碲在镍中的扩散行为与晶间脆化机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
熔盐堆是六种第四代核反应堆之一,具有固有安全性、核燃料可持续利用、核废料少、热转化效率高等众多优点,钍增值燃料的熔盐堆技术是解决未来核能燃料短缺的重要途径之一。Hastelloy N合金作为熔盐堆的结构材料,与液态氟盐燃料直接接触。燃料盐中的裂变产物碲(Te)导致Hastelloy N合金晶间脆化,严重影响合金的使用寿命。本论文利用在纯镍及镍铬合金表面电镀Te的方法,结合金相显微镜(OM)、扫描电镜(SEM),电子探针(EPMA)同步辐射X射线微区元素荧光分析(μ-XRF)、X射线衍射(XRD)等分析方法,系统研究了Te在镍及镍铬合金体系中的微观组织演化规律、镍碲反应产物种类及稳定性、拉伸性能的变化及Te的扩散行为和沿晶扩散深度,并对Te在镍及镍铬合金中的扩散和脆化机制进行了较深入的讨论。这一研究对于改善和提高Hastelloy N的抗晶间脆化性能具有重要的理论和工程意义。
     不同的扩散条件(温度、时间、Te浓度)会影响镍碲界面产物的类型和稳定性。Te浓度为0.5mg/cm2时,随扩散温度的升高(<900℃),镍碲扩散系统的界面反应产物未发生明显变化,为NiTe0.67或NiTe0.7,而且该产物有良好的热稳定性;当温度升到1000℃时,没有界面反应产物出现。Te浓度为10mg/cm2时,样品表面出现脱层现象,有多种镍碲化合物出现,如NiTe2、NiTe、NiTe0.77、NiTe0.67等。随着温度的升高,六方结构(NiTe2、NiTe)和正交结构(NiTe0.77)的镍碲化合物不稳定,慢慢转变为稳定的单斜结构的镍碲化合物(NiTe0.67)。
     扩散条件不同时Te对纯镍微观组织影响不同。界面反应层为片层状碲化镍。当温度低于900℃时,Te主要对纯镍晶界产生影响,近表层的晶界比中心的晶界耐蚀性差,并且随扩散温度升高,纯镍近表层晶界受侵蚀现象越来越严重。当温度升到1000℃及以上时,Te的扩散致使纯镍近表面的整体区域(包括晶界和晶内)耐蚀性变差。随着扩散时间的延长,纯镍近表层晶界受侵蚀现象也越来越严重。而随表面Te浓度增加,纯镍近表层晶界耐蚀性变化不明显。
     Te在纯镍中的扩散会影响纯镍的拉伸性能。与无Te样品相比,镀Te纯镍样品室温拉伸性能随着扩散温度升高下降更明显。扩散温度在500℃-1000℃之间,镀Te的纯镍样品极限抗拉强度由380MPa急剧下降到200MPa,延伸率由0.52下降到0.27。扩散时间在24h-1000h之间,镀Te的纯镍样品极限抗拉强度由340MPa下降到285MPa,延伸率在0.45左右基本不变。镀Te样品室温下的拉伸断口为混合型断口,靠近表层附近为沿晶脆性断裂,靠近中心区域为穿晶断裂;并且随扩散温度升高或扩散时间的延长,沿晶脆性断裂倾向加剧。
     Te在纯镍中主要以空位扩散机制为主。Te在纯镍中的扩散深度随扩散温度的升高而增加,随扩散时间的延长而增加。扩散温度小于900℃时,Te主要沿晶界快速通道扩散,沿体内晶格扩散较弱;当温度升高到1000℃及以上时,原子振动加剧,晶格扩散占主导地位,晶界扩散强度相对变弱,Te在纯镍中发生均匀扩散。通过测量Te扩散后纯镍的沿晶脆断深度,再根据扩散公式拟合(/)与1/的线性关系式得出Te在纯镍中沿晶界的扩散激活能Q=153.5kJ/mol,在中低温时Te在纯镍中沿晶界扩散系数随温度变化的表达式为=0.×10xp (10/) cm2/s。
     对于镍铬二元合金,Cr元素的引入使合金发生晶格畸变。Te与镍铬合金的界面反应产物主要为NiTe0.67,没有发现铬碲化合物出现。合金近表层有贫Cr现象出现。随Cr含量的升高,合金晶粒逐渐减小,晶界贫Cr现象越来越明显,Te在镍铬合金中的扩散深度也逐渐降低。当合金中Cr含量高于15%时,合金中基本无Te扩散现象出现。
Molten-salt reactor (MSR), one of the most promising next generation reactors,has incomparable advantages: inherent safety, fission fuel sustainable utilization,producing less long-lived wastes, excellent heat transfer characteristics and so on.Thorium-based Molten Salt Reactor technology is an important way to supplylong-term nuclear energy for the future. Hastelloy N alloy used as the structuralmaterial in MSR contacts directly with fluoride salts. Fission product Te leads tointergranular embrittlement of Hastelloy N alloy, which seriously affects the servicelife of Hastelloy N. In this study, the electroplating method was chose for preparingsamples, and the research is mainly concerned on microstructure evolution, varietiesand stability of nickel telluride, transformation of the tensile formability, andintergranular diffusion depth. A detailed analysis was taken to understand thediffusion behavior of Te in nickel and nickel chrome alloys and embrittlementmechanism. This study is helpful to improve Hastelloy N to resist intergranular brittle.
