Zn在Ⅲ-V族半导体中的扩散机理与低禁带红外电池制备的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锌(Zn)是一种P型掺杂物质,其气相扩散过程可广泛应用于Ⅲ-Ⅴ族化合物半导体(GaSb、GaAs、GaP、InAs等)的P型掺杂工艺,因此研究Zn在上述材料中的扩散规律对器件制造有重要帮助。然而在恒定表面Zn浓度的扩散情况下,Zn在Ⅲ-Ⅴ族化合物半导体中的扩散曲线并不遵循余误差函数分布,而是呈现出具有双重扩散前沿的kink-and-tail形貌或单扩散前沿的box形貌。
     我们研究了Zn在GaSb、GaAs和InAs这三种材料中的扩散规律。对于Zn在GaSb中的扩散,我们发现在扩散源中加入Ga元素可以遏制Zn扩散曲线中表面高浓度区域的产生,从而使Zn扩散曲线从kink-and-tail类型向box类型转换;kink-and-tail曲线中以kink点为界限划分出的表层与尾部区域都具有良好的生成规律,表层区域扩散率(D)与Zn浓度(C)的平方成正比,即D∝C2,尾部区域则有D∝C;box类型曲线的生成规律与kink-and-tail曲线尾部的生成规律是相同的,光致发光(PL)分析表明它们都具有代表Ga原子过剩的PL峰,证实了Zn在这两个区域都是通过踢出晶格中Ga原子的kick-out方式进行扩散的。
     Zn在GaAs中的扩散机理与在GaSb中的非常相似,而在InAs中的扩散机理却有较大差别。无论是采用纯Zn或者Zn-In合金作为扩散源,Zn在InAs中都生成box类型扩散曲线,其中以Zn-In合金作为扩散源生成的box曲线完全符合D∝C的关系,不会出现其它box曲线中极浅层区域存在的D∝C-2的现象。
     基于扩散源中Ga原子可遏制Zn在GaSb中表面高浓度区域产生的发现,我们提出了采用Zn-Ga合金扩散源的密封式扩散法来制备GaSb红外电池。传统GaSb电池制备工艺都是采用以Zn-Sb合金作为扩散源的准密封式扩散法制备PN结,生成的是具有表面高浓度扩散区域的kink-and-tail类型Zn曲线,需要将kink点之前的区域精确腐蚀掉以提高量子效率,然而对此百纳米级区域进行精确腐蚀是非常困难的。我们采用Zn-Ga合金扩散源的密封式扩散法直接生成box类型曲线,并制备了GaSb红外电池。该方法简化了电池制备工艺,并且可以保持不同批次的电池电学输出性能稳定,有利于批量制备。
Zinc is a p-type dopant for semiconductors, zinc vapor phase diffusion process can be widely used for the P-type doping of III-V compound semicondutors such as GaSb, GaAs, GaP, InAs, etc. Therefore the investigation on the behavior of zinc diffusion in the above materials are important for device fabrication. However, zinc profiles in III-V compound semicondutors do not follow the complementary-error-function under the constant zinc surface concentration. Zinc profiles will show the kink-and-tail shapes with two diffusion fronts or the box shapes with a single diffusion front.
     We investigated the behaviors of zinc diffuion in GaSb, GaAs and InAs. For zinc diffusion in GaSb, we found that Ga atoms from diffusion sources suppressed the formation of the high-concentration surface diffusion regions in zinc profiles, thus converting the kink-and-tail-shaped profile into the box-shaped profile; our analysis demonstrated that both the surface and tail regions in the kink-and-tail profiles showed good regularities, the zinc diffusion coefficient (D) in the surface region is proportional to the square of the zinc concentration (C), that is D^C2; while there exits the relationship of D∝C in the tail region. The analysis revealed that the formation mechanism of the box profiles is the same as that of the tail region of the kink-and-tail profiles, the same PL signals related to the Ga excess were found in the above two regions, which demontrated that zinc atoms diffused through the kick-out mechanism.
     Our investigation found that the diffusion mechanism of zinc in GaAs is similar to that in GaSb, while it is different from that in InAs. Zinc diffusion profiles in InAs will show box shapes whether the pure zinc or Zn-In alloy were used as the diffusion sources. For the box profiles obtained under Zn-In sources, there exists the relations of D∝C in the whole region and will not appear the relation of D∝C-2in the shallow region.
