成品油管道顺序输送特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了确保成品油顺序输送管道高效、安全运行,深入全面准确地了解成品油管道运行特性以及工况变化规律具有重要意义。论文对成品油管道顺序输送运行特性进行了理论分析、数值计算与动态模拟研究。
     本文提出对顺序输送一维和二维混油浓度以及水力瞬变基本微分方程组数值计算的自适应网格算法,考虑由于混油界面位置发生变化,水击波速也随之变化等因素,推导出计算公式。该方法能够自动根据研究问题中解的特征,生成疏密程度不均的网格点。对于物理量空间变化剧烈或尺度变化较小的区域,网格点通过自动加密以提高网格的分辨率,从而使网格的分布与解的特征相吻合。自适应网格法能够更容易捕捉到压力场、速度场以及浓度场中梯度变化大区域的前沿位置,提高了数值精度,同时也减少计算机运行时间。联立用自适应网格法解的水力瞬变方程、混油对流扩散方程和考虑摩擦生热的热力瞬变方程,给出顺序输送管流耦合的热力-水力-混油耦合模型,建立了相应的算法,该模型结合了特征线和自适应网格法的优点,具有较高地精度。
     利用人工神经网络的非线性映射能力,建立了人工神经网络混油粘度预测模型,该模型能够预测各种因素非线性影响和不同混油浓度下的混油粘度,与传统经验公式相比,该方法具有误差小,并能够同时考虑温度变化等因素的影响。
     以Navier-Stokes方程、质量输运方程为基础,从动量质量耦合问题着手,采用κ-ε紊流模式理论,并利用PHOENICS软件进行管内顺序输送特殊工况下的混油数值模拟,计算结果清晰地反映出管内两种油品交界面处的对流扩散传质现象。并重点分析了竖直管道内油品的输送次序对混油的影响,停输、直角弯管、盲支管对混油浓度的影响,为进一步研究混油段经过中间泵站的变化奠定了基础。
     论文利用人工神经网络技术建立油品掺混浓度-质量控制指标预测模型。首先,通过实验,取得大量实验数据,从而确定掺混量对油品使用性能质量指标的影响,建立了质量指标预测的神经网络模型。其次,在质量预测模型的基础上,通过改变质量预测模型的输入输出量建立混油掺混比例的预测模型即混油浓度预测模型。根据实际的实验数据,文中共建立了三个浓度预测模型,即汽油掺入柴油时,保证柴油闪点合格的浓度预测模型;柴油掺入汽油时,保证汽油终馏点合格的浓度预测模型;当低标号柴油掺入高标号柴油时,保证高标号柴油凝点合格的浓度预测模型。最后,将模型预测值与实验实测值以及经验公式计算值进行了比较,结果表明神经网络模型的预测值与实测值相对误差较小,与其他方法相比,操作简单方便,可以用来控制混油回掺比例,确定混油切割点。
     在上述研究的基础上,开发了成品油顺序输送管道相关计算软件。
To guarantee the pipeline operation optimally, safely and efficiently, it is meaningful to understand the characteristics and rules of batch transportation of multi-product pipeline completely, deeply and exactly. The fundamental theory, numerical computation and dynamic simulation of batch transportation of multi-product pipeline have been studied.
     The adaptive grid method was adopted in the hydraulic transients, the one-dimensional contamination and two-dimensional contamination.The formula have been presented in the paper, taking into account the varying of propagation velocity of water hammer with the moving of the contamination interface and the other factors. It is much easier for the adaptive grid method to control the size and the density of the mesh and the generation of the grid can be finished quickly and automatically according to the characteristics of solutions. More grid points are redistributed in the large gratitude solution regions in response to numerical solutions and thus the larger the weight function on the grids,the smaller the corresponding grid distance is. The movement of the grids can be written into the governing equations so that the new positions can be worked out at every step allowing the grids to vary continuously and smoothly with the field changing, and thus the forwards position of gratitude solution region of the pressure field, velocity field and concentration field can be captured easily. The result shows that the technique has excellent qualities in improving accuracy of numerical solutions and reducing CPU time. The thermal transient equation, in which the temperature increment due to friction is taken into consideration, is derived on the bases of the continuity equation, momentum conservation equation and energy conservation equation. By combining the thermal transient equation, the hydraulic transient equation and the contamination equation, the coupling thermal-hydraulic-contamination model is offered, in which he corresponding adaptive grid method is also developed and the advantages of characteristics method and adaptive grid technique are combined.
