高速摩擦抛光金刚石膜用FeAl基合金抛光盘的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人造金刚石膜,尤其是大尺寸的化学气相沉积(CVD)金刚石厚膜的制备技术日益成熟,其应用范围从传统的刀具、模具等领域不断向高频通讯、光电等高新技术领域扩展,对其加工精度和表面质量的要求也日益提高。然而,由于金刚石具有高硬度、高化学惰性等特点,属极难加工材料,虽然目前已有多种金刚石膜的抛光技术,但是这些技术仍难以满足高效低成本抛光要求,相对滞后的金刚石膜抛光技术越来越成为限制金刚石膜广泛应用的障碍。
     高速摩擦抛光技术是在大气环境下借助抛光盘与金刚石膜之间的高速摩擦作用使加工区域局部达到金刚石石墨化转变所需的温度(通常为600-800℃),并利用加工区域的摩擦-热化学复合作用实现快速抛光的一种新型金刚石膜抛光技术。该技术不需要真空或者密闭性气氛,也不需要加热设备,甚至不需要昂贵的专用抛光设备,是一种非常有发展前途的金刚石膜高效低成本抛光技术。但为了保证抛光盘对金刚石具有很强的石墨化催化能力,目前该技术中使用的抛光盘大多由不锈钢或铸铁等含铁材料制成,由于这些材料在高温下强度和硬度较低,因此在高速、高压及高摩擦温度的条件下采用这些材料制成的抛光盘对极高硬度的粗糙金刚石膜进行高速摩擦抛光时,抛光盘塑性变形和磨损极为严重,甚至会出现抛光盘材料向金刚石膜表面的严重黏附,不仅严重影响了抛光盘的面型精度,而且导致金刚石膜抛光效率和抛光质量的降低。因此,亟待研究和开发一种兼备高温耐磨性和对金刚石石墨化催化能力的新型抛光盘材料。另外,在对极高硬度的金刚石膜抛光时,必须使金刚石膜被加工区域局部达到石墨化转变温度并借助摩擦-热化学复合作用才能实现金刚石膜粗糙表面的高效抛光,但温度过高时会导致抛光盘的硬度、耐磨性等急剧下降,影响金刚石膜的抛光效率,而且温度过高时还有可能导致金刚石膜的严重石墨化和整体氧化,使金刚石膜性能降低甚至报废。因此,预测并控制加工区域的温度,是实现高效高精度抛光的关键环节。但由于采用高速摩擦抛光技术时加工区域的温度场受抛光盘转速、抛光压力以及整个抛光工艺系统的热传导属性等多种因素的耦合作用影响,加工区域的温度场分布难以预测。
     本文针对金刚石膜高速摩擦抛光技术中存在的上述问题,采用高能球磨和热压烧结相结合的技术研制开发了一种新型的抛光盘材料——FeAl基合金,并通过掺杂稀土优化了该抛光盘材料的性能;采用ANSYS仿真软件对金刚石膜高速摩擦抛光过程中金刚石膜的温度场进行了仿真,得出了适合金刚石膜高速摩擦抛光的理想抛光工艺参数;最后分别采用不锈钢304(文中简记为SS304)抛光盘及自制的FeAl基合金抛光盘对金刚石膜进行高速摩擦抛光,对比研究了两种抛光盘对金刚石膜的抛光效果,并分析了FeAl基合金抛光盘高速摩擦抛光金刚石膜时的抛光过程和机理。主要研究内容包括:
     (1)根据高速摩擦抛光技术的抛光原理和技术特征,选择具有反温度-强度特征、耐磨性能优异以及对金刚石具有石墨化催化作用的FeAl基合金作为抛光盘材料,并采用高能球磨和热压烧结技术制备了掺杂不同含量稀土的FeAl基合金。分析了球磨时间和稀土含量对FeAl基合金组织结构、致密度、硬度、弯曲强度、抗氧化性能以及高温耐磨性能的影响。结果表明:含1wt.%稀土的Fe、Al混合粉末经60h高能球磨及1200℃×30MPa×1h真空热压烧结制备的FeAl基合金具有最佳的综合性能。
     (2)采用自制的FeAl基合金抛光盘,在空气中采用不同的试验温度(550-800℃)对金刚石膜进行热化学抛光,研究了温度对FeAl基合金抛光盘磨损状况和金刚石膜抛光效果的影响。结果表明:FeAl基合金抛光盘在大气中抛光金刚石膜时,理想的抛光温度范围是650-700℃。
     (3)基于对金刚石膜抛光前后表面形貌的分析,建立了一种金刚石膜表面微凸体的四棱台结构几何模型,在此基础上利用ANSYS热分析软件对金刚石膜高速摩擦抛光过程中的摩擦温度场进行了仿真。通过仿真,确定了采用FeAl基合金抛光盘对金刚石膜进行高速摩擦抛光时的理想工艺参数:抛光压力80N(5MPa)、抛光盘转速1440r/min (10.25m/s).