     Sincethe formation of high-concentration surface diffusion regions can be suppresed by Ga atoms in diffuison sources, we proposed a sealed diffusion method using the Zn-Ga alloy sources to fabricate GaSb infrared cells. In the traditional fabrication process for GaSb cells, the pseudo-closed diffuison method using Zn-Sb alloy sources were used to prepare the PN junction. The zinc diffuison profiles will show kink-and-tail shapes with a surface high-concentration diffusion region before the kink point, the precise etching process were needed for etching the surface region to the kink point in order to improve the quantum efficiency of GaSb cells. However, it is difficult to realize pricise etching for the several hunred nanometers region. We used the sealed-quartz-tube diffuison method with Zn-Ga alloy sources to fabricate the PN junction of GaSb cells, which simplified the fabrication processes. The GaSb cells fabricated can maintain a stable electrical output performance, which is useful for volume production. The bandgap of InAs is lower than that of GaSb, thus the infrared cells manufactured using the InAs substrates can be used in a low-temperature thermophotovoltaic system.
引文
[1]B. Tuck.1988. Atomic Diffusion in III-V Semiconductors [M]. Bristol:IOP Publishing Ltd, 1-2.
    [2]施敏.2002.半导体器件物理与工艺[M].苏州:苏州大学出版社,521.
    [3]S. Sridaran.2006. Fabrication and characterization of high performance gallium antimonide photodiodes. [D]:[Doctor]. USA:Rensselaer Polytechnic Institute.70-71.
    [4]T. Schlegl, F. Dimroth, A. Ohm and et al.2004. TPV modules based on GaSb structures [C]. Sixth Conference on Thermophotovolataic Generation of Electricity,738:285-293.
    [5]Fraas L M, Girard G R, Avery J E, et al.1989. GaSb booster cells for over 30 percent efficient solar-cell stacks[J]. Journal of Applied Physics,66:3866-3870.
    [6]J. E. Avery, L. M. Fraas, et al.1990. Lightweight concentrator module with 30% AM0 efficient GaAs/GaSb[C]. Proc. of 21st IEEE Photovoltaic Specialist Conference, Kissimimee,2:1277-1281.
    [7]K. Sunder, H. Bracht, S. P. Nicols, et al.2007. Zinc and gallium diffusion in gallium antimonide [J]. Physical Review B,75:245210 (1-9).
    [8]S. P. Nicols, H. Bracht, M. Benamara, et al.2001. Mechanism of zinc diffusion in gallium antimonide [J]. Physica B-Condensed Matter,308:854-857.
    [9]S. P. Nicols.1998. Self-and zinc diffusion in Gallium Antimonide [D]:[Master]. USA: University of California.56.
    [10]Sulima, O.V., A. W. Bett, M. G. Mauk, et al.2003.Diffusion of Zn in TPV materials:GaSb, InGaSb, InGaAsSb and InAsSbP [C]. Fifth Conference on Thermophotovoltaic Generation of Electricity, Rome,653:402-413.
    [11]Sundaram, V.S. and P.E.1993. Gruenbaum, Zinc diffusion in GaSb [J]. Journal of Applied Physics,73(8):3787-3789.
    [12]A. W. Bett, S. Keser, and O.V. Sulima.1997. Study of Zn diffusion into GaSb from the vapour and liquid phase [J]. Journal of Crystal Growth,181(1-2):9-16.
    [13]H. Bracht, and S.Brotzmann.2005.Zinc diffusion in gallium arsenide and the properties of gallium interstitials[J]. Physical Review B,71:15216(1-11).
    [14]S. Reynolds, D.W. Vook, and J.F. Gibbons.1988. Open-tube Zn diffusion in GaAs using diethylzinc and trimethylarsenic:Experiment and model [J]. Journal of Applied Physics,63(4): 1052-1059.
    [15]B. Tuck, B. and M.A.H. Kadhim.1972. Anomalous diffusion profiles of zinc in GaAs [J]. Journal of Materials Science,7:585-591.
    [16]K. B. Kahen.1989. Model for the diffusion of zinc in gallium arsenide [J]. Applied Physics Letters,55:2117-2119.