     The prediction model of contamination viscosity has been established by using the formidable non-linearity mapping ability of artificial neural network. This model can predict contamination viscosity in each given point of the non-linearity influence factor. Its error is smaller than other way and it can completely meet the actual project need.
     The new contamination mathematical model of batch transportation is established based on the Navier-Stokes equation, the mass transportation equation and the k ?εturbulent flow theory, and the numerical simulation of contamination in pipeline under special operating mode has been investigated with the help of PHOENICS. In the interface of two different oils, its result can reflect clearly the phenomenon of convection and mass diffusion. The influences of transportation order in the erect pipeline and shutdown and blind pipeline and right angle pipe to contamination are analyzed prominently. The results provide a foundation for further study of the influence of tubular specimens and valves to the contamination as the interface flow through the intermediate stations.
     Acceptable concentration level of mixtures prediction models have been established in the paper originally by using BP neural networks. These models can be used to control doping percentage as well as determine cutting point. Firstly, the performance indicators of pure oil quality are determined according to the experimental data, and quality index forecast models are established with the help of BP neural networks. Secondly, Acceptable concentration level of mixtures prediction models are established on the basis of quality prediction models by changing the input and output of the quality forecast neural network models. Based on the experimental data, three prediction models have been established in this paper, which are flash point forecasting model respect to the incorporation of diesel and gasoline, dry point forecasting model respect to the incorporation of diesel and gasoline, solidifying point prediction model respect to the corporation of low-grade diesel oil and high-grade diesel. Finally, neural model prediction values have been compared with measured values and values predicted by the other method. The result shows that the neural network prediction model is more accurate than other method.The models are simple and convenient to be used to determine cutting time and dissolving ratio.
     In accordance with the above-mentioned studies, the calculation programs have been developed in the paper.
引文
[1]杨筱蘅,张国忠.输油管道设计与管理[M].东营:石油大学出版社,1996
    [2]M.B.卢里耶著,吕世昌,张泽溥译.成品油顺序输送最优化[M].北京:石油工业出版社,1989
    [3]付英,陈世一,商鹏.成品油长输管道顺序输送离线模拟软件[J].油气田地面工程,1999,18(1):14-17
