金属表面纳米晶化方法及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在金属表面获得纳米晶层可提高材料的性能,是近年来纳米材料领域的研究热点。本文克服现有强烈塑性变形致纳米晶化方法的局限性,开发成功两种可实际应用的表面纳米晶层制备方法,对所得纳米晶组织进行分析表征和性能研究。
     主要研究内容及成果如下:
     (1)将现有基于振动原理消除焊接残余应力的超声冲击处理方法引入表面工程领域,开发了超声冲击处理诱导金属表层纳米晶化技术,成功地在35钢表面30μm-100μm厚度范围内制备出晶粒尺度为10nm-35nm的纳米晶结构。
     (2)开发出制备金属纳米晶表层的法向脉动旋压方法和深冷处理技术。在-196℃深冷条件下,实现了显微组织主要为片状纳米孪晶或等轴纳米晶的铜纳米晶层的可控制备。
     (3)采用多种分析测试方法,对不同制备工艺条件下获得的纳米晶结构进行表征,研究了制备工艺参数对金属表层显微组织结构的影响规律。表层显微组织结构演变机理分析结果表明,超声冲击处理诱发的35钢表层的塑性变形为以位错滑移为主的变形方式,而深冷法向脉动旋压处理导致的铜表层的塑性变形方式则以变形孪生为主。
     (4)进行了超声冲击纳米晶化35钢的硬度分布、摩擦磨损和疲劳性能试验研究,并对改善堆焊层残余应力分布的效果进行了测试评价。结果表明,超声冲击表面纳米晶化处理可显著提高塑性变形层的硬度,降低表面摩擦系数,提高抗磨损性能和高周疲劳强度。
     (5)在国内外首次开展了强烈塑性变形致金属纳米晶表面的润湿性及冷凝传热特性试验研究,采用可视化动态显微分析方法,定量表征了滴状冷凝液滴的动力学行为和参数。结果表明,纳米晶铜表面的冷凝传热系数为原始铜表面的2-3倍,冷凝传热得到显著强化,其机理为纳米晶铜表面的接触角比原始铜表面增大了2倍左右,纳米晶化显著降低了表面的润湿性,导致蒸汽冷凝的模式由原始铜表面的膜状冷凝转变为滴状冷凝或以滴状冷凝占主导的模式。
     (6)采用自行设计、建立的实验系统,首次对纳米晶铜表面的池沸腾传热特性进行试验研究,应用高速摄影方法观测了纳米晶化前、后铜表面气泡生长与脱离的全过程,对比分析了气泡的形貌、生长周期和脱离频率,揭示了纳米晶表面强化沸腾传热的机理。研究结果表明,经纳米晶化处理,铜表面的起始沸腾过热度由原始铜表面的10℃左右降低到仅为5-6℃,纳米晶表面的热通量明显增高,沸腾传热系数最高可达原始铜表面的1.6倍。纳米晶表面的气泡脱离直径较小,生长周期缩短为原来的66%,是其具有显著强化沸腾传热效果的主要机理。
Obtaining nanocrystalline layers in the surface of metallic materials have attracted great attention of researchers over the past decades. Two kinds of deformation processes which can be applied in the industry were successively developed, which can obtain the nanocrystalline layers in the surface of various metallic materials to overcome the limitations of existing severe plastic deformation methods. Microstructures and properties of the obtained surface layers were investigated in this dissertation.
     The main research and conclusions are as follows:
     (1) Ultrasonic impact peening (UIP) process, which was conventionally used to eliminate welding residual stress, was firstly introduced to induce surface nanocrystallization of metallic materials. Nanocrystal layers with the grain size ranging from 10 to 35 nm,30-100μm thick, on the surface of 35 steel were obtained by ultrasonic impact peening process.
     (2) A novel normal pulse spinning (NPS) method and cryogenic treatment technique were developed for synthesizing a nanostructured surface layer on metallic materials. Controllable microstructures of lamellar nano-twins or equiaxed nanocrystalline copper were produced by NPS process at the temperature of-196℃.