    [17]K. B. Kahen, J.P. Spence, and G. Rajeswaran.1991. Mechanism for zinc diffusion in n-type gallium arsenide [J]. Journal of Applied Physics,70:2464-2466.
    [18]M. Yamada, P. K. Tien, R. J. Martin, et al.1983. Double zinc diffusion fronts in InP-Theory and experiment [J]. Applied Physics Letters,43:594-596.
    [19]Hong Ye, Liangliang Tang and Kuijun Li.2013. The intrinsic relationship between the kink-and-tail and box-shaped zinc diffusion profiles in n-GaSb[J]. Semiconductor Science and Technology,28:015001(1-6).
    [20]Liangliang Tang, Hong Ye and Jiu Xu.2014. A novel zinc diffusion process for fabrication of high performance GaSb thermophotovoltaic cells[J]. Solar Energy Materials & Solar cells,122: 94-98.
    [21]郑青贺,叶宏,汤亮亮.2011.Zn在N-GaSb晶片中扩散机理的实验[J].太阳能学报,32:35-40.
    [22]Ye Hong, Tang Liangliang and Ma Yulong.2010. Experimental and theoretical investigation of zinc diffusion in N-GaSb [J]. Chinese Science Bulletin,55:2489-2496.
    [23]M. G Mauk, V. M Andreev.2003. GaSb-related materials for TPV cells[J]. Semiconductor Science and Technology,18(5):191-201.
    [24]Fraas LM, Avery JE, Gerald RG.1992-02-25. Tandem photovoltaic solar cell with III-V diffused junction booster cell:USA,5091018 [P].
    [25]Fraas LM, Sundaram VS, Avery JE, et al.1993-06-08.Ⅲ-Ⅴ solar cells and doping processes: USA,5217539 [P].
    [26]T. A. Butcher, J. S. hammonds, E. Home, et al.2011. Heat transfer and thermophotovoltaic power generation in oil-fired heating systems [J]. Applied Energy,88:1543-1548.
    [27]W. E. Home, M. D. Morgan, W. P. Home, et al.2005. Frequency selective surface bandpass filters applied to radioisotope thermophotovoltaic generators [C]. Space Technology and Applications International Forum, Albuquerque,746:593-600.
    [28]W. E. Home, M. D. Morgan, W. P. Home, et al.2004. Frequency selective surface bandpass filters applied to thermophotovoltaic generators [C]. Sixth Conference of Thermophotovoltaic Generation of Electricity,2004,738:189-197.
    [29]B. Xu, V. S. Sundaram, M. D. Morgan, et al.2005. Integrated bandpass filter contacts for GaSb thermophotovoltaic cells [C].IEEE,7803:774-777.
    [30]J. H. Park, S. I. Lee, H. Wu, O. C. Kwon.2012. Thermophotovoltaic power conversion from a heat-recirculating micro-emitter [J]. International Journal of Heat and Mass Transfer,55: 4878-4885.
    [31]W. M. Yang, D. Y. Jiang, S. K. Chou, et al.2012. Experimetal study on micro modular combustor for micro-thermophotovoltaic system application [J]. International Journal of Hydrogen Energy,37:9576-9583.
    [32]Y. H. Li, C. Y. Wu, Y. S. Lien, et al.2010. Development of a high-flame-luminosity thermophotovoltaic power system [J]. Chemical Engineering Journal,162:303-313.
    [33]C. Ferrari, F. Melino, M. Pinelli, et al.2014. Thermophotovoltaic energy conversion: Analytical aspects, prototypes and experiences [J]. Applied Energy,113:1717-1730.
    [34]C. Ferrari, F. Melino and M. Bosi.2013. The critical role of emitter size in thermo-photovoltaic generators [J]. Solar Energy Materials & Solar Cells,113:20-25.
    [35]Z. Utlu and U. Parali.2013. Investigation of the potential of thermophotovoltaic heat recovery for the Turkish industrial sector [J]. Energy Conversion and Management,74:308-322.
    [36]K. Qiu, A. C. S. Hayden.2007. Thermophotovoltaic power generation system using natural gas-fired radiant burners [J]. Solar Energy Materials & Solar Cells,91:588-596.
    [37]B. Bitnar, W. Burisch and R. Holzner.2013. Thermophotovoltaics on the move to applications [J]. Applied Energy,105:430-438.