     Diffusion conditions (temperature, time, concentration of Te) will influence thetypes of reaction products and stability between tellurium and nickel. When theconcentration of Te is0.5mg/cm2, The main product is NiTe0.67or NiTe0.7below900C, which has good thermal stability. While no reaction layer is detected at1000C. When the concentration of Te is higher than10mg/cm2, the reaction layercomes off easily, and many types of nickel telluride are discovered, such as NiTe2,NiTe, NiTe0.77, Ni3Te2and so on. With the increase of temperature, nickel telluride ofthe hexagonal structure (NiTe2, NiTe) and orthogonal structure (NiTe0.77) are notstable and slowly change into monoclinic structure (NiTe0.67).
     Diffusion conditions will affect the microstructure of nickel diffused of Te. Thereaction product is lamellar structure. Grain bundaries in edge are etched moreseriously than that in center in nickel when temperature below900C, and which isincreasingly severe with temperature and time increasing. While the corrosionresistance of nickel is not change obvious when increased concentrations of Te.However, the whole grains and the grain bundary near the surface are corroded at1000C.
     Compared with the nickel without Te, the ultimate tensile strength(UTS) andbreaking elongation of samples with Te decrease dramatically. UTS is from380MPa down to200MPa and breaking elongation is from0.52to0.27between500C and1000C. UTS decline from340MPa to285MPa, whereas the elongation is0.45andnot change obvious in the diffusion time range of24h-1000h. Fracture of the alloywith Te exhibited brittle fracture with intergranular section near the surface andtransgranular deformation in the center. The depth of intergranular fracture graduallyincreases with temperature and time rising.
     The diffusion of Te in nickel base alloy are mainly vacancy diffusion. Diffusiondepth increases with the temperature and the time increasing. Te diffuses easily intonickel along the grain boundary below900C. While at1000C, the thermal vibrationof the matrix atoms is much more severe because of higher temperature. As a result,lattice diffusion becomes obvious and Te distributes equally into matrix. Theintergranular fracture depth (x) is measured by observing the fracture surface oftensile test specimens. Through fitting the linear relationship between (/) and1/, it is calculated that the diffusion activation energy of Te in Ni is152kJ/mol inthe temperature range from500C to1000C, and the formula of diffusion coefficientis=0.×10xp (10/) cm2/s.
     For the nickel chrome alloy,the interface products is NiTe0.67, while nochromium tellurium was found. The element of Cr is deficient in the edge of the alloy.The average size of the grain and the diffusion depth of Te in nickel chrome alloy aregradually decrease with the increasing of Cr content. When the content of Cr is higherthan15%, the alloy shows obvious effect to resist the diffusion of Te along the grainboundary.
引文
[1] U. DoE, A technology roadmap for generation IV nuclear energy systems, inNuclear Energy Research Advisory Committee and the Generation IVInternational Forum,2002.