     (3) Microstructure features of various sections in the nanocrystalline surface layer synthesized by UIP and NPS processes were systematically characterized to investigate the grain refinement mechanism. The analyses of microstructural evolution revealed that plastic deformation of 35 steel surface layers by UIP process were induced by dislocation sliding, while the deformation twinning was the main carrier in copper during NPS.
     (4) Distribution of microhardness and properties of fatigue, friction and wear were experimentally investigated for nanostructured surface layer on 35 steel induced by UIP method. The results showed that surface nanocrystallization can increase the hardness of the plastic deformation layer and fatigue strength, decrease the surface friction coefficient, and improve the anti-wear property.
     (5) Experimental investigation on wettability and condensation heat transfer characteristics from nanocrystalline metallic surfaces, which were produced via severe plastic deformation, was conducted. To our knowledge, this has been the first one ever reported. The dynamics behavior and parameters of condensed droplets in the dropwise condensation were quantitatively characterized by the method combining the motional visualization and microscopic analysis. The results showed that the condensation heat transfer coefficient from the nanocrystalline copper surface was 2-3 times that from the untreated copper surface, which remarkably enhances condensation heat transfer. This is because that the contact angle of the nanocrystalline copper surface is two times higher than that of the untreated copper surface. The nanocrystallization of the copper surface significantly decreased the surface wettability, and consequently, the vapor condensation mode transferred from the filmwise mode to the dropwise or dropwise-dominant mode.
     (6) With the test facility designed and established by our lab, the experiment of pool boiling heat transfer characteristics from the nanocrystalline copper surface was carried out for the first time. The entire process of bubble growth and departure from the copper surfaces before and after nanocrystallization was observed and recorded with the high-speed visualization method. The bubble morphology, growth period and departure frequency from the two types of surfaces were analyzed and compared to reveal the boiling heat transfer enhancing mechanism of the nanocrystalline surface. It was shown by results that the incipient wall superheat for nucleate boiling from the copper surface was decreased from around 10℃to 5~6℃, after the nanocrystallization of the surface. At a given wall superheat, the nanocrystallne surface could transfer much higher heat flux, and therefore yielded a boiling heat transfer coefficient 1.6 times higher than the untreated surface. The main reason for the enhancement of boiling heat transfer is that bubles on the heated nanocrystalline surface have smaller smaller departure diameter and shorter growth period compared with that on the untreated surface.
引文
[1]徐滨士.纳米表面工程[M].北京:化学工业出版社,2004
    [2]刘刚,周蕾.工程金属材料的表面纳米化技术[J].纳米科技,2006,3(1):56-60
    [3]陈彬,林栋墚,曾小勤,等.深度塑性变形法的研究现状和前景[J].材料导报,2006,20(9):73-76
    [4]Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials:presentation of the concept behind a new approach [J]. Materials Science and Technology,1999,15: 193-197
    [5]Lu K, Lu J. Nanostuctured surface layer on metallic materials induced by surface mechanical attrition treatment [J]. Materials Science and Engineering A,2004:375-377
    [6]Roland T, Retmint D, Lu K, et al. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment [J]. Scripta Materialia,2006,54:1949-1954
    [7]卢柯,吕坚.一种金属材料表面纳米层的制备方法[P].中国发明专利.ZL99122670.4,1999
    [8]Tao N. R, Sui M. L, Lu J. Surface nanocrystallization of iron induced by ultrasonic shot peening [J]. Nanostructured Materials,1999,11(4):433-440