    [38]Y. M. Xuan, X. Chen and Y. Han.2011. Design and analysis of solar thermophotovoltaic systems [J]. Renewable Energy,36:374-387.
    [39]Y. Wang, X. W. Zhang, X. L. Zhang, et al.2012. Eletricity generation from thermal irradiation governed by GaSb active layer [J]. Renewable Energy,48:231-237.
    [40]H. Yugami, H. Sasa and M. Yamaguchi.2003. Thermophotovoltaic systems for civilian and industrial applications in Japan [J]. Semiconductor Science and Technology,18:239-246.
    [41]M. D. Morgan.1996. Infrared resonant mesh band-pass filter fabricated with masked ion beam lithography [J]. Journal of Vaccuum Science and Technology,14:3903-3907.
    [42]L. M. Fraas, J. Avery and L. Minkin.2012. Design of a portable fuel fired cylindrical TPV battery replacement [J]. American Institute of Aeronautics and Astronautics:1-15.
    [43]E. S. Barbieri, F. Melino and M. Morini.2012. Influence of the thermal energy storage on the profitability of micro-CHP systems for residential building applications [J]. Applied Energy,97: 714-722.
    [44]L. M. Fraas.2012. Overview of potential TPV Applications [C]. TPV-10, PPT for Oral Presentation.
    [45]Taysir Nayfeh et al.2011. High intensity laser power beaming architecture for space and terrestrial missions [J]. NASA/TM,217009.
    [46]W. R. Chan, R. Bermel, R.C. N. Rilawa-Rodgurski, et al.2012. Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics [J]. Proceedings of the National Academy of Sciences of the USA,14:5309-5314.
    [47]O. Nielsen.2006. A thermally efficient micro-reactor for the thermophotovoltaic power generation [D]:[Ph. D.]. USA:Uassachusetts Institute of Technology,5-40.
    [48]V. Rinnerbauer, S. Ndao, Y. X. Yeng, et al.2013. Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters [J]. Journal of Vacuum Scenece and Technology B,31:011802(1-7).
    [49]C. A. Wang, H. K. Choi, S. L. Ransom, et al.1999. High quantum-efficiency 0.5eV GalnAsSb/GaSb thermophotovoltaic devices [J]. Applied Physics Letters,75:1305-1307.
    [50]H. K. Choi, C. A. Wang, G. W. Turner, et al.1997. High-performance GalnAsSb thermophotovoltaic devices with an AlGaASb window [J]. Applied Physics Letters,71: 3758-3760.
    [51]V. P. Khvostikov, O. A. Khvostikova, E. V. Oliva, et al.2002. Zn-diffused InAsSbP/InAs and Ge TPV cells[C]. Proc of 29th IEEE PVSC:943-946.
    [52]V. A. Gevorkyan, V. N. Aroutiounian, K. M. Gambaryan, et al.2007. The growth of low band-gap InAsSbP based diode heterostructures for thermophotovoltaic application[C]. Seventh World Conference on Thermophotovoltaic Generation of Electricity, Madrid,890:165-173.
    [53]K. J. Cheetham, P. J. Carrington, N. B. Cook, et al.2011. Low bandgap GalnAsSbP pentanary thermophotovoltaic diodes [J]. Solar Energy Materials & Solar Cells,95:534-537.
    [1]L. R. Weisberg and J. Blanc.1963. Diffusion with interstitial-substitutional equilibrium:Zinc in GaAs [J]. Physical Review,31:1548-1552.
    [2]S. Reynolds, D.W. Vook, and J.F. Gibbons.1988. Open-tube Zn diffusion in GaAs using diethylzinc and trimethylarsenic:Experiment and model [J]. Journal of Applied Physics,63(4): 1052-1059.
    [3]J. Crank.1956. The Mathematics of Diffusion [M]. Oxford:University Press,165-166.
    [4]S. P. Nicols, H. Bracht, M. Benamara, et al.2001. Mechanism of zinc diffusion in gallium antimonide. Physica B-Condensed Matter,308:854-857.
    [5]K. Sunder, H. Bracht, S. P. Nicols, et al.2007. Zinc and gallium diffusion in gallium antimonide [J]. Physical Review B,75:245210 (1-9).
    [6]S. P. Nicols.1998. Self-and zinc diffusion in Gallium Antimonide [D]:[Master]. USA: University of California.
