多相和多组分流动中热质传递的Lattice Boltzmann方法的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Lattice Boltzmann Method(LBM)方法作为一种特殊的数值方法,以其自然并行、几何边界易处理、程序简单等诸多优点在输运问题,尤其在多相流、多孔介质、对流扩散和化学反应等问题模拟上体现了较大的优势及很强的适应性,展示了其广阔的应用前景。基于以上背景和推进该数值方法与工程应用接轨的思路,本文分别以超重力旋转填充床中液相膜流态下的微观混合,以及核池沸腾中气泡的增长、运动和变形等物理问题为研究背景,针对其中复杂多变的界面行为,包括可溶的多组分界面和不互溶的多相流界面,依托LBM方法的优势和特点,对界面的变化以及界面传质和传热等物理过程进行数值研究。根据实际问题的需要,先后提出、改进和联合了不同的LBM模型。利用这些模型数值研究相关问题,所获结果不仅为LBM在多相多组分流领域的实用化奠定了一些基础,也为相关领域实验和理论研究提供了有意义的参考。
     为检验LBM多组分流模型在复杂流动中的适应性和对应复杂边界处理的便捷性,依托超重力旋转填充床的工业背景,对床内液相膜流动状态下建立的液相组分间层状扩散反应模型进行合理扩展,将对流传质引入模型建立对流扩散传质模型。以此模型为基础对填料丝的强化对流传质作用进行了数值研究。通过引进反映宏观混合效率的函数,量化分析了填料丝形状和尺寸在其强制对流传质中的作用。结果对旋转填充床的填料设计及其传质的数值研究工作有参考价值,对其它填料的设计亦有启示作用。
     由于LBM多组分模型在研究组分传质时缺乏对流动混合效率的记忆性,本文构造了串行竞争反应的LBM模型。应用该模型分别对填料主体区和端效应区的微观混合和化学反应进行了数值研究。在主体区,采用层状扩散模型进行了模拟,与对应实验结论和其它数值结果比对分析,证明了算法的有效性。在端效应区,基于强制对流扩散反应模型对端效应区的强制对流传质和化学反应进行了积极的探索。初步探索了填料丝的强制对流传质作用,证明了LBM模型对该问题的适应性。同时模拟结果对研究分散后液体微元的传质有参考意义,为研究分散传质奠定了基础。为进一步研究填料丝形状和几何尺寸对其强制对流作用的影响提供了有利的数值工具,另外该模型可以在相似的传质和化学反应系统中推广应用。
     为研究LBM的传热模型,本文将改进的LBM方程引入LBM热模型,在对应的宏观传热方程中消除了一阶非线性误差项,以此为思路提出了两个二阶精度热模型。通过Rayleigh-Benard对流数值试算,初步探索了这两个二阶精度和对应一阶精度热模型的传热特征和适应性,并做了对比分析。在Ra数极高或热传导系数极大时,采用这三个热模型计算的Nu数与经验值均有较大偏差。分析LBM对应宏观热传导方程的截断误差后,本文在平衡分布函数中引进一个调节因子。通过调节对应宏观传热方程的截断误差项系数,很好的校正了Nu数的计算偏差,提高了热模型模拟精度,拓展了模拟范围,增强了LBM作为一个数值方法在解决传热问题中的适应性。
     联合上述热模型,对大密度比多相流LBM模型进行改造,构造了一个能描述传热主导相变的大密度多相流LBM复合模型。在复合模型中,基于Stefan边界假设以传热主导相变,相变作为一个源项被添加在C-H方程中以相序参数的变化来描述两相相变,同时在LBM热模型中考虑对应的相变潜热。这种相变处理方式可以自动追踪相变引起的界面变化,比其它处理方法简洁且物理背景清晰。应用该复合模型数值研究了过热液体中单气泡增长、运动和变形机理与气液两相物理参数(如动力粘性系数、表面张力和Jacob数等)的相互关系。
     通过联合和调整Briant的部分浸润性边界处理,本文应用多相流复合LBM模型对水平过热壁面上气泡的增长和跃离进行了数值研究。其中关于气泡跃离直径的研究呈现了正确的参数关联,证明了复合模型对该问题的适应性。以此为基础,进一步研究了气泡的合并对增长和跃离的影响。
Lattice Boltzmann method(LBM) has recently begun to receive considerable attention as a possible alternative to conventional computational fluid dynamics(CFD) for simulating fluid flow.These algorithms have shown great promise for simulating flow in topologically complicated geometries,such as those encountered in porous media,and for simulations of multiple components or multiphase flow with heat and mass transfer,where there are few viable alternatives using conventional CFD method.