    [4]祝和军,刘玉梅.克乌成品油管道工程设计[J].油气储运,1999,18(2):34-36,59
    [5]Charles E.Tucker.Satellite communications can control remote block valves [J].PIPE LINE INDUSTRY,1989, November:80-82
    [6]Jack.W.Crosby, Robert.E. Ahlfinger. New System Schedules Product Pipeline[J].Oil&Gas Journal,1975,73(3):63-66
    [7]梁翕章,陈茂祥.我国成品油管道发展战略[J].石油规划与设计,1999,10(1):1-3
    [8]Robert Techo.Product-line Computer Scheduling [J].Oil & Gas Journal,1973,71(42):91-114
    [9]N.C.Schwering.Satellite communication system controls a liquids pipeline [J].PIPELINE INDUSTRY,1990,June:21-29
    [10]C.H.HeywoodIIl.Pipeline SCADA systems: yesterday, today, tomorrow [J].PIPELINE INDUSTRY,1987,August:46-50
    [11]Wallace J.Mauer. APIREPORT-Batch tracking refined products by computer [J].PIPELINE INDUSTRY,1988,June:17-18
    [12]Chris Giles.Integrated control systems for product pipelines [J].Petroleum Review,1989,November:554-556
    [13]Robert B.,Admas.Buckeye modernizes computer operations, SCADA Systems [J].Oil & Gas Journal, 1986,Aug.11:55-59
    [15]贾进.成品油管道运输的发展趋势[J].综合运输,2003,(12):43-45
    [15]韩志广,宫敬.兰成渝成品油管道仿真系统的开发[J].油气储运,2003,22(2):20-23
    [16]张青松,赵会军,王树立.长距离输油管道水力瞬变特性分析[J].石油规划设计,2006,17(6):39-41
    [17]Jason Modisette.Pipeline Thermal Models [C].PSIG,2002
    [18]Jerry L Modisette,Jason P Modisette.Transient and Succession of Steady-States PipelineFlow Models[C].PSIG,2001
    [19]江国业,吴先策,崔艳雨.输油管道的水击仿真[J].中国民航学院学报,2005,23(2):16-19
    [20]张国忠.管道瞬变流动分析[M].东营:石油大学出版社,1994
    [21]李长俊,陈鑫.迦辽金法在管道不稳定流动分析中的应用[J].油气储运,2002, 21(4):31-34
    [22]Lorris T.Covington.Transient Models Permit Quick Leak Identification [J].Pipe line Industry,1979,August:92-104
    [23]周明,胡斌.计算机仿真原理及其应用[M].武汉:华中科技大学出版社,2005:1-3
    [24]周宇,邱姝娟,吴明,等.成品油顺序输送混油浓度的计算[J].油气储运,2006,25(9):25~27
    [25]陈世一,崔艳星,崔艳雨.成品油顺序输送管道混油量计算方法[J].油气储运,2007,26(8): 16-19
    [26]邓松圣,蒲家宁.成品油顺序输送二维和一维混油模型比较[J].油气储运,1997,16(1):16-18
    [27]刘立新,韩学承.成品油顺序输送管道混油与处理的探讨[J].河南石油,2005,19(5):68-70
    [28]黄淑女,杨承汉.成品油管道顺序输送变管径混油最的计算[J].油气储运,2005,24(9) :26-28
    [29]息子占译.成品油输送工艺和混油处理[J].国外油气储运,1995,(2):7-11
    [30]Karnal K,Botros.Estimating contamination between batches in products lines[J].Oil & Gas Journal,1984.
    [31]雍歧卫,蒋士章.机动管线顺序输送混油浓度检测装置研究[J].后勤工程学院学报,2006,(1):42-44.
    [32]商鹏.南输成品油管道顺序输送混油的回掺处理[J].油气储运,1998,17(12):1-4
    [33]王以家,冯润,王铁成.镇杭成品油管道顺序输送混油的切割与处理[J].油气储运,2002,21(8):5-7
    [34]付英,张存兰,贾贞.混油浓度曲线回归及混油切割点的确定[J].德州学院学报,2003,19(6):53-56.
    [35]杨晓军,宫敬.成品油管道顺序输送混油切割及处理研究[J].油气储运,2004,23(4):19-21.
    [36]唐江华,赵亚萍.成品油混油处理方法研究[J].油气储运,2001,20(4):14-16
    [37]桑广世,孙宇,朱坤峰,等.成品油管道批次/批量和各站库容的计算[J].油气储运,2000,19(2):16-19
    [38]李晶,李欣,富军.成品油顺序输送中混油情况分析及掺混方案的制定[J].管道技术与设备,1998,(4):37-39.
    [39]李莉,赵丽英.兰-成-渝管道顺序输送油品混合试验研究[J].石油规划设计,2002,13(1):25-30.