    [2] J. A. Lake, The fourth generation of nuclear power, Progress in NuclearEnergy,2002,40:301-307.
    [3]左嘉旭,张春明,熔盐堆的安全性介绍,核安全,2011,3:73-78.
    [4] S. Delpech, C. Cabet, C. Slim, and G. S. Picard, Molten fluorides for nuclearapplications, Materials Today,2010,13:34-41.
    [5]唐宇,第四代国际论坛的第四代核能系统研究开发情况综述,国外核动力,2003,24:1-12.
    [6] L. Mathieu, D. Heuer, R. Brissot, C. Garzenne, C. Le Brun, D. Lecarpentier, etal., The thorium molten salt reactor: Moving on from the MSBR, Progress inNuclear Energy,2006,48:664-679.
    [7] P. Alekseev, I. Belov, N. Ponomarev Stepnoi, N. Kukharkin, S. Subbotin, Y. N.Udyanskii, et al., MARS low-power liquid-salt micropellet-fuel reactor,Atomic Energy,2002,93:537-546.
    [8] C. L. Brun, Molten salts and nuclear energy production, Journal of nuclearmaterials,2007,360:1-5.
    [9]秋穗正,张大林,苏光辉,田文喜,新概念熔盐堆的固有安全性及相关关键问题研究,原子能科学技术,2009,43:64-75.
    [10]哈琳,六种第四代核反应堆概念,国外核新闻,20031:15-19.
    [11] C. W. Forsberg, Thermal-and fast-spectrum molten salt reactors for actinideburning and fuel production, ChemInform,2009,40: i.
    [12] R. W. Moir and E. Teller, Thorium-fueled underground power plant based onmolten salt technology, Nuclear technology,2005,151:334-340.
    [13] H. McCoy Jr, Evaluation of the molten salt reactor experiment Hastelloy Nsurveillance specimens: First group, Oak Ridge National Lab., Tenn.1967.
    [14] M. M. Waldrop, Nuclear energy: Radical reactors, Nature,2012,492:26.
    [15] C. Degueldre and C. Guéneau, Introducing the nuclear material challenges,Journal of Nuclear Materials,2006,352: ix-xiii.
    [16] G. Hayner, R. Bratton, R. Wright, W. Windes, T. Totemeier, K. Moore, et al.,Next Generation Nuclear Plant Materials Research and Development ProgramPlan, Idaho National Engineering and Environmental Laboratory, Idaho Falls,Idaho,2004.
    [17] C. W. Forsberg, P. F. Peterson, and H. Zhao, An advanced molten salt reactorusing high-temperature reactor technology, in Proceedings of ICAPP,2004.
    [18] S. Zinkle and N. Ghoniem, Operating temperature windows for fusion reactorstructural materials, Fusion Engineering and design,2000,51:55-71.
    [19] P. Yvon and F. Carre, Structural materials challenges for advanced reactorsystems, Journal of nuclear materials,2009,385:217-222.
    [20] U. M. Facilitators, M. Facilitators, and U. B. Facilitators, Fluoride-Salt-Cooled High Temperature Reactor (FHR) Materials, Fuels and ComponentsWhite Paper,2013.
    [21] P. R. Bauquis, Reappraisal of energy supply-demand in2050shows big rolefor fossil fuels, nuclear but not for nonnuclear renewables, Oil and Gas Journal,2003,101:20-28.
    [22] E. M. Lucotte, L. Mathieu, D. Heuer, J. M. Loiseaux, A. Billebaud, R. Brissot,et al., Molten salt reactors and possible scenarios for future nuclear powerdeployment,2004:1-12.
    [23] M. Rosenthal, P. Kasten, and R. Briggs, Molten Salt Reactors-History, Status,and Potential, Nuclear Applications and Technology,1970,8:107-117.
    [24] D. LeBlanc, Too Good to Leave on the Shelf, mechanical engineering,2010.
    [25] P. N. Haubenreich and J. Engel, Experience with the molten salt reactorexperiment, Nuclear Applications and technology,1970,8:118-137.