     Based on the lattice Boltzmann method,the research work focuses on the numerical investigation of heat and mass transfer in flows with multiple components and phases encountered in the rotating packed-bed and nucleate pool boiling,as follows:
     Using the lattice Boltzmann method ofmulticomponent flows,the liquid mass transfer in the forced convection and diffusion resulted by the column wire packing was simulated in the rotating packed-bed.By introducing a function which reflects the efficiency of the mixing,the relationships were analyzed and compared for the liquid mass transfer and the role of the convection in the wire packing with different size and form.Numerical simulation results can be considered as available data for improving the design of the packing and for studying on the mass transfer in the rotating packed-bed.
     The Lattice Blotzmann scheme for the serial competitive reaction is constituted.Based on the layer model that describes the reaction-diffusion without convection,the serial competitive reaction in the central zone of the Rotating Packed-bed is simulated.Its numerical results show the quantitative agreement with that in Ref.1 and demonstrate the scheme is efficient.Analyzing the experimental work in ref.1 and a model is developed to describe the reaction-diffusion with the forced convection resulted by the Packing wire.The model is suitable for study the mass transfer in the forced convection at the edge of the Rotating Paced-bed and is founded on a hypothesis that the several times larger size liquid is continue media than of the Packing wire.Applying the LB scheme the serial competitive reaction at the edge of the Rotating Packed-bed is simulated and the mass transfer in the forced convection resulted by the Packing wire is studied.Its results provide reference for the study on the scattered mass-transfer and the design of the Rotating Packing-bed.
     A parameter is added into lattice Boltzmann thermal models so that the models possess second-order accuracy.The models are employed to simulate the Rayleigh-Benard convection heat transfer for identifying abilities and are compared with its original model.As a result,it was found that there is error of computed Nu numbers for all three models when the Ra number and the thermal diffusivity become very bigger.After analyzing truncation error of the corresponding heat-transfer equation in macro scale,an adjusting parameter is introduced into the equilibrium distribution function in the paper.As a result,the computed error of the Nu number is eliminated by applying the parameter to adjust the coefficient of the truncated error.Improvements mentioned above show that the LBM heat-transfer models extends its simulation range and boosts up its applicability.
     Combining with the lattice Boltzmann thermal model,the lattice Boltzmann multiphase model with a large density ratio can be extended to describe the phenomenon of phase change with mass and heat transferring through the interface.Based on the Stefan boundary condition, the phase change is considered as change of the phase order parameter and is disposed as a source term of the Cahn-Hilliard(C-H) equation.The change of the interfacial position with the time is obtained as a part of the solution of the combined lattice Boltzmann equations. This hybrid model is applied to simulate the motion and growth of a vapor bubble as it rises through a uniformly superheated liquid.At the same time,parametric studies affected on the bubble growth,deformation and rising in the different surface tension forces and kinetic viscosities are also presented.
     Improving the Briant's treatment of the partial wetting boundaries,the hybrid model is applied to simulate the growth and departure of the single vapor bubble on the superheat wall. The numerical results exhibit correct parametric dependencies of the departure diameter as the experimental correlation in recent literature and show the hybrid model is suitable and feasible.On this basis,parametric studies on the growth,coalescence and departure of the twin-bubble on the horizontal wall are also presented.
