    [86] Robert Gracie, Giulio Ventura,Ted Belytschko. A new fast finite element method for dislocations based on interior discontinuities[J]. International Journal for Numerical Methods in Engineering.2007, 69:423–441.
    [87] Jeong-Hoon Song, Pedro M. A. Areias, Ted Belytschko. A method for dynamic crack and shear band propagation with phantom nodes[J]. International Journal for Numerical Methods in Engineering .2006; 67:868–893
    [88] Haim Waisman , Ted Belytschko. Parametric enrichment adaptivity by the extended finite element method[J]. International Journal for Numerical Methods in Engineering.2008, 73:1671–1692.
    [89] Ted Belytschko ,Robert Gracie. On XFEM applications to dislocations and interfaces[J]. International Journal of Plasticity. 2007,23:1721-1738.
    [90] Thomas Menouillard ,Ted Belytschko. Dynamic fracture with meshfree enriched XFEM[J]. Acta Mech. 2010,213:53–69.
    [91] Thomas Menouillard ,Jeong-Hoon Song,Qinglin Duan,Ted Belytschko. Time dependent crack tip enrichment for dynamic crack propagation[J]. International Journal for Fracture. 2010 ,162:33–49.
    [92] Jeong-Hoon Song, Ted Belytschko. Cracking node method for dynamic fracture with finite elements[J]. International Journal for Numerical Methods in Engineering.2009; 77:360–385.
    [93]庄茁等. ABAQUS非线性有限元分析与实例[M].北京:科学出版社, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700