    [40]刘卓,曾庆存.自适应网格在大气海洋问题中的初步应用[J].大气科学,1994,18(6):641-648
    [41]刘卓,郭冬建,朱江,曾庆存.长江口水流和泥沙冲淤的数值模拟的初步研究—I.自适应网格的构造和水流计算[J].自然科学进展,1999,9(1):64-70
    [42]康红文,王鹏云,徐祥德.自适应网格技术在数值模式中的应用研究I.一维问题[J],大气科学,2000,24(5):615-624
    [43]康红文,王鹏云,徐祥德.自适应网格技术在数值模式中的应用研究II.二维问题[J],大气科学,2000,24(6):749-760
    [44]康红文,谷湘潜,柳崇健.自适应网格技术中的权函数问题研究[J],力学学报,2002,34(5):790-795
    [45]康红文,王鹏云.运动激波自适应网格算法中权函数问题的研究[J].航空学报,2000,21(5):439-441
    [46]康红文,柳崇健.徐祥德.一维无迭代自适应网格技术在Burgers方程中的应用[J].计算物理,2002,19(6):553-556
    [47]Kang Hongwen,Gu Xiangqian,LiuChongjian,et al.Adaptive Grid Technique Based on the Variational Principle and Its Weight Functions[J].Vol.19 No.4 Advancesin AtmosPheric sclences,2002,19(4):705-718
    [48]Brackbill J. U.,J. S. Saltzman.Adaptive zoning for singular problems in two dimensions[J],J Computs Phys,1982,(46):342-368.
    [49]邓松圣,周明来,蒲家宁.分析管流水力-热力瞬变的双特征线法[J].应用数学和力学,2002,23(6):627-634.
    [50]邓松圣.成品油顺序输送过程数值分析及最优决策技术研究[D].重庆:后勤工程学院,1997
    [51]陈材侃.计算流体力学[M].重庆:重庆出版社,1992
    [52]Deng Song-sheng,Pu Jia ning.Application of convection-diffusion equation to the analyses of conta-mination between batches in multi-products pipeline transport[J].Applied Mathematics and Mechanics,1998,19(8):757-764
    [53]陆金甫,刘晓遇,杜正平.对流占优扩散问题的一种特征差分方法[J].清华大学学报(自然科学版),2002,42(8):1126-1128.
    [54]卢旋珠.时间分数阶对流-扩散方程的有限差分方法[J].福州大学学报(自然科学版),2004,32(4):423-426
    [55]阴继翔,李国君,李卫华.对流扩散方程不同格式的数值稳定性分析[J].太原理工大学学报,2004,35(2):121-125
    [56]由同顺.求解对流扩散方程的一致高精度非振荡特征差分方法[J].工程数学学报,2002,19(2):57-62.
    [57]C. P. Liou. Calculation of transient in batched pipeline[C],4’th International Coference on Pressure Surges, England: BHRA Fluid Engineering, 1983
    [58]蒲家宁.管道顺序输送动态分析[J].油气储运,1991,10(3):1-4
    [59]郑永刚,方择.倾斜园管中紊流流动及顶替速度与压降计算,成都科技大学学报,1995,85(4):28-32
    [60]邢晓凯,张连文.成品油顺序输送最佳循环周期的确定方法,管道技术与设备,2002,(3):3-5
    [61]蒋仕章,蒲家宁.成品油管道顺序输送运行优化与分析,管道技术与设备, 2002,(5):7-10
    [62]蒲家宁,管道水击分析与控制[M].北京:机械工业出版社,1991
    [63]A. Speur.Dutch products line gets new control system[J].Oil & Gas Journal, 1988,Dec.26:131-134
    [64]Steven H.Meller,Robert Techno.Colonial pipeline develops station controller simulator for data,processing-time constraints[J].Oil & Gas Journal, 1986, Sept.15: 100-108
    [65]J.J.Dempsey, A.H.Al-Gouhi. Simulation efectively sites surge-relief facilities on Saudi pipeline[J]. Oil & Gas Journal,1993,September 20:92-98