     The content about thesis chapters is arranged as follows:
     The research background and the LBM review are summarized in Chapter 1.The LBM principle and its boundary treatment are introduced in Chapter 2.The numerical investigations and its results are presented in Chapter 3,4,5 and 6,respectively.The conclusions and prospect are provided in Chapter 7.
引文
[1]陈建峰等.超重力技术及应用[M].北京:化工工业出版社,2003.
    [2]Liu Ji.Study no micro-mixing and synthesis of nanometer particle of strontium carbonate by mixing two section of solutions in Rotating Packed Bed[D].Beijing:Beijing University of Chemical Technology,2000.
    [3]Burns J R et al.Chem Eng Sci,1996,51(8):1347-1356.
    [4]郭锴,超重力转子填料内液体流动的观测与研究[D]:(学位论文).北京:北京化工大学,1996·
    [5]张军,旋转床内流体流动与传质的实验研究和计算模拟[D]:(学位论文).北京:北京化工大学,1996。
    [6]梁继国,陈建峰,张建文.旋转填充床内微观混合的数值模拟[J].化工学报,2004,55(6):26-31.
    [7]邱琨玉,吕和祥,陈建峰.旋转填充床内微观混合化学反应计算数学模型[J].化工学报,2005,56(7):1218-1226.
    [8]Clift R,Grace J R,and Weber M E,Bubbles,Drops and Particle[M].New York.NY,1978.
    [9]Magnaudet J and Eumes I.The motion of high-ReynOlds-number bubbles in inhomogeneous flows[J].Annual Review of Fluid Mechanics.2000,32:659-708.
    [10]Yan Y and Li W.Numerical investigations of the flow and heat and mass transfer at the surface of a spherical gas bubble[J].Int.J.Transport Phenomena.2002,4(3):209-224.
    [11]Hua J and Lou J.Numerical simulation of bubble rising in viscous liquid[J].J.Comp.Phys,2007,222:769-795.
    [12]Lord Rayleigh,Phil.Mag.1917,34:94.
    [13]Plesset M S and Zwick S A.The growth of vapour bubble in superheated liquid[J].J.Appl.Phys,1954,25:493.
    [14]Dergarbedian P.The rate of growth of vapor bubbles in superheated water[J].J.Appl.Mech,1953,20:537-545.
    [15]Forster H Z and Zuber N.Growth of a vapor bubble in superheated liquid[J].J.Appl.Phys,1954,25:474.
    [16]Birkhoff.G,Margulies.R.S and Homing.W.A.Spherical bubble growth[J].Phys.Fluids,1958,1:201.
    [17]Scriven L E.On the dynamics of phase growth[J].Chem.Engng Sci,1959,1:1-13.
    [18]Kosky P G.Bubble growth measurements in uniformly superheated liquids[J].Numer.Engng Sci,1968,23:695-706.
    [19]Florschuetz L W,Henry C L and Khan A Rashid.Growth rates of free vapor bubbles in liquids at uniform superheats under normal and zero gravity conditions [J].Int.J.Heat Mass Transfer,1969,12:1465-1489.
    [20]Mikic B B,Rohsenow W M and Griffith P.On bubble growth rate [J].Int.J.Heat Mass Transfer,1970,13:657-666.
    [21]Theofanous T G and Patel P D.Universal relations for bubble growth [J].Int.J.Heat Mass Transfer,1976,19:425-429.
    [22]Bohrer T H.Bubble growth in highly superheated liquids [D].M.S.Thesis,Chemical Engineering,Purdue University,1973.
    [23]Theofanous T,Biasi L and Isbin H S.A theoretical study on bubble growth in constant and time-dependent pressure fields [J].Chem.Engng Sci,1969,26:263-274.
    [24]Board S J and Duffey R B.Spherical vapor bubble growth in superheated liquids [J].Chem.Engng Sci,1971,26:263-274.
    [25]Donne M D and Ferranti M P.The growth of vapor bubble in superheated sodium [J].Int.J.Heat Mass Transfer,1975,18:477-493.