    [26] A. M. Perry, Molten-salt converter reactors, Annals of Nuclear Energy,1975,2:809-818.
    [27] J. Engel, H. Bauman, J. Dearing, W. Grimes, H. McCoy, and W. Rhoades,Conceptual design characteristics of a denatured molten-salt reactor withonce-through fueling, Oak Ridge National Lab., TN (USA),1980.
    [28] A. Nuttin, D. Heuer, A. Billebaud, R. Brissot, C. Le Brun, E. Liatard, et al.,Potential of thorium molten salt reactorsdetailed calculations and conceptevolution with a view to large scale energy production, Progress in nuclearenergy,2005,46:77-99.
    [29]江绵恒,徐洪杰,戴志敏,"未来先进核裂变能——TMSR核能系统",中国科学院院刊,2012,27:366-374.
    [30] H. E. McCoy, Materials for Salt-Containing Vessels and Piping, Oak RidgeNational Laboratory, Oak Ridge, Tenn.,1972:201.
    [31] W. R. Huntley, J. W. Koger, Compatibility of calcium-silicate insulatingboard(johns-manville product heat-treated marimet-45) with engineeringalloys at1100to1600℉, ORNL/TM-4312, Oak Ridge National Laboratory,Oak Ridge, Tenn.,1973.
    [32] J. W. Koger, Evalution of Hastelloy N alloys after nine years exposure to botha molten fluoride salt and air at temperatures from700to560C,ORNL/TM-4189, Oak Ridge National Laboratory, Oak Ridge, Tenn.,1972.
    [33]"HASTELLOY N alloy," Haynes International, Inc., H-2052B,2002.
    [34] D. Williams, L. Toth, and K. Clarno, Assessment of candidate molten saltcoolants for the advanced high temperature reactor (AHTR), United StatesDepartment of Energy,2006.
    [35] D. Williams, Assessment of candidate molten salt coolants for the NGNP/NHIHeat-Transfer Loop, ORNL/TM-2006/69, Oak Ridge National Laboratory,Oak Ridge, Tenn.,2006.
    [36] L. C. Olson, J. W. Ambrosek, K. Sridharan, M. H. Anderson, and T. R. Allen,Materials corrosion in molten LiF–NaF–KF salt, Journal of fluorine chemistry,2009,130:67-73.
    [37] L. Olson, K. Sridharan, M. Anderson, and T. Allen, Nickel-plating for activemetal dissolution resistance in molten fluoride salts, Journal of NuclearMaterials,2011,411:51-59.
    [38] J. W. Koger. R. B. Evans Ⅲ, J. H. DeVan, Corrosion in Polythermal LoopSystems Ⅱ A Solid-Stare Diffusion Mechanism with and without LiquidFilm Effects, ORNL/TM-4575, Oak Ridge National Laboratory, Oak Ridge,Tenn.,1971.
    [39] R. B. Evans. J. H. DeVan, Corrsion Behavior of Reactor Materials in FluorideSalt Mixtures, ORNL/TM-0328, Oak Ridge National Laboratory, Oak Ridge,Tenn.,1962.
    [40] J. H. DeVan, Effect of Alloying Additions on Corrosion Behavior ofNickel-Molybdenum Alloys in Fused Fluoride Mixtures, ORNL/TM-2021,Oak Ridge National Laboratory, Oak Ridge, Tenn.,1969.
    [41] J. W. Koger and A. P. Litman, Compatibility of molybdenum-base alloy TZM,with LiF-BeF2-ThF4-UF4(68-20-11.7-0.3mole%) at1100C,ORNL/TM-2724, Oak Ridge National Laboratory, Oak Ridge, Tenn.,1969.
    [42] J. W. Koger, Corrosion and mass transfer characteristics of NaBF4-NaF(92-8mole%) in Hastelloy N, ORNL/TM-3866, Oak Ridge NationalLaboratory, Oak Ridge, Tenn.,1972.
    [43] J. W. Koger, Effect of FeF2addition on mass transfer in a Hastelloy N LiF-BeF2-UF4thermal convection loop system, ORNL/TM-4188, Oak RidgeNational Laboratory, Oak Ridge, Tenn.,1972.