     (4)分别采用SS304抛光盘和自制的FeAl基合金抛光盘对金刚石膜进行高速摩擦抛光,对比研究了两种抛光盘对金刚石膜的抛光效果,并对FeAl基合金抛光盘高速摩擦抛光金刚石膜时的抛光过程和机理进行了分析。研究发现,采用FeAl基合金抛光盘时,金刚石膜的材料去除率为7.89mm3/h,比采用SS304抛光盘时提高68%;而从抛光盘的磨损率来看,FeAl基合金抛光盘的磨损率仅为SS304抛光盘磨损率的15%;抛光机理为:在摩擦热和铁触媒的共同作用下,金刚石膜表面的微凸峰发生石墨化转变,形成较软、易氧化并具有更强扩散能力的石墨相,石墨相在机械作用、氧化作用以及扩散作用的共同作用下被去除。
The preparation technique of man-made diamond film especially the large size chemical vapor deposition (CVD) thick diamond film has greatly developed these years. Diamond film has been applied from the tranditional areas of cutter and mould to the high-tech fields such as high frequency communication and photoelectricity, so the standards of processing accurity and surface quality requires much higher. However, diamond film is very difficult to process since its characteristics of high hardness and high chemical inertness. Although there have already been some kinds of diamond film polishing techniques, they can not meet the requiments of high efficiency and low cost. Relatively lagged diamond film polishing techniques are becoming the main barriers for the wide spread applicatin of diamond film.
     Dynamic friction polishing is a new polishing technique which can realize fast polish by the complex friction-thermochemistry effect in processing area. It enables the processing area to achieve the transition temperature (usually 600-800℃) of diamond to graphite in atmosphere, by the high-speed friction effect between polishing plate and diamond film. This polishing technique is very promising because it neither requires vacuum or sealed atmosphere nor needs heating equipment, not even needs the expensive polishing equipment. Materials containing iron element such as stainless steel or cast iron are normally used to make polishing plate in order to ensure polishing plate's strong catalytic ability on diamond, however, these materials can hardly adapt to polishing environment such as high temperature and high-speed friction. In that case, the polishing plate is easily worn out which seriously affect the polishing precision, what's worse is that polishing plate gets sharp plastic deformation and the deformed material adheres to the diamond surface, which leads to the drop of the polishing efficience and polishing quality. Therefore, it is urgent to develop a new type of polishing plate material with the quality of high-temperature wear resistance and strong catalytic graphitization ability on diamond. In addition, efficient removal can only be realize with the processing area achieving the transition temperature of diamond to graphite, and with the help of the composite action of friction-thermochemistry during the diamond film processing. However, if the temperature is too high, it would lead to the sharp decline of polishing plate's hardness and wear resistance, which results in low processing efficiency and precision, what's worse is that the too high temperature even leads to the extreme graphitization and overall oxidation. In that case, calculation and control of temperatures field in the processing area are key for efficient and high-precision processing, however, the calculation of the temperature field during the dynamic friction polishing is extremely difficult because it can be affected by combined effects of many factors such as polishing rotation rate, polishing pressure, and polishing system's thermal conductivity.
     A new type of polishing plate material—FeAl based alloy, was developed by the technology of combining high-energy ball-milling and hot-pressing sintering, aiming at solving the problems of existing in dynamic friction polishing techniques mentioned above, and the performances of the polishing plate material were optimised by doping rare earths. Diamond film's temperature field during dynamic friction polishing process was simulatd with the help of ANSYS simulation software, and the reasonable parameters for diamond films dynamic friction polishing was obtained based on the simulation. Diamond films were polished by dynamic friction method with stainless steel 304 (abbreviated as SS304) polishing plate and self-made FeAl-based alloy polishing plate respectively, and the polishing effect of these two kinds of polishing plates was compared. Dynamic frictional polishing process and mechanism using FeAl based alloy polishing plate were also analyzed. The main research contents include:
     (1) According to the principles and characteristics of the dynamic friction polishing technology, we chose FeAl based alloy which has the quality of abnormal temperature-strength, excellent wear resistance and catalytic graphitization ability on diamond as polishing plate material. We further prepared sintered FeAl based alloys with different content of rare earth using high-energy ball milling and hot-press sintering technique, and analyzed the effect of milling time and rare earth content on the sintered alloy's structure, density, hardness, flexural strength, oxidation resistance and high temperature wear resistance. The results showed that the FeAl based alloy which is made of Fe and Al mixed powder doped 1wt.% rare earth, ball-milled for 60 hours and sintered for 1 hour in Vacuum at 1200℃under the stress of 30MPa has the best combination property.