    [26]Dergarabedian P.Observations on bubble growth in various superheated liquids [J]..J.Fluid.Mech,1960,9:39-48.
    [27]Wittke D D and Chao T B.Collapse of vapor bubbles with translatory motion [J].J.Heat Transfer,1967,89:17-24.
    [28]Cao J and Christensen R N.Analysis of moving boundary problem for bubble collapse in binary solutions [J].Numerical Heat Transfer,Part A,2000,38:681-699.
    [29]Yan Y Y and Li W Z.Numerical modeling of a vapors bubble growth in uniformly superheated liquid [J].Int.J.of Numerical Methods'for Heat & Fluid Flow,2006,16 (7):764-778.
    [30]Han Y Y and Seiichi K Y O.Direct calculation of bubble growth,departure,and rise in nucleate pool boiling [J].Int.J.of Multiphase Flow,2001,27:277-298.
    [31]Fujita Y and Bai Q.Numerical simulation of the growth for an isolated bubble in nucleate boiling [C].Proc.11th IHTC,Kyongiu,Korea,August 23-28,1998,2:437-442.
    [32]Chen I L and Glimm J.Front tracking for gas dynamics [J].J.Comput.Phys,1986,62:83-110.
    [33]Marshall G.A front tracking method for one-dimensional moving boundary problems [J].SIAM J.Sci.Stat.Comput,1986,7(1):252-263.
    [34]Charrier P and Tossierras B.On front tracking methods applied to hyperbolic systems of nonlinear conservation laws [J].SIAM J.Numer.Analysis,1986,23(3):461-472.
    [35]Le Veque R J and Shyue K M.One dimensional front tracking based on high resolution wave propagation methods [J].SIAM J.Sci.Comput,1995,16 (2):348-377.
    [36]Hiditoh J and Colella P.A front tracking method for compressible flames in one dimension [J].SIAM J.Sci.Comput,1995,16 (4):755-772.
    [37]Unverdi S O and Tryggvasore.A front tracking method for viscous incompressible multi -fluid-flows [J].J.Comput.Phys,1992,100:25-39.
    [38]Liu X,Li Y,Glimm J,and Li X L.A front tracking algorithm for limited mass diffusion [J].J.Computational Physics 2007,222:644-653.
    [39]Du J,Fix B,Glimm J et al.A simple package for front tracking [J].J.Comp.Phys,2006,213(2):613-628.
    [40]Tryggvasore,Bunner G,Esmaeeli A and Juric D.A front tracking method for the computations of multiphase flow [J].J.Comput.Phys,2001,169 (2):708-759.
    [41]Duineveld P C.Bouncing and Coalescence of two bubbles in water[D].Twente University,The Netherlands,1994.
    [42]Esmaeeli A and Tryggvasion G.Direct numerical simulation of bubbly flows [J].Part Ⅰ.Low Reynolds number arrays,J.Fluid.Mech,1999,385:325-358.
    [43]Esmaeeli A and Tryggvasion G.Direct numerical simulation of bubbly flows [J].Part Ⅱ.Moderate Reynolds number arrays,J.Fluid.Mech,1998,377:313-345.
    [44]Hua J and Lou J.Numerical simulation of bubble rising in viscous liquid [J].J.Comput.Phys,2007,222:769-795.
    [45]Hirt C W and Nichols B D.Volume of fluid (VOF) method for the dynamics of free boundary [J].J.Comput.Phys 1981,39:201-225.
    [46]Youngs D L.Numerical methods for fluid dynamics.Eds:Morton,K.W.Baineks,M.J.Acadamic,New York,1982.
    [47]Ashgriz N and Poo J Y.Flux line-segement model for advection and interface reconstruction [J].J.Comput.Phys,1991,39:449-468.
    [48]Pucktt E G,Almgern A S,Bell J B and Marcus D L.A high-order projection method for tracking fluid interface in variable density incompressible flows [J].J.Comput.Phys,1997,130:269-282.