    [44]陈恭珉,哈氏合金及其应用,上海化工,2004,17:552.
    [45] S. Delpech, T. Auger, e. al., MSFR: Material issues and the effect of chemistrycontrol, GIF Symposium,2009,9-10:201.
    [46] J. Roberto, Basic research needs for advanced nuclesr energy systems, Reportof the basic energy sciences workshop on basic research needs for advancednuclesr energy systems, July31-Aug.32006.
    [47] H. McCoy, R. Beatty, W. Cook, R. Gehlbach, C. Kennedy, J. Koger, et al.,New developments in materials for molten-salt reactors, Oak Ridge NationalLab., Tenn.,1970.
    [48] W. Martin and J. Weir, Solutions to the Problems of High-TemperatureIrradiation Embrittlement, Effects of Radiation on Structural Materials,ASTM-STP,1967,426:440-457.
    [49] H. E. McCoy, an evaluation of the molten-salt reactor experiment hastelloy Nsurveillance specimens-Fourth Group, ORNL/TM-3063, Oak Ridge NationalLaboratory, Oak Ridge, Tenn.,1971.
    [50] H. McCoy Jr, Evaluation of the molten-salt reactor experiment Hastelloy Nsurveillance specimens: Second Group, Oak Ridge National Lab., Tenn.,1969.
    [51] H. E. McCoy, an evaluation of the molten-salt reactor experiment hastelloy Nsurveillance specimens: Sencond Group, ORNL/TM-1997, Oak RidgeNational Laboratory, Oak Ridge, Tenn.,1967.
    [52] H. E. McCoy, an evaluation of the molten-salt reactor experiment hastelloy Nsurveillance specimens: Third Group, ORNL/TM-2647, Oak Ridge NationalLaboratory, Oak Ridge, Tenn.,1970.
    [53] W. R. Martin and J. R. Weir, The Effect of Irradiation Temperature on the Post-Irradiation Stress-Strain Behavior of Stainless Steel, ASTM STP380,Amarican Society for Testing and Materals,1965:251.
    [54] W. R. Martin and J. R. Weir, Effect of Elevated Temperature Irradiation on theStrength and Ductility of the Nickel-Base Alloy, Hastellay N, Nucl. Appl.,1965,1(2):160-167.
    [55] J. R. Weir and H. E. McCoy, Stress-rupture Properties of Irradiated andUnirradiated Hastelloy N Tubes, Nucl. Appl.,1968,4:96.
    [56] T. Kvackaj, J. Zrnik, V. Vrchovinsky, and P. Wangyao, Controlled rolling ofHastelloy-N, High Temperature Materials and Processes,2002,21:351-360.
    [57] J. Vacik, H. Naramoto, J. Cervena, V. Hnatowicz, I. Peka, and D. Fink,Absorption of molten fluoride salts in glassy carbon, pyrographite andHastelloy B, Journal of nuclear materials,2001,289:308-314.
    [58] J. B. Roberto and T. D. de la Rubia, Basic research needs for advanced nuclearenergy systems, JOM,2007,59:16-19.
    [59] P. Wangyao, Zrník, J., Kvackaj, T., Vrchovinsky, V. and Novy, Z., Effect offorming parameters on hot working process in nickel base alloy, J. Met. Mater.Miner.,2004,13:33-43.
    [60] M. W. Rosenthal, R. B. Briggs, P. N. Haubenreich, Molten Salt ReactorProgram, ORNL/TM-4782, Oak Ridge National Laboratory, Tenn.,1972:109-143.
    [61] B. McNabb and. H. E. McCoy, Examination of Hastelloy N control rodthimble, ORNL/TM-4676, Oak Ridge National Laboratory, Oak Ridge, Tenn.,1971:147-166.
    [62] B. McNabb and H. E. McCoy, Molten-salt reactor program semiannualprogress report, ORNL/TM-4728, Oak Ridge National Laboratory, Oak Ridge,Tenn.,1971:89-106.