     (2) Diamond film was polished by using the self-made FeAl based alloy plate under different temperature at the atmosphere, and the influence of polishing temperature on the wear situation of FeAl based alloys as well as the polishing effect on diamond film was also analyzed. The results showed that the ideal temperature range for FeAl based alloys polishing diamond film is 650~700℃.
     (3) A quadrangular frustum pyramid model of the diamond asperity was built based on the diamond film surface topography before and after polishing, and the temperature field of diamond film during the dynamic friction polishing was simulated with the help of ANSYS thermal analysis software. Based on the simulation, we concluded that the best parameters of FeAl based alloy plate polishing diamond film are as follows:polishing pressure 80N (5MPa), polishing speed 1440r/min (10.25m/s).
     (4) We compared the polishing effects of two kind of polishing plates, one of which is made of SS304 and the other is made of our self-made FeAl based alloy, by doing dynamic friction polishing on diamond film. The polishing mechanism of using FeAl alloy polishing plate was also analyzed. The results showed that with FeAl alloy as the material the removal rate of diamond film can be 7.89mm3/h which is 68% higher than that with SS304, the wear rate of FeAl alloy polishing plate is only 15% of that of SS304. The polishing mechanism is: under the combined action of friction heat and iron catalyst, a soft, easily oxidized and fast diffusible graphite phase formed on the asperities of diamond film by the graphite transition, then the graphic phase was removed under the combined action of mechanical action, oxidation and diffusion.
引文
[1]Paul W May. Diamond thin films:a 21st-century material[J]. Phil. Trans. R. Soc. Lond. A,2000,358:473-495.
    [2]戴达煌,周克崧.金刚石薄膜沉积制备工艺与应用[M].北京:冶金工业出版社,2001.
    [3]Michaelson Sh, AkHVlediani R, Hoffman A. Preparation and properties of sub-micron thick and free-standing diamond membranes[J]. Diamond and Related Materials,2002,11: 721-725.
    [4]吕反修.CVD金刚石膜的产业化应用与目前存在的问题[J].新材料产业,2003(116):63-67.
    [5]Alix Gicquel, Khaled Hassouni, Francois Silva, et al. CVD diamond films:from growth to applications[J]. Current Applied Physics,2001,1:479-496.
    [6]李翠平.高频大功率SAW滤波器的ZnO/金刚石多层膜制备及性能研究[D].天津:天津理工大学光电信息与光电子工程系,2008.
    [7]Hakiki M El, Elmazria 0, Assouar M B, et al. ZnO/AlN/diamond layered structure for SAW devices combining high velocity and high electromechanical coupling coefficient[J]. Diamond and Related Materials,2005,14(3-7):1175-1178.
    [8]Wang Linjun, Xia Yiben, Shen Hujiang, et al. Study for infrared spectroscopic ellipsometric properties of diamond films[J]. Chin. Opt. Lett.,2004,2(5):308-310.
    [9]宋建民.钻石窗[J].物理双月刊,1999,21(1):7-19.
    [10]应萱同,沈元华,徐新民.金刚石近红外增透滤光保护窗口的制备及应用[J].光学学报,2000,20(6):838-842.
    [11]张志明,张伟东,沈荷生,何贤昶,等.金刚石薄膜热沉在大电流稳压集成电路中的应用[J].半导体技术,1997,1:41-44.
    [12]Heribert Eisele. Selective etching technology for 94 GHz GaAs IMPATT diodes on diamond heat sinks[J]. Solid-State Electronics,1989,3(32):253-257.
    [13]周灵平,靳九成,李绍禄.金刚石薄膜半导体研究进展及其应用前景[J].半导体技术,1997,8(4):1-4,9.
    [14]宋建民.钻石半导体[J].物理双月刊,1997,19(6):549-552.
    [15]陈光华,张阳.金刚石薄膜的制备与应用[M].北京:化学工业出版社,2004.
    [16]张峥,霍晓.CVD金刚石薄膜抛光技术的研究进展[J].真空科学与技术学报,2000,4:270-273,295.
    [17]郭钟宁,王成勇,张凤林,等.CVD金刚石膜抛光技术[J].工具技术,1999,33(11):3-7.