    [49]Ubbink O and Issa R I.A method for capturing sharp fluid interface on arbitrary meshes [J].J.Comput.Phys,1999,53:26-50.
    [50]Lorstad D and Fuchs L.High-order surface tension VOF-model for 3D bubble flows with high density ratio [J].J.Comput.Phys,2004,200:153-176.
    [51]Tomiyama A,Sou A,Minagawa H and Sakaguchi T.Numerical analysis of a single bubble by VOF method [J].JSME Int J,Series B.1993,36(1):51-56.
    [52]Li Chen,Garimella S V,Reizes J A and Eonardi E.The development of a bubble rising in a viscous liquid [J].J.Fluid.Mech,1999,387:61-96.
    [53]Osher S and Sethian J A.Fronts propagating with curvature dependent speed:Algorithms based on Hamilton-Jacobi formulations [J].J.Comput.phys,1988,79:12.
    [54]Sussman M and Smereka P.Axisymmetric free boundary problems [J].Journal of Fluid Mechanics,1997,341:269-294.
    [55]Sussman M,Almgren A S,Bell J B,et al.An adaptive level set approach for incompressible two-phase flows [J].Journal of Computational Physics,1999,148:1165-1191.
    [56]Oka H and Ishii K.Numerical Analysis on the Motion of Gas Bubbles Using Level Set Method [J].Journal of the Physical Society of Japan,1999,68(3):823-832.
    [57]Ni M J and Komori S.Simulation of Bubble Rising Flows by the Level Set Method [J].Japan Society of Computational Fluid Dynamics,2000,14:221-231.
    [58]Ni M J,Luo X Y,Ying A and Abdou M A,Numerical Modeling for Multiphase Incompressible Flow with Heat and Mass Transfer [C].In:5th International Symposium on Multiphase Flow,Heat Mass Transfer and Energy Conversion.2005.Xi'an,China.
    [59]Sussman M,Fatemi E,Smereka P and Osher S.A improved level set method for incompressible two-phase flows [J].Comput.Fluids,1998,114:663-680.
    [60]Chang Y C,Hou T Y,Merriman B and Osher S.A level set formation of Eulerian interface capturing methods for incompressible fluid flows [J].J.Comput.Phys,1996,24:449-464.
    [61]Son G A numerical method for bubble motion with phase change [J].Numerical Heat Transfer,Part B,2001,39:509-523.
    [62]Antanovskii L K.A phase field model of capollarity [J].Phys.Fluids 1995,7:747.
    [63]Jacqmin D.Three dimensional computations of droplet conllisions [J],conloscence and droplet wall interactions using a continuum tension method,AIAA,95-0883.
    [64]Jacqmin D.Calcualtion of two-phase Navier-Stokes flows using phase-field modeling [J].J.Comput.Phys 1999,155:96-127.
    [65]Wang S L and Sekerku P F.Algorithms for phase field computation of the dendritic operating state at large supercoolings [J].J.Comput.Phys.1996,127:110.
    [66]Badalassi V E,Ceniceros H D.and Banerjee S.Computaion of multiphase systems with phase field models [J].J.Comput.Phys.2003,190:371-397.
    [67]Rothman D H.,Keller J M.Immiscible cellular-automaton fluid [J].J.Statist.Phys.1998,52:1119-1127.
    [68]Shan X and Chen H.Lattice Boltzmann model for simulating flows with multiple phases and components [J].Phys.Rev,1993,47(3):1815-1819.
    [69]Swift M R,Osborn W R and Yeomeans J M.Lattice Boltzmann simulation of non-ideal fluids [J].Phys.Rev.Lett,1995,75:830-833.
    [70]He X,Chen S and Zhang R.A lattice Boltzmann scheme for incompressible multiphase flow and its application of Rayleigh-Taylor instability [J].J.Comput.Phys,1999,152(2):642-663.