    [63] P. N. Haubenreich, M. W. Rosenthal, R. B. Briggs, The Development Status ofmolten-salt breeder reactors, ORNL/TM-4812, Oak Ridge National Laboratory,Oak Ridge, Tenn., August1972:203.
    [64] H. E. McCoy, Intergranular Cracking of INOR-8in the MSRE,ORNL/TM-4829, Oak Ridge National Laboratory, Oak Ridge, Tenn.,1972.
    [65] H. E. McCoy, Intergranular Cracking of Structural Materials, Oak RidgeNational Laboratory, Oak Ridge, Tenn.,1972:112-113.
    [66] R. B. Briggs, M. W. Rosenthal, P. N. Haubenreich, Molten-Salt Reactor,Program, ORNL/TM-4832, Oak Ridge National Laboratory, Oak Ridge, Tenn.,1973.
    [67] J. G. Barstad, Fredrik; R st, Erling; Vestersj, Egil, On the Tellurides ofNickel, Acta Chemica Scandinavica,1966,20:2865-2879.
    [68] S.Y. Lee, P. Nash, in: Phase Diagrams of Binary Nickel Alloys, P. Nash (ed.),ASM Internationl, Materials Park, Ohio,1991.
    [69] R. Viswanathan, M. S. Baba, D. D. Albert Raj, R. Balasubramanian, B. Saha,and C. Mathews, Vaporisation thermodynamics of the nickel-rich phases in theNi-Te binary system—A high temperature mass spectrometric study, Journalof Nuclear Materials,1987,149:302-311.
    [70] R. B. KOK, G. A. Wiegers and F. Jellinek. The system Nickel-TelluriumⅠ.structure and some superstructures of the Ni3±qTe2phase, General&Introductory Chemistry,1965,84:1585-1588.
    [71] H. E. McCoy, Status of Materials Development for Molten Salt Reactors,ORNL/TM-5920, Oak Ridge National Laboratory, Oak Ridge, Tenn.,1978.
    [72] J. R. Keiser, Status of tellurium-Hastelloy N studies in malten fluoride salts,ORNL/TM-6002, Oak Ridge National Laboratory, Oak Ridge, Tenn.,1977.
    [73] P. G. Shewmon, Diffusion in solids, McGraw-Hill New York,1963,9.
    [74] R. Whipple, Concentration contours in grain boundary diffusion, PhilosophicalMagazine,1954,45:1225-1236.
    [75] A. Le Claire, The analysis of grain boundary diffusion measurements, BritishJournal of Applied Physics,1963,14:351.
    [76] L. Harrison, Influence of dislocations on diffusion kinetics in solids withparticular reference to the alkali halides, Transactions of the Faraday Society,1961,57:1191-1199.
    [77] B. Predel, Ni-Te (Nickel-Tellurium), Landolt-B rnstein-Group IV PhysicalChemistry,1998,51:1-4.
    [78] R. E. Clausing, L. Heatherly, Examination of a Hastelloy N foil sampleembrittled in the molten-salt reactor experiment, ORNL/TM-5132, Oak RidgeNational Laboratory, Oak Ridge, Tenn.,1976:88-95.
    [79] V. Ignatiev, A. Surenkov, I. Gnidoy, A. Kulakov, V. Uglov, A. Vasiliev, et al.,Intergranular Tellurium Cracking of Nickel-based Alloys in Molten Li, Be, Th,U/F Salt Mixture, Journal of Nuclear Materials,2013,440:243-249.
    [80] A. D. Kelmers, Coolant-Salt Chemistry, ORNL/TM-5132, Oak RidgeNational Laboratory, Oak Ridge, Tenn.,1976:38-39.
    [81] L. M. Toth and L. O. Gilpatrick, The Equilibrium of Dilute UF3SolutionContained in Craphite, ORNL/TM-4056, Oak Ridge National Laboratory, OakRidge, Tenn.,1972.
    [82] R. C. Barrall, J. E. Beaver, H. B. Hupf, and F. F. Rubio, Production of curiequantities of high purity I-123with15MeV protons, European Journal ofNuclear Medicine,1981,6:411-415.
    [83] R. L. Bratton, R. N. Wright, et al. Next generation nuclear plant materialsresearch and development Program Plan, Idaho National Laboratory,INL/EXT-06-11701,2006.