    [66]Robert Techo.Pipeline hydraulic surges are shown in computer simulation[J]. The Oiland Gas Journal,1976, Nov. 22:103-111
    [67]D.C.Mackay.Batch-tracking computer model developed for N.sea system[J], Oil & Gas Journal,1989,August 21:88-95
    [68]宫敬,于达.顺序输送水力特性模拟计算[J].油气储运,1992,11(2):1-4,25
    [69] Ye Minghang,Fei Weiyang, et al. A Group contribution method for prediction of diffusion coefficients in liquid. Beijing,Proc[C].ISTCEI-88,1988:448~453
    [70]孙志忠.计算方法典型例题分析[M].北京:科学出版社,2005
    [71]Deng Songsheng,Zhou Minglai,Pu Jianing.Double Method Of Characteristics To Analyze Hydraulic- Thermal Transients Of Pipeline Flow[J].Applied Mathmatics and Mechanics(English Edition),2002,23(6):703-711
    [72]蒋仕章,蒲家宁.成品油顺序输送时的混油粘度计算与误差分析[J].油气储运,2003,22(2):16-19
    [73]朱大奇,史慧.人工神经网络原理及应用[M].北京:科学出版社,2006:10-25
    [74]韩力群.人工神经网络的理论、设计及应用[M].北京:化学工业出版社,2002,5-20
    [75]周诗岽,张文信,吴明.基于人工神经网络的含水原油视粘度计算[J].油气储运,2004,23(3):15-18
    [76]陈佩佩,刘鸿泉,朱在兴,等.基于人工神经网络技术的综放导水断裂带高度预计[J].煤炭学报,2005,30(4):438-442
    [77]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005:30-100
    [78]陶文铨.数值传热学(第2版) [M].西安:西安交通大学出版社,2002:200-350
    [79]任洪娟,刘爱萍.基于PHOENICS螺旋翅片管的数值研究[J].山东理工大学学报,2004,18(6):61-63
    [80]赵会军,张青松,张国忠,等.基于PHOENICS顺序输送管道内两种油品传质数值研究[J].北京化工大学学报,2006,33(6):22-25
    [81]赵会军,张青松,张国忠,等.基于PHOENICS的顺序输送大落差管道混油研究[J].石油天然气学报,2006,28(4):139-142
    [82]张青松,赵会军,王树立,等.盲支管对顺序输送管道混油影响的数值研究[J].石油机械,2006,34(11):14-16
    [83]寿德清.储运油料学[M].北京:石油大学出版社,1988
    [84]刘治中.油料应用学[M].北京:金盾出版社,1984
    [85]黄乙武.液体燃料的性质和应用[M].北京:烃加工出版社,1985
    [86]商业部燃料局.石油商品知识手册[M].北京:石油工业出版社,1980
    [87]寿德清,王从岗.我国石油馏分10种物性的预测方法[J].炼油设计,1993,23(4):39-49
    [88]焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1995
    [89]朱群雄,麻德贤.神经网络过程模型辨识[J].化工学报,1997,48(5):547-552
    [90]Hornik K,Stinchcombe M,White H.Multilayer feedforword networks are universal approximators[J]. Neural Networks,1989,(2):359-366
    [91]G-Cybenko . Continuous Value Neural Networks With Two Hidden Layers are Sufficient[J].Math-Contr- Signal & Sys,1989,2:203-214.
    [92]蒋绍飞,张春丽,钟善桐.BP网络模型的改进方法探讨[J].哈尔滨建筑大学学报,2003,33(5):57-60.
    [93]张际先,宓霞.神经网络及其在工程中的应用[M].北京:机械工业出版社,1998
    [94]Schradoph N,etal.Dynamic Parameter Encoding for Genetic Algorithms[J].Machine Learning,1992,9(1):9-21
    [95]曹德武,赵枚.BP算法的改进及其在非线性转子建模中的应用[J].数值计算与计算机应用,2000,21(2):121-126
    [96]李为民,邬国英,王洪元,等.基于ANN方法预测柴油调和的凝点和冷滤点[J].石油与天然气化工,1999,28(4):260~261

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700