    [71]Inamuro T,Ogata T,Tajima S and Konishi N.A lattice Boltzmann method for incompressible two-phase flows with large density differences [J].J.Comp.Phys,2004,198:628-644.
    [72]Zheng H W,Shu C and Chew Y T.A lattice Boltzmann for multiphase flows with large density ratio [J].J.Comput.Phy,2006,218:353-371.
    [73]黄祖洽,丁鄂江.输运理论[M].北京:科学出版社,2008.
    [74]Broadwell J E.Study of rarefued shear flow by the diserete veloeity method [J].J.Fluid.Mech,1964,19:401-414.
    [75]Broadwell J E.Shock structure in a simple diserete velocity gas [J].Phys.Fluids,1964,7:1243-1247.
    [76]Hardy J,Pomeau Y and Pazzis O de.Time evolution of a two-dimensional model system I,Invariant states and time correlation functions [J].J.Math.Phys,1973,14:1746-1759.
    [77]Hardy J,Pomeau Y and Pazzis O de,Molecular dynamics of a classicallattice gas:Transport properties and time correlation functions [J].Phys.Rev.A,1976,13:1949-1961.
    [78]Wolfram S.Cellular automata as models of complexity [J].Nature 1984,311:419.
    [79]Wolfram S.Cellular automata fluids I:Basic theory [J].J.Stat.Phys.45:471-529,1986.
    [80]Frish U,Hasslacher B and Pomeau Y.Lattice-Gas Automata for the Navier-Stokes equation [J].Phys.Rev.Lett,1986,56 (14):1505-1508.
    [81]Frisch U,Humieres D,Hasslacher B.,et al.Lattice gas hydrodynamics in two and three dimensions.Comples systems 1987,1:649-707.
    [82]Hihuera F and Jimenez J.Boltzmann approach to lattice gas simulations [J].Europhys.Lett,1989,9(7):345-349.
    [83]Bhatnagar P,Gross E and Krook M.A model for collision process in gas Ⅰ:small amplitude processed in charged and neutral one component system [J].Phys.Rev,1954,94:511-525.
    [84]Koelman J M V A.A simple lattice Boltzmann scheme for Navier-Stokes fluids flow.Europhys [J].Lett,1991,15(6):603-605.
    [85]Qiam Y H,dHumieres D and Lallemand P.Lattice Boltzmann BGK models for Navier-Stokes equation [J].Europhys.Lett,1992,17(6):479-484.
    [86]Luo LiShi,Some recent results on discrete velocity models and ramifications for lattice Boltzmann equation [C].Computer Physics Communications.2000,129(1):63-74.
    [87]He Xiaoyi,Chen Shiyi and Doolen G D.A novel thermal model for the lattice Boltzmann method in incompressible limit [J].Journal of Computational Physics,1998,146(1):282-300.
    [88]Chen S,Dawson S P,Doolen G D,et al.Lattice methods and their applications to reacting systems [J].Computers and Chemical Engineer,1995,19(6-7):617-646.
    [89]Lallemand P and Luo L.Lattice Boltzmann method for moving boundaries [J].Journal of Computaional Physics,2003,184(2):406-421.
    [90]Zhang X and Li R.Lattice Boltzmann method for agrochemical transport in soils [J].Journal of Contaminant Hydrology,2003,67(1-4):27-42.
    [91]Chopard B and Pascal O L.Lattice Boltzmann computations and applications to physics [J].Theoretical Computer Science,1999,217(1):115-130.
    [92]Xu Aiguo,Gonnella G and Lamura A.Phase separation of incompressible binary fluids with lattice Boltzmann methods [J].Physica A,2004,331 (1-2):10-22.
    [93]Shan Xiaowen and Gary Doolen.Diffusion in a multicomponet lattice Boltzmann equation model [J].Phys.Rev.E,1996,55:3614-3620.
    [94]Filippova O and Hanel D.Grid refinement for lattice-BGK models [J].J.ComPut.Phys,1998,147:219-228.