    [7]H. Bracht, E. E. Haller, et al.2000. Large disparity between gallium and antimony self-diffusion in gallium antimonide [J]. Nature,408:69-72.
    [8]Y. W. Zhao, H. W. Dong, Y. H. Chen, et al.2002. Creation and suppression of point defects through a kick-out substitution process of Fe in InP [J]. Applied Physics Letters,80:2878-2879.
    [9]R. V. Ganabria, E. Rosendo, J. Martinez, et al.2007. Study of Te diffused into GaSb by photoluminescence and HRXRD. Physicsof State Solid,4:1406-1410.
    [10]M. L. Gomez-Herrera, J. L. Herrera-Perez, P. Rodriguez-Fragoso, et al.2008. Low temperature photoluminescence and photoacoustic characterization of Zn-doped InxGa1-xAsySb1-y epitaxial layers for photovoltaic applications [J]. Applied Surface Science,255:761-763.
    [11]N. H. Ky, L. Pavesi, D. Araujo, et al.1991. A model for the Zn diffusion in GaAs by a photoluminescence study [J]. Journal of Applied Physics,69:7585-7593.
    [12]A. S. Vlasov, E. P. Rakova, V. P. Khvostikov, et al.2011. Native defect concentration in Czochralski-grown Te-doped GaSb by photoluminescence [J]. Solar Energy Materials & Solar cells, 94:1113-1117.
    [13]C. C. Ling, S. Fung and C. D. Beling.2001. Defect study of Zn-doped p-type gallium antimonide using positron lifetime spectroscopy [J]. Physical Review B,64:075201:1-8.
    [14]W. K. Mui, M. K. Lui, C. C. Ling, et al.2002. Gallium vacancy in GaSb studied by positron lifetime spectroscopy and photoluminescence [J]. Materials Research Society Symposium Proceedings,692:1-6.
    [15]P. S. Dutta, K. S. R. Koteswara Rao, H. L. Bhat, et al.1995. Photoluminescence studies in bulk gallium antimonide [J]. Applied Physics A,61:149-152.
    [16]L. T. Mejia, J. A. Villada, M. Delogrios, et al.2008. Optical and structural characterization of GaSb and Te-doped GaSb single crystals [J]. Physica B,403:4027-4032.
    [17]W. Jakowetz, W. Ruhle, K. Breuning, et al.1972. Luminescence and photoconductivity of undoped P-GaSb [J]. Physica Status Solidi a-Applied Research,12:169-175.
    [18]Y. Vanderme.1967. Growth properties of GaSb-structure of residual acceptor centres [J]. Journal of Physics and Chemistry of Solids,28:25-30.
    [19]M. Lee, D. J. Nicholas, K. E. Singer, et al.1986. A photoluminescence and hall-effect study of GaSb grown by molecular-beam epitaxy [J]. Journal of Applied Physics,59:2895-2900.
    [20]C.C. Ling, W.K. Mui, C.H. Lam, et al.2002. Gallium vacancy and the residual acceptor in undoped GaSb studied by positron lifetime spectroscopy and photoluminescence [J]. Applied Physics Letters,80:3934-3936.
    [21]M. Hakala, M. J. Puska and R. M. Neminen.2002. Native defects and self-diffusion in GaSb [J]. Journal of Applied Physics,91:4988-4994.
    [22]A. W. Bett, S. Keser, and O.V. Sulima.1997. Study of Zn diffusion into GaSb from the vapour and liquid phase [J]. Journal of Crystal Growth,81(1-2):9-16.
    [23]鲍尔塔克斯主编.1964.半导体中的扩散[M].薛士莹,译.北京:科学出版社,26-27.
    [24]S. Reynolds, D.W. Vook, and J.F. Gibbons.1988. Open-tube Zn diffusion in GaAs using diethylzinc and trimethylarsenic:Experiment and model [J]. Journal of Applied Physics,63(4): 1052-1059.
    [25]H. Khald, H.mani and A. Joullie.1988. Shallow diffusion of Zinc into InAs and InAsSb [J]. Journal of Applied Physics,64:4768-4771.
    [26]A. C. Ford, S. Chuang, J. C. Ho, et al.2010. Patterned p-doping of InAs nanowires by gas-phase surface diffusion of Zn [J]. Nano letters,10:509-513.