    [18]Malshe A P, Park B S, Brown W D, et al. A review of techniques for polishing and planarizing chemically vapor-deposited (CVD) diamond films and substrates [J]. Diamond and Related Materials,1999,8:1198-1213.
    [19]陈春林,王成勇,陈君.金刚石膜机械和机械-化学抛光[J].金刚石与磨料模具工程,2002,1(127):3-6.
    [20]Yang Tokura, Yoshikawa Masanori. Study on the polishing of chemically vapour deposited diamond film[J]. Thin Solid Films,1992,212:49-55.
    [21]孙玉静,王翼虹,田莳.稀土金属Ce抛光CVD金刚石膜的研究[J].稀有金属材料与工程,2005,34(2):826-829.
    [22]Jin S. Shaping of diamond films by etching with molten rare-earth metals [J]. Natrure, 1993,362:822-824.
    [23]陈冲.单晶金刚石及金刚石膜化学机械法抛光研究[D].广州:广东工业大学机械工程学院,2005.
    [24]Wang C Y, Zhang F L, Kuang T C, et al. Chemical/mechanical polishing of diamond films assisted by molten mixture of LiN03 and KNO3[J]. Thin Solid Films,2006,496:698-702.
    [25]Buchkremer-Hermanns H, Long C, Weiss H. ECR plasma polishing of CVD diamond films [J]. Diamond and Related Materials,1996,5(6-8):845-849.
    [26]Boudina A, Fitzer E, Wahl G, et al. Improvement in IR properties of chemically vapour-deposited diamond films by smoothening with KrF excimer radiation[J]. Diamond and Related Materials,1993,2(5-7):678-682.
    [27]Gloor S, Luthy W, Weber H P, et al. UV laser polishing of thick diamond films for IR Windows[J]. Applied surface science,1999,138:135-139.
    [28]刘敬明,蒋政,张恒大,吕反修,唐伟忠.大面积CVD金刚石膜的热铁板抛光[J].北京科技大学学报,2001,23(1):42-44.
    [29]Zaitsev A M, Kosaca G, Richarz B, et al. Thermochemical Polishing of CVD diamond films[J]. Diamond and Related Materials,1998,7:1108-1117.
    [30]Choi S K, Jung D Y, Kweon S Y, et al. Surface characterization of diamond films polished by thermomechaincal polishing method[J]. Thin Solid Films,1996,279:110-114.
    [31]Ramesham R, Rose M F. Polishing of polycrystalline diamond by hot nickel surface [J]. Thin Solid Films,1998,320(2):223-227.
    [32]王季陶,张卫,刘志杰.金刚石低压气相生长的热力学耦合模型[M].北京:科学出版社,1998.
    [33]Yoshikawa Masanori, Okuzumi Fuminori. Hot-iron-metal polishing machine for CVD diamond films and characteristics of the polished surfaces [J]. Surface and Coatings Technology, 1996,88 (1-3):197-203.
    [34]Suzuki K, Uematsu T, Yasunaga N, et al. Attempt of abrasive free polishing of diamonds by utilizing sliding wear with steel disk rotating at high speed[C]. Proc. of Int'1 ABTEC Conf.,1995:378-382.
    [35]Suzuki K, Yasunaga N, Uematsu T, et al. Dynamic friction polishing of diamond utilizing wear by rotating metal disc[C]. Proc. of ASPE,1996,14:482-485.
    [36]铃木清,安永惕男,松哲太郎他.1996年度砥粒加工学会ABTEC'96耩演输文集[C].1996,92-98
    [37]Jin Z J, Ma X W, Yuan Z W. The High-efficient Low-cost Wheel-grinding Technology for CVD Diamond Films[J], Advanced Materials Research,2007,24-25:295-302
    [38]岩井学,铃木清,植松哲太郎,等.金刚石高速滑动研磨法的研究及应用,将修治译自《砥粒加工学会志,2002,46(2):82-87》[J].珠宝科技,2003,15(5):13-18.
    [39]岩井学,铃木清,植松哲太郎,等.金刚石烧结体高速滑动研磨法的研究及作用,将修治译自《砥粒加工学会志,2002,46(11)》[J].珠宝科技,2004,16(4):33-38.
    [40]张永刚,韩雅芳,陈国良,等.金属间化合物结构材料[M].北京:国防工业出版社,2001.
    [41]秦优琼,孙凤莲.Ti3Al材料的应用与连接现状[C].哈尔滨:中国机械工程学会2003高温钎焊及扩散焊技术研讨会,2003:32-41.
    [42]彭超群,黄伯云,贺跃辉Ni-Al系、Fe-Al系和Ti-3A1金属间化合物研究进展[J].特种铸造及有色合金,2001(6):27-29.