    [95]He X,Luo L.Lattice Boltzmann model for the incompressible Navier-Stokes equation [J].J.Stat.Phys,1997,88:927-945.
    [96]He X and Doolen G.Lattice Boltzmann method on curvilinear coordinates system:flow around a circular cylinder [J].J.ComP.Phys,1997,134:306-315.
    [97]Hou S,Zou Q,Chen S,and et al.Simulation of cavity flow by the lattice Boltzmann method [J].J.Comput.Phys,1995,115:329-347.
    [98]Mei R,Luo L and Shyy W.An accurate curved boundary treatment in the lattice Boltzmann method [J].J.ComPut.Phys,1999,155:307-330.
    [99]Mei R,W Shyy,Yu D and Luo L.Lattice Boltzmann method for3~D flows with curved boundary [J].J.ComP.Phys,2000,161:680-699.
    [100]Luo L.Analytic solutions of linearized lattice Boltzmann equation for simple flows [J].J.Stat.Phys,1997,88:913-926.
    [101]Grunau D,Chen S.and Eggert K.A lattice Boltzmann model for multiphase fluid flows.Phys [J].Fluids A,1993,5:2557-2562.
    [102]He X,Chen S,Zhang R.A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability [J].J.Comput.Phys,1999,152 (2):642-663.
    [103]Lee T,Lin C L.A stable discretization of the lattice Boltzmann equation for simulation of in compressible two-phase flows at high density ratio [J].J.Comput.Phys,2005,206:16-47.
    [104]Ladd A J C.Numerical simulations of particulate suspensions via a diseretized Boltzmann equation,Parti:Theoretical foundation [J].J.Fluid.Mech,1994,271:285-309.
    [105]Ladd A J C.Numerical simulations of particulate suspensions via a diseretized Boltzmann equation,Partll:Numerical results [J].J.Fluid.Mech,1994,271:311-339.
    [106]阎广武,胡守信,施卫平.守恒方程的差分型格子气方法[J].计算物理,1997,2:190-194。
    [107]李元香,康立山.线性和拟线性抛物型方程的格点模型[J].计算物理,1997,4:587-589。
    [108]邹秀芬.对流扩散方程的格点模型[J].计算物理,1996,3:310-314。
    [109]熊盛武,李元香.一类非线性数学物理方程的格子BGK模型[J].武汉汽车工业大学学报,1997,1:85-89。
    [110]阎广武,胡守信,施卫平.Euler方程的二速度三嫡级格子Boftzmann模拟[J].计算物理,1997,5:584-586
    [111]Alexander F J,Chert S,Sterling J D.Lattice Boltzmann thermo hydrodynamics[J].Phys.Rev E,1993,47:2249-2252.
    [112]Chen H,Teixeira C,Molving Z.Digital Physics Approach to computational fluid dynamics:some basic theoretical features[J].Int.J.Mod.Phys,1997,8:675-684.
    [113]Soe M,Vahala G,Pavlo P,Vahala L,Chen H,Thermal lattice Boltzmann simulations of variable Prandtl number turbulent flows[J].Phys.Rev E,1998,57(4):4227-4237.
    [114]Vahala G,Pavlo P,Vahala L,Martys N S,Thermal lattice-Boltzmann models(TLBM) for compressible flows[J].Int.J.Mod.Phys C,1998,9:1247-1261.
    [115]Vahala L,Wah D,Vahala G,Carter J,Pavlo P.Thermal lattice Boltzmann simulation for multispecies fluid equilibration[J].Phys.Rev E,2000,62:507-516.
    [116]Bartoloni A,Battisita C,Cabasino S,et al.Lbr Simulations of Rayleigh-Benard convection on the Ape100 parallel process[J].Int.J.Mod.Phys,1993,C4:993-1006.
    [117]Shan X.Simulation of Rayleigh-Benard convection using a lattice Boltzmann method [J].Phys.Rev.E,1997,55:2780-2788.