    [1]Chou SK, Yang WM, Chua KJ, Li J, Zhang KL.2011. Development of micro power generators-A review[J]. Applied Energy,88:1-16.
    [2]Fraas LM, Avery JE, Huang HX.2003. Thermophotovoltaic furnace-generator for the home using low bandgap GaSb cells[J]. Semiconductor Science and Technology,18:247-253.
    [3]Chia, LC, Feng B.2007. The development of a micropower (micro-thermophotovoltaic) device [J]. Journal of Power Sources,165:455-480.
    [4]Li YH, Lien YS, Chao YC, Dunn-Rankin D.2009. Performance of a mesoscale liquid fuel-film combustion-driven TPV power system[J]. Progress in Photovoltaics:Research and Applications, 17:327-336.
    [5]Bett AW, Sulima OV.2003. GaSb photovoltaic cells for applications in TPV generators [J]. Semiconductor Science and Technology,18:184-190.
    [6]Yiguang Ju and Kaoru Maruta.2011. Microscale combustion:Technology development and fundamental research [J]. Progress in Energy and Combustion Science,37:669-715.
    [7]Kaoru Maruta.2011. Micro and mesoscale combustion[J]. Proceedings of the Combustion Institute,33:125-150.
    [8]J. H. Park, S. I. Lee, H. Wu, O. C. Kwon.2012. Thermophotovoltaic power conversion from a heat-recirculating micro-emitter [J]. International Journal of Heat and Mass Transfer,55: 4878-4885.
    [9]K. Qiu and A. C. S. Hayden.2012. Development of a novel cascading TPV and TE power generation system[J]. Applied Energy,91:304-308.
    [10]V. M. Andreev, V. A. Grilikhes, V. P. Khvostikov, et al.2004. Concentrator PV modules and solar cells for TPV systems[J]. Solar Energy Materials & Solar Cells,284:3-17.
    [11]W. M. Yang, S. K. Chou, J. F. Pan, J. Li and et al.2010. Comparison of cylindrical and modular micro combustor radiators for micro-TPV system application[J]. Journal of Micromechanics and Microengineering,20:085003(1-8).
    [12]Hiroo Yugami, Hiromi Sasa and Masafumi Yamaguchi.2003. Thermophotovoltaic systems for cicilian and industrial applications in Japan[J]. Semiconductor Science and Technology,18: 239-246.
    [13]V. P. Khvostikov et al.2006. High-efficiency (49%) and high-power photovoltaic cells based on gallium antimonide[J]. Physics of Semiconductor Devices,40:1275-1279.
    [14]Aakash Sahai and David Graham.2011. Optical wireless power transmission at Long Wavelengths[J]. International Conference on Space Optical Systems and Applications, Santa Monica,164-170.
    [15]J. mukherjee, S. Jarvis, M. Perren and et al. 2013. Efficiency limits of laser power converters for optical power transfer applications[J]. Journal of Physics D:Applied Physics,46:264006 (1-6).
    [16]C. Algora and R. Rena.2009. Recharging the battery of implantable biomedical devices by light[J]. Artificial Organs,33:855-876.
    [17]T. Schlegl, F. Dimroth, A. Ohm and et al. 2004.TPV modules based on GaSb structures [C]. Sixth Conference onThermophotovolataic Generation of Electricity,738:285-293.
    [18]A. S. Vlasov, E. P. Rakova, V. P. Khvostikov, et al. 2011. Native defect concentration in Czochralski-grown Te-doped GaSb by photoluminescence[J]. Solar Energy Materials & Solar cells,94:1113-1117.
    [19]V. P. Khvostikov, S. V. Sorokina, O. A. Khvostikova, et al. 2013. High-efficiency GaSb photocells[J]. Physics of Semiconductor Devices,47:307-313.
    [20]刘爱民.1998GaAs/GaSb高效叠层太阳能电池的制备[D]:[博士].北京:中国科学院半导体研究所半导体。
    [21]钟兴儒,刘爱民,林兰英,向贤碧.1996GaSb太阳电池阳极氧化膜的研究[J]。太阳能学报,17:263-265.