    [43]Deevi C, Sikka V K, Liu C T. Processing, properties, and applications of nickel and iron aluminides[J]. Progress in Materials Science,1997,1-4:177-192.
    [44]Alman D E, Hawk J A, Tylczak J H, et al. Wear of iron-aluminide intermetallic-based alloys and composites by hard particles[J]. Wear,2001,251:875-884.
    [45]Yamaguchi M, Inui H, Ito K. High-temperature structural intermetallics[J]. Acta Materialia,2000,1(1):307-322.
    [46]李成功,姚熹,等.当代社会经济的先导:新材料[M].北京:新华出版社,1992.
    [47]孙康宁,尹衍升,李爱民.金属间化合物/陶瓷基复合材料[M].北京:机械工业出版社,2003.
    [48]Zhang W J, Sundar R S, Deevi S C. Improvement of the creep resistance of FeAl-based alloys[J]. Intermetallics,2004,12:893-897.
    [49]Munoz-Morris M A, Oca C Garcia, Morris D G. Microstructure and room temperature strength of Fe-40Al containing nanocrystalline oxide particles [J]. Acta Materialia,2003,10 (6): 5187-5197.
    [50]Krasnowski M, Kulik T. Nanocrystalline FeAl matrix composites reinforced with TiC obtained by hot-pressing consolidation of mechanically alloyed powders[J]. Intermetallics,2007,15:1377-1383.
    [51]尹衍升,施忠良,刘俊友.铁铝金属间化合物-合金化与成分设计[M].上海:上海交通大学出版社,1996.
    [52]Harmouche M R, Wolfenden A. Temperature and composition dependence of young's modulus for ordered B2 polycrystalline CoAl and FeAl[J]. Materials Science and Engineering, 1986, (84):35-42.
    [53]Grabke H J. Oxidation of NiAl and FeAl[J]. Intermetallics,1999,10(7):1153-1158.
    [54]Lopez M F, Escudero M L. Corrosion behaviour of FeAl-type intermetallic compounds [J]. Electrochimica Acta,1997,7(43):671-678.
    [55]赵磊.微合金化元素对Fe/Al界面结合的第一性原理研究[D].昆明:昆明理工大学材料科学与工程学院,2007.
    [56]Webb G, Juliet P, Lefort A. Optimization of the boron content in FeAl (40at.% Al) alloys[J]. Scripta Metallurgica et Materialia,1993,7(28):769-772.
    [57]Stepien Karol, Kupka Marian. Diffusivity of hydrogen in B2 iron aluminides[J]. Scripta Materialia,2006,7(55):585-588.
    [58]郦定强,孙宝德,刘毅,林栋梁FeAl金属间化合物的高温变形行为[J].材料工程,1998,10:11-14.
    [59]Maziasz P J, Goodwin G M, Liu C T, et al. Effects of minor alloying elements on the welding behavior of FeAl alloys for structural and weld-overlay cladding applications[J]. Scripta Metallurgica et Materialia,1992,12(27):1835-1840.
    [60]Deevi S C, Morris D G, Schneibel J H, et al. International Symposium on Iron Aluminides: Alloy Design, Processing, Properties, and Applications[C]. OH:ASM, Materials Park, 1998.
    [61]尹衍升,李静,马洪涛.烧结Fe3Al金属间化合物基摩擦材料的摩擦磨损性能研究[J].2004,24(5):457-462.
    [62]Alman D E, Hawk J A, Tylczak J H, et al. Wear of iron-aluminide intermetallie-based alloys and composites by hard particles[J]. Wear,2001,251:875-884.
    [63]马兴伟,金洙吉,高玉周.稀土La203对激光熔覆铁铝基合金及TiC增强复合材料涂层组织及摩擦磨损性能的影响[J].中国激光,2010,37(01):271-276.
    [64]Wang Y, Yan M. The effect of CeO2 on the erosion and abrasive wear of thermal sprayed FeAl intermetallic alloy coatings[J]. Wear,2006,261:1201-1207.
    [65]Chen Y, Wang H M. High-temperature wear resistance of a laser clad TiC reinforced FeAl in situ composite coating[J]. Surface and Coatings Technology,2004,179:252-256.
    [66]陈国良.金属间化合物结构材料研究现状与发展[J].材料导报,2000,14(9):1-5.
    [67]郭建亭,殷为民,金瓯.长程有序金属间化合物FeAl合金的研究现状与发展[J].材料科学与工程,1993,11(3):23-31.
    [68]陈国良,林均品.有序金属间化合物结构材料物理金属学基础[M].北京:冶金工业出版社,1999.