    [84] M Figueroa, Preliminary Fluoride Salt-Cooled High Temperature Reactor(FHR) Materials and Components White Paper, Preliminary FluorideSalt-Cooled High Temperature Reactor (FHR) Materials and ComponentsWhite Paper2012.
    [85]崔忠圻,覃耀春,金属学与热处理,机械工业出版社,2007:161-192.
    [86]郭建亭,高温合金材料学(上册),科学出版社,2008:168-195.
    [87] Derek Hull.著.李晓刚,董超芳,杜翠薇,高瑾,卢琳译,断口形貌学,观察、测量和分析断口表面形貌的科学,科学出版社,2009:1-33,197-217,262-293.
    [88] M. V ianská and M. ob, The effect of segregated sp-impurities ongrain-boundary and surface structure, magnetism and embrittlement in nickel,Progress in Materials Science,2011,56:817-840.
    [89] M. Yamaguchi, M. Shiga, and H. Kaburaki, Energetics of segregation andembrittling potency for non-transition elements in the Ni Σ5(012) symmetricaltilt grain boundary: a first-principles study, Journal of Physics: CondensedMatter,2004,16:3933.
    [90] D. Satyanarayana and G. Malakondaiah, Effect of prior oxidation on the creepbehaviour of nickel and iron based superalloys, Transactions of the IndianInstitute of Metals,2009,62:223-228.
    [91] H. Ono, H. Fukagawa, K. Morita, and N. Sano, Effects of O, Se, and Te on therate of nitrogen dissolution in molten iron, Metallurgical and MaterialsTransactions B,1996,27:848-853.
    [92] H.P. Chen, R. K. Kalia, E. Kaxiras, G. Lu, A. Nakano, K.I. Nomura, et al.,Embrittlement of metal by solute segregation-induced amorphization",Physical review letters,2010,104(15):5502-5505.
    [93] D. A. Woodford and R. H. Bricknell, Grain boundary penetration of oxygen innickel and the effect of boron additions, Metallurgical Transactions A,1981,12:1467-1475.
    [94] J. Stark and H. Marcus, The influence of segregation on grain boundarycohesion, Metallurgical Transactions A,1977,8:1423-1429.
    [95] M. Menyhard, B. Rothman, and C. McMahon, Observations of segregationand grain-boundary faceting by tellurium and oxygen in iron, Scriptametallurgica et materialia,1993,29:1005-1009.
    [96] J. Rellick, C. McMahon, H. Marcus, and P. Palmberg, The effect of telluriumon intergranular cohesion in iron, Metallurgical and Materials Transactions B,1971,2:1492-1494.
    [97]余永宁,金属学原理,冶金工业出版社,2000:169-214.
    [98] H. MoCoy and R. Gehlbach, Influence of zirconium additions on themechanical properties of A Ni-Mo-Cr alloy in the irradiated and unirradiatedconditions, Journal of Nuclear Materials,1971,40:151-165,.
    [99] R. Hotzler and L. Castleman,"Diffusion of sulfur into thoriated nickel",Metallurgical Transactions, vol.3, pp.2561-2564,1972.
    [100] J. Beckman and D. Woodford, Gas phase embrittlement of nickel by sulfur,Metallurgical Transactions A,1990,21:3049-3061.
    [101] K. E. Easterling, D. A. Porter著.陈冷,余永宁译,金属和合金中的相变,高等教育出版社,2011:84-86.
    [102]闻立时,固体材料界面研究的物理基础,科学出版社,2011:108-109.
    [103] R. Iacocca and D. Woodford, The kinetics of intergranular oxygen penetrationin nickel and its relevance to weldment cracking, Metallurgical Transactions A,1988,19:2305-2313.
    [104]刘谦,马世宁,电弧喷涂层高温氧化行为,金属热处理,2002,27:27-30.
    [105] G. Wood, T. Hodgkiess, and D. Whittle, A comparison of the scaling behaviourof pure iron-chromium and nickel-chromium alloys in oxygen, CorrosionScience,1966,.6:129-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700