    [22]杨兴典.2008.基于GaSb的热光伏电池工艺技术的研究[D]:[硕士].南京:南京理工大学
    [23]于书文.2009GaSb热光伏电池及其减反层的研究[D]:[硕士].大连:大连理工大学.[24]方思麟,于书文,刘维峰,刘爱民.2008.基于Ⅲ-Ⅴ族半导体材料的热光伏电池研究进展[J]。半导体技术,8:649-653.
    [25]Fraas LM, Girard GR, Avery JE and et al. 1989. GaSb booster cells for over 30% efficient solar-cell stacks [J]. Journal of Applied Physics,66:3866-3870.
    [26]Fraas LM, Avery JE, Gruenbaum PE and et al. 1991.Fundamental characterization studies of GaSb solar cells[C]. Process of 22nd IEEE Photovoltaic Specialists Conference, New York,1: 80-83.
    [27]Fraas LM, Avery JE, Gerald RG.1992-02-25. Tandem photovoltaic solar cell with Ⅲ-Ⅴ diffused junction booster cell:USA,5091018 [P].
    [28]Fraas LM, Sundaram VS, Avery JE and et al. 1993-06-08.Ⅲ-Ⅴ solar cells and doping processes, US USA,5217539 [P].
    [29]Sulima OV, Bett AW.2001. Fabrication and simulation of GaSb thermophotovoltaic cells [J].Solar Energy Materials & Solar cells,66:533-540.
    [30]Rajagopalan G, Reddy NS, Ehsani H, et al. 2003. A simple single-step diffusion and emitter etching process for high-efficiency gallium-antimonide thermophotovoltaic devices[J]. Journal of Electronic Materials,32:1317-1321.
    [31]Gruenhaum PE, Dinh VT, Sundaram VS.1994. Gallium antimonide infrared solar cells with improved efficiency and manufacturability [J].Solar Energy Materials & Solar cells,32:61-69.
    [32]M. G. Mauk and V. M. Andreev.2003. GaSb-related materials for TPV cells [J]. Semiconductor Science and Technology,18:191-201.
    [33]D. Martin and C. Algora.2004. Theoretical comparison between diffused and epitaxial GaSb TPV cells [C]. Sixth Conference onThermophotovoltaic Generation of Electricity, Rome,311-319.
    [34]F. Dimroth, C. Agert and A. W. Bett.2003. Growth of Sb-based materials by MOVPE [J]. Journal of Crystal Growth,248:265-273.
    [35]C. Algora and D. Martin.2002. Modelling and manufacturing GaSb TPV Converters [C]. Fifth Conference on Thermophotovoltaic Generation of Electricity, Rome,452-461.
    [36]G. Stollwerck, O. V. Sulima and A. W. Bett.2000. Characterization and simulation of GaSb device-related properties [J]. IEEE Transactions on Electron Devices,47:448-457.
    [37]D. Martin and C. Algora.2004. Temperature-dependent GaSb material parameters for reliable thermophovoltaic cell modelling [J]. Semiconductor Science and Technology,19:040-1052.
    [38]汤亮亮.2010.Zn在N-GaSb晶片中扩散机理与GaSb热光伏电池制备工艺的研究[D]:[硕士].合肥:中国科学技术大学.
    [39]陈慧娟,郭杰,丁嘉欣等.2008.InAs/GaSb超晶格红外探测器台面腐蚀湿法研究[J]。显纳电子技术,45:298-301.
    [40]C. C. Striemer and P. M. Fauchet.2002. Dynamic etching of silicon for broadband antireflection applications [J]. Applied Physics Letters,81:2980-2982.
    [41]Z. N. Adamian, A. P. Hakhoyan, V. M.2000. Aroutiounian and et al. Investigations of solar cells with porous silicon as antireflection layer [J]. Solar Energy Materials & Solar Cells,64: 347-351.
    [42]D. Kumar, S. K. Srivastava, P. K. Singh, et al.2000. Fabrication of silicon nanowire arrays based solar cell with improved performance [J]. Solar Energy Materials & Solar Cells,64: 347-351.
    [43]H. P. Yoon, Y. A. Yuwen, C. E. Kendrick, et al.2010. Enhanced conversion effciencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths [J]. Applied Physics Letters,96:213503(1-3).
    [44]S. Borini, B. Mendez and J. Piqueras.2004. Formation of porous layers on n-GaSb by electrochemical etching [J]. Semiconductor Science and Technology,19:902-905.