    [69]Sikka V K, Wilkening D, Liebetrau J, et al. Melting and casting of FeAl-based cast alloy[J]. Materials Science and Engineering A,1998,258(1-2):229-235.
    [70]刘军,佘正国.粉末冶金与陶瓷成型技术[M].北京:化学工业出版社,2005.
    [71]曲在纲,黄月初.粉末冶金摩擦材料[M].北京:冶金工业出版社,2005.
    [72]Maziasz P J, Liu C T, Goodwin G M, et al. Heat Resistant Materials II[C]. OH:ASM International, Materials Park,1995:555-556.
    [73]尹衍升,李嘉,谭训彦,张金升.机械合金化-加压烧结制备Fe Al金属间化合物[J].粉末冶金技术,2004,22(3):151-155.
    [74]Zhu Su-Ming, Tamura Makoto, Sakamoto Kazushi, et al. Characterization of Fe3Al-based intermetallic alloys fabricated by mechanical alloying and HIP consolidation[J]. Materials Science and Engineering A,2000,292:83-89.
    [75]Suryanarayana C. Mechanical alloying and milling[J]. Progress in Materials Science, 2001,46:1-184.
    [76]Krasnowski M, Witek A, Kulik T. The FeAl-30%TiC nanocomposite produced by mechanical alloying and hot-pressing consolidation[J]. Intermetallics,2002,10:371-376.
    [77]Liu C T, Lee E H, McKamey C G. An environmental effect as the major cause for room-temperature embrittlement in FeAl[J]. Scripta Metall,1989,23(6):875-880.
    [78]Liu C T, George E P. Environmental embrittlement in boron-free and boron-doped FeAl (40at.%Al) alloys[J]. Scripta Metallurgica et Materialia,1990,7(24):1285-1290.
    [79]Mekhrabov A 0, Akdeniz M V. Effect of ternary alloying elements addition on atomic ordering characteristics of Fe-Al intermetallics[J]. Acta mater.1999,7(47):2067-2075.
    [80]郭建亭,孙超,谭明晖,等.合金元素对Fe3Al和FeAl合金力学性能的影响[J].金属学报,1990,26(1):20-25.
    [81]Liu Yong, Liu Fengxiao, Huang Baiyun, et al. Im proving Densif ication and M echanical Properties of FeAl/TiC Composites by Addition of Ni[J]. J. Mater. Sci. Technol, 2003,19(1):73-76.
    [82]杨开明,朱敏,刘峰晓,等.反应热压制备FeAl/TiC复合材料的研究[J].硬质合金,2004,21(1):21-26.
    [83]Ahmadian M, Wexler D, Chandra T, et al. Abrasive wear of WC-FeAl-B and WC-Ni3Al-B composites[J]. International Journal of Refractory Metals&Hard Materials,2005,23: 155-159.
    [84]MA Xingwei, JIN Zhuji, YAN Shi. Effect of La2O3 on microstructure and high-temperature wear property of hot-press sintering FeAl intermetallic compound [J]. Journal of Rare Earths,2009,27(6):1031-1036.
    [85]黄拿灿,胡社军.稀土表面改性及其应用[M].北京:国防工业出版社,2007.
    [86]Wang KL, Zhang QB, Sun ML, et al. Microstructure and corrosion resistance of laser cladded coatings with rare earth elements[J]. Corrosion Science,2001,43:255-267.
    [87]连亚峰,党鸿辛.稀土元素的摩擦学研究发展概况[J].摩擦学学报,1993,13(2),183-190.
    [88]颜建辉,张厚安,李益民,唐思文.稀土对MoSi2力学性能和抗氧化性能的影响[J].中国稀土学报,2007,5(4):437-441.
    [89]张廷楷,高家诚,徐宾如,杨亮.稀土氧化物对铁基烧结材料性能的影响[J].四川有色金属,1995,2:8-13.
    [90]赵高敏,王昆林,李传刚.稀土对Fe基合金激光熔覆层抗磨性能的影响[J].摩擦学学报,2004,24(4):318-321.
    [91]张厚安,陈平,刘心宇,唐果宁.稀土/MoSi2复合材料的干摩擦磨损性能[J].中国稀土学报,2002,20(4):307-310.
    [92]张弘.稀土在铁基粉末冶金磨阻材料中作用机理的研究[D].北京:中国铁道科学研究院,2007.
    [93]吴庆定.稀土元素对烧结铜铝钢性能的影响和作用机理[J].新技术新工艺,1999,1:1-6.
    [94]Guo J T, Huai K W, Gao Q, et al. Effects of rare earth elements on the microstructure and mechanical properties of NiAl-based eutectic alloy[J]. Intermetallics, 2007,15:727-733.