    [118]Inamuro Takaji,Yoshino Masto,Inoue Hiroshi,Mizuno Riki and Ogino Fuminaru.A lattice Boltzmannmethod for a binary miscible fluid mixture and its application to a heat-transfer problem[J].J.Comp.Phys,2002,179:201-215.
    [119]McNamaraand Zanetti.Use of the Boltzmann Equation to Simulate Lattice-Gas Automata [J].Phys.Rev.Lett,1988,61:2332-2335.
    [120]Succi S,Benzi R,Higuera F,The lattice Boltzmann equation- A new tool for computational fluid dynamics[J].Physica D,1991,47(1-2):219-230.
    [121]Bezi R,Succi S and Vergassola M.The lattice Boltzmann equation:theory and application[J].Phys.Report,1992,222(3):145-197.
    [122]DoQuang M,Aurell E,Vergassola M.An inventory of lattice Boltzmann models of multiphase flows[R].Royal Institute of Technology and Uppsala University(Report No.00:03),2000.
    [123]陈胜.格子Boltzmann方法模拟多相(反应)流动[D]:(博士论文).华中科技大学,2005.10。
    [124]段雅丽.格子Boltzmann方法及其在流体动力学上的一些应用[D]:(博士论文),中国科技大学,2007.03。
    [125]吕晓阳.用晶格波尔兹曼方法研究血液在弹性管中的流动[D].(博士论文).复旦大学,2006.05。
    [126]Ziegler,Donald.P.Boundary condition for lattice Boltzmann simulations[J].Journal of Statistical Physics,1993,71(5/6):1171-1177.
    [127]He X,Zou Q,Luo L.S et al.Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann model[J].J.Star.Phys,1997,87:115-136.
    [128]Inamuro T,Yoshino M and Ogino F.A non-slip boundary condition for lattice Boltzmann simulations[J].Phys.Fluids,1995,7:2928-2930.
    [129]Chen S.,Martinez D and Mei R.On boundary conditions in lattice Boltzmann methods[J].Phys.Fluids,1996,8:2527-2536.
    [130]Guo Z,Zheng C and Shi B.Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method[JJ.Chinese Phys,2000,11(4):366-374.
    [131]He Xiaoyi,Chen Shiyi,Doolen Gray D.A novel thermal model for the lattice Boltzmann method in incompressible limit[J].J.Compute.Phys,1998,146:282-300.
    [132]Frisch U.Relation between the lattice Boltzmann equation and the Navier-Stokes equations[J].Phys.D,1991,47:231-232.
    [133]Lamura A and Succi S.A lattice Boltzmann for disordered fluids[J].Int.J.Mod.Phys B,2003,17:145-148.
    [134]张志成,陈伟芳,吴其芬,彭威.大瑞利数下Benard对流演化过程的DSMC仿真研究[J].空气动力学报,2002,20(4):434-440.
    [135]BhagaD,Weber M E.Bubbles in viscous liquid:shapes,wakes and velocities[J].J.Fluid Mech,1981,105:61-85.
    [136]Mikic B B.,Rohsenow W M.and Griffith P.On bubble growth rate[J].Int.J.Heat Mass Transfer,1970,13:657-666.
    [137]Biant A J,Papatzacos P,Yeomans J M..Lattice Boltzmann simulations of contact line motion in a liquid-gas system[J].Philos.Trans.Roy.Soc.London A,2002,360:485-495.
    [138]Cahn J W.Critical-point wetting[J].J.Chem.Phys.1977,66:3667-3672.
    [139]Fritz W.Maximun volume of vapor bubbles[J].Physik Zeitschr.36(1935) 379-384
    [140]Staniszewski B E.Nucleate boiling bubblegrowth and departure[R].MIT Tech.Rep.No.16,Cambridge,MA,1959.
    [141]Mukherjee A,Kandlikar S G.Numerical study of single bubbles with dynamic contact angle during nucleate pool boiling[J].Int,J.Heat and Mass Ttransfer,2007,50:127-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700