    [45]V. N. Denisov and B. N. Mavrin.2002. Identifying the by-products on the surface of porous GaAs and GaSb semiconductors by Raman Scattering [J]. Physical Optics,69:67-70.
    [46]W. L. Min, A. P. Betancourt, P. Jiang, et al.2008. Bioinspired boradband antireflection coating on GaSb [J]. Applied Physics Letters,92:141109 (1-3).
    [47]H. Yugami, K. Kobayashi, H. Sai, et al.2003. A broadband antireflection for GaSb by means of subwavelength grating (SWG) structures [C]. Fifth Conference on Thermophotovoltaic Generation of Electricity,653:482-487.
    [48]K. Park, S. Basu, W. P. King, et al.2008. Performance analysis of near-field thermophotovoltaic devices considering absorption distribution [J]. Journal of Quantitative Spectroscopy & Radiative Transfer,109:3056-316.
    [49]Xi Wu, Hong Ye and Jianxiang Wang.2011. Experimental analysis of cell output performance for a TPV system [J]. Solar Energy Materials and Solar Cells,95:2459-2465.
    [50]Xiaojie Xu, Hong Ye, Yexin Xu, et al.2014. Experimental and theoretical analysis of cell module output performance for a thermophotovoltaic system [J]. Applied Energy,113:924-931.
    [51]K. Qiu, A. C. S. Hayden.2007. Thermophotovoltaic power generation system using natural gas-fired radiant burners [J]. Solar Energy Materials & Solar Cells,91:588-596.
    [52]吴玺.2012.热光伏系统的实验和理论研究[D]:[博士].合肥:中国科学技术大学.
    [53]王健翔.2013.热光伏系统实验及系统模型研究[D]:[硕士].合肥:中国科学技术大学.
    [54]Li YH, Lien YS, Chao YC, et al.2009. Performance of a mesoscale liquid fuel-film combustion-driven TPV power system [J]. Progress in Photovoltaics:Research and Applications, 17:327-336.
    [55]Li YH, Li HY, D. D. Rankin, et al.2007. Enhancing thermal, electrical efficiencies of a miniature combustion-driven thermophotovoltaic system [J]. Progress in Photovoltaics:Research and Applications,17:205-512.
    [56]J. H. Park, S. I. Lee, H. Wu, et al.2012. Thermophotovoltaic power conversion from a heat-recirculating micro-emitter [J]. International Journal of Heat and Mass Transfer,55: 4878-4885.
    [57]J. Li, S. K. Chou, Z. W. Li, et al.2009. A potential heat source for the micro-thermophotovoltaic (TPV) system [J]. Chemical Engineering Science,64:3282-3289.
    [58]Y. H. Li, C. Y. Wu, Y. S. Lien, et al.2010. Development of a high-flame-luminosity thermophotovoltaic power system [J]. Chemical Engineering Journal,162:303-313.
    [59]Y. H. Li, C. Y. Wu, H. Y. Li and Y. C. Chao. Concept and combustion characteristics of the high-luminescence flame for thermophotovolatic systems [J]. Proceedings of the Combustion Institute,2011,33:p.3447-3454.
    [60]W. M. Wang, S. K. Chou, C. Shu, et al.2003. Microscale combustion research for application to micro thermophotovoltaic systems [J]. Energy Conversion and Management,44:2625-2634.
    [61]V. P. Khvostikov, O. A. Khvostikova, E. V. Oliva, et al.2002. Zinc-Diffused InAsSbP/InAs and Ge TPV cells [C]. IEEE,7803:943-946.
    [62]V. Andreev.2003. Low-bandgap PV and thermophotovoltaic cells [C]. Process of 3rd World Conference on Photovoltaic Solar Energy, Osaka,1:15-18.
    [63]K. J. Cheetham, P. J. Carrington, N. B. Cook, et al.2011. Low bandgap GalnAsSbP pentanary thermophotovoltaic diodes [J]. Solar Energy Materials & Soalr cells,95:534-547.
    [64]邓慧勇.2010-04-02.一种砷化铟红外光伏电池:中国,2010020149733.9[P].
    [65]H. Lotfi, R. T. Hinkey, L. Li, et al.2013. Narrow-bandgap photovoltaic devices operating at room temperature and above with high open-circuit voltage [J]. Applied Physics Letters,2013, 102:211103(1-4).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700