    [95]Yang C T, Koo C H. Improving the microstructure and high temperature properties of the Ti-40Al-16Nb alloy by the addition of a minor Sc or La-rich Misch metal[J]. Intermetallics,2004,12:235-251.
    [96]王景唐,沈同德.机械合金化研究与进展[J],物理,1993,22(8):456-460.
    [97]杨君友,吴建生,曾振鹏.机械合金化过程中粉末的形变及其能量转化[J].金属学报,1998,34(10):1061-1067.
    [98]贺战文,王明智.机械合金化对Fe-Cu粉末烧结性能的影响[J].粉末冶金工业,2007,17(04):5-9.
    [99]陈立力,谢春生,严磊.真空热压烧结对Cu/WC复合材料性能的影响[J].热加工工艺,2009,2:58-60.
    [100]Oleszak D, Shingu P H. Mechanical alloying in the Fe-Al system [J]. Materials Science and Engineering A,1994,15:1217-1221.
    [101]Huang B, Ishihara K N, Shingu P H. Metastable phases of Al-Fe system by mechanical alloying[J]. Materials Science and Engineering A,1997,7:72-79.
    [102]支文.机械合金化过程中的理论研究[J].长春大学学报,2007,17(3):27-29.
    [103]Stephen A Hewitt, Kevin A Kibble, Effects of ball milling time on the synthesis and consolidation of nanostructured WC-Co composites [J]. International Journal of Refractory Metals and Hard Materials,2009,27(6):937-948.
    [104]贺战文,王明智.机械合金化对Cu-SiC粉末烧结性能的影响[J].金刚石与磨料磨具工程,2009,5:71-73,81.
    [105]陈君平,施雨湘,张凡,等.高能球磨中的机械合金化机理[J].机械,2004,31(3):52-54.
    [106]柳光祖,田耘,单秉权.氧化物弥散强化高温合金[J].粉末冶金技术,2001,19(1):20-23.
    [107]Chu F, Thoma D J. McClellan K Synthesis and properties of Mo5Si3 single crystals [J]. Intermetallics,1999,7:611-620.
    [108]颜建辉,李益民,张厚安,等.La203-Mo5Si3/MOSi2复合材料的力学性能和高温氧化行为[J].中国有色金属学报,2006,16(10):1730-1738.
    [109]张敬强,荣守范,宋晓刚.稀土氧化物对氧化铝复相陶瓷显微结构和力学性能的影响[J].佳木斯大学学报(自然科学版),2006,24(1):16-19.
    [110]杜挺.稀土元素在金属材料中的作用和机制[J].金属功能材料,1996,3(3):81-86.
    [111]张兵临.碳基薄膜制备及场致电子发射[M].郑州:郑州大学出版社,2009.
    [112]王季陶,张卫,刘志杰.金刚石低压气相生长的热力学耦合模型[M].北京:科学出版社,1998.
    [113]Lebedev B V, Tsvetkova L Ya, K B Zhogova. Thermodynamics of allotropic modifications of carbon:Synthetic diamond, graphite, fullerene C60 and carbyne[J]. Thermochimica Acta,1997,299(1-2):127-131.
    [114]Davydov V A, Rakhmanina A V, Agafonov V, et al. Conversion of polycyclic aromatic hydrocarbons to graphite and diamond at high pressures[J]. Carbon, 2004,42(2):261-269.
    [115]Fukunaga O, Miyake T, Ohashi N. Formation of diamond and graphite at high pressure using glassy carbon source[J]. Diamond and Related Materials,2005,14(2):160-166.
    [116]Jose Fayos. Possible 3D Carbon Structures as Progressive Intermediates in Graphite to Diamond Phase Transition [J]. Journal of Solid State Chemistry.1999,148(2):278-285.
    [117]Paul Ed, Evans Chris J, Mangamelli Anthony, et al. Chemical aspects of tool wear in single point diamond turning[J]. Precision Engineering,1996,18:4-19.
    [118]Agarwala B K, Singh B P, Singhal S K. A study of graphite-diamond conversion using nickel, invar and monel as catalyst-solvents[J]. Journal of Crystal Growth, 1986,74(1):77-88.
    [119]Yoshihito Shimada, Yoshio Machi. Selective growth of diamond using an iron catalyst [J]. Diamond and Related Materials,1994,3(4-6):403-407.
    [120]李俊杰,王树彬,孙玉静,等.部分熔融CeFe合金低温快速抛光CVD金刚石膜[J].稀有金属材料与工程,2007,36(5):933-936.
    [121]Ralchenko, Kononenko T V, Pimenov S M, et al. Catalytic interaction of Fe, Ni and Pt with diamond films:patterning applications[J]. Diamond and Related Materials, 1993,2(5-7):904-909.
    [122]Kalashnikov Ya A, Timofeyeva N V, Farafontov V I, et al. Transition metal lamellar compounds of graphite as catalysts of graphite-to-diamond conversion [J]. Synthetic Metals,1982,4(4):363-370.
    [123]Cheng C Y, Tsai H Y, Wu C H, et al. An oxidation enhanced mechanical polishing technique for CVD diamond films[J]. Diamond and Related Materials,2005,14(3-7):622-625.
    [124]Zaitsev A M, Kosaca G, Richarz B, et al. Thermochemical polishing of CVD diamond films[J]. Diamond and Related Materials,1998,7:1108-1117.
    [125]刘敬明,唐伟忠,吕反修.氧化对CVD自支撑金刚石膜力学性能的影响[J].机械工程材料,2004,28(3):34-36.
    [126]刘福杰,范立东,王浩静,等.用RAMAN光谱研究碳纤维皮芯结构随热处理温度的演变规律[J].光谱学与光谱分析,2008,28(8):1819-1822.
    [127]满卫东,汪建华,王传新,等.氢等离子体在铁催石墨化作用下对CVD金刚石膜的刻蚀[J].金刚石与磨料磨具工程,2006,5:1-4,9.
    [128]刘敬明,唐伟忠,吕反修.高质量CVD金刚石膜的氧化损伤[J].人工晶体学报,2001,30(2):167-170.
    [129]Chen Y, Zhang L C, Arsecularatne J A, et al. Polishing of polycrystalline diamond by the technique of dynamic friction, part 1:Prediction of the interface temperature rise[J]. International Journal of Machine Tools & Manufacture,2006,46:580-587.
    [130]李红云,赵社戌,孙雁ANSYS 10.0基础及工程应用[M].北京:机械工业出版社,2008.
    [131]张朝晖.ANSYS热分析教程与实例解析[M].北京:中国铁道出版社,2007.
    [132]张国智,胡仁喜,陈继刚,等.ANSYS 10.0热力学有限元分析实例指导教程[M].北京:机械工业出版社,2007.
    [133]Pei L, Hyun S, Molinari J F, Robbins Mark 0. Finite element modeling of elasto-plastic contact between rough surfaces[J]. Journal of the Mechanics and Physics of Solids, 2005,53(11):2385-2409.
    [134]赵万友.接触问题的分析方法研究与工程应用[D].西安:西安电子科技大学,2007.
    [135]谷曼.汽车制动器试验台测温方法的研究[J].机械,2008,35(6):21-25.
    [136]金晓行.盘式制动器温度场研究[D].合肥:安徽工业大学,2007,5.
    [137]Kennedy T C, Plengsaard C, Harder R F. Transient heat partition factor for a sliding rai1car wheel[J]. Wear,2006,261:932-936.
    [138]Blok H. Theoretical study of temperature rise at surfaces of actual contact under oiliness conditions[C]. Lubric:Proc. Inst. Mech. Eng. Gen. Discuss.1937,2:222-235.
    [139]Jaeger J C. Moving sources of heat and the temperature of sliding contacts[C]. N. S. W. Proc. R. Soc.,1942,76:203-224.
    [140]Iwand H C, Stone D. H., Moyar G J. A thermal and metallurgical analysis of martensite formation and tread spalling during wheel skid[C]. New York:Rail Transportation 5, ASME,1992:105-116.
    [141]蒋京,夏群生,余志生.盘式制动器重复制动温度计算[J].汽车工程,1996,18(3):168-174.
    [142]王涛,朱文坚.摩擦制动器原理、结构与设计[M].广州:华南理工大学出版社,1992.
    [143]雷宝灵,易茂中,徐惠娟.炭/炭复合材料制动过程中温度场的仿真[J].中国有色金属学报,2008,18(3):377-382.
    [144](罗)安娜-玛利娅·比安什,(法)伊夫·福泰勒,雅克琳娜·埃黛著,王晓东译.传热学[M].大连:大连理工大学出版社,2008.
    [145]Eckert E R G., Drake R M. Analysis of Heat and Mass Transfer[M]. McGraw Hill Inc. New York,1972.
    [146]Werner M, Locher R. Growth and application of undoped and doped diamond films[J]. Rep. Prog. Phys.,1998,61:1665-1710.
    [147]吕反修.金刚石膜的产业化应用与目前存在的问题[J].新材料产业,2003,7:63-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700