    [9]Wu X, Tao N. R, Hong Y. Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of Al:alloy subjected to USSP [J]. Acta Materialia,2002, 50:2075-2084
    [10]Liu G, Wang S. C, Lou X. F, et al. Low carbon steel with nanostructured surface layer induced by high-energy shot peening [J]. Scripta Materialia,2001,44:1791-1795
    [11]Dai K, Villegas J, Stone Z, et al. Finite element modeling of the surface roughness of 5052 Al alloy subjected to a surface severe plastic deformation process [J]. Acta Materialia,2004,52:5771-5782
    [12]Dai K, Shaw L. Comparison between shot peening and surface nanocrystallization and hardening processes [J]. Material Science and Engineering A,2007,463:46
    [13]Wang X. Y, Li D. Y. Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel [J]. Electrochemical Acta,2002,47:3939-3947
    [14]赵新奇,徐政,张俊宝,等.40Cr钢表面纳米层的微观结构[J].材料科学与工程学报,2003,21(5):706-710
    [15]Wang T. S, Yu J. K, Dong B. F. Surface nanocrystallization induced by shot peening and its effect on corrosion resistance of 1Cr18Ni9Ti stainless steel [J]. Surface and Coatings Technology,2006,200:4777-4781
    [16]Raja K. S, Namjoshi S. A. Misra M. Improved corrosion resistance of Ni-22Cr-13Mo-4W alloy by surface nanocrystallization [J]. Materials Letters,2005.59: 570-574
    [17]邱诗龙,任瑞铭,王生武.高能喷丸表面纳米化对工业纯钛疲劳性能的影响[J].金属热处理,2005,30:282-285
    [18]熊天英,王吉孝,金花子,等0Cr18Ni9Ti钢焊接接头表而纳米化及接头抗H2S应力腐蚀性能的研究[J].材料保护,2005,38(1):13-16
    [19]Umcmoto M, Huang B, Tsuchiya K, et al. Formation of nanocrystalline structure in steels by ball drop test [J]. Scripta Materialia,2002,46:383-388
    [20]Umcmoto M, Todaka K, Tsuchiya K. Formation of nanocrystalline structure in carbon steels by ball drop and particle impact techniques [J]. Materials Science and Engineering A,2004,375-377:899-904
    [21]Masahide S, Nobuhiro T, Yoritoshi M, et al. Formation of nanocrystalline surface layers in various metallic materials by near surface severe plastic deformation [J]. Science and Technology of Advanced Materials,2004,5:145-152
    [22]王东坡,宋宁霞,王婷,等.纳米化处理超声金属表面[J].天津大学学报,2007,40(2):228-233
    [23]Bohdan N, Mordyuk G. Ultrasonic impact peening for the surface properties's management [J]. Journal of Sound and Vibration,2007,308:855-866
    [24]Mordyuk G, Prokopenko G. Fatigue life improvement of titanium by novel ultrasonically assisted technique [J]. Materials Science and Engineering A,2006,437:396-405
    [25]Tian J. W, Villegas J, Yuana W, et al. A study of the effect of nanostructured surface layers on the fatigue behaviors of a C-2000 super alloy [J]. Materials Science and Engineering A,2007,468-470:164-170
    [26]Tao N. R, Wang Z B. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment [J]. Acta Materialia,2002,50(18): 4603-4616
    [27]吕爱强,刘刚,刘春明.机械研磨诱导316L不锈钢表层组织的演变[J].金属学报,2004,40(9):943-947
    [28]Zhang H. W, He Z. K, Liu G, et al. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment [J]. Acta Materialia 2003,51(7):1871-1881
    [29]Wu X, Tao N. R, Hong Y, et al. Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of Al-alloy subjected to USSP [J]. Acta Materialia,2002, 50(8):2075-2084
    [30]Zhu K. Y, Vassel A, Brisset F, et al. Nanostructure formation mechanism of α-titanium using SMAT [J]. Acta Materialia,2004,52(14):4101-4110
    [31]Wu X. Tao N. R, Liu G, et al. Strain-induced grain refinement of cobalt during surface mechanical attrition treatment [J]. Acta Materialia,2005,53(3):681-691
    [32]Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment [J]. Material Science and Engineering A,2004,375-377: 38-45
    [33]Yong X. P, Liu G, Lu K. Characterization and properties of nanostructured surface layer in a low carbon steel subjected to surface mechanical attrition [J]. Journal of Material Science and Technology,2003,19(1):1-4
    [34]张洪旺,刘刚,黑祖昆,等.表面机械研磨诱导AISI304不锈钢表层纳米化(Ⅰ):组织与性能[J].金属学报,2003,39(4):342-346
    [35]逯瑶,陈芙蓉,解瑞军,等.7A52铝合金焊接接头高能喷丸前后的性能分析[J].兵器材料科学与工程,2010,33(2):8-11
    [36]严伟林.高锰钢在喷丸条件下的应变硬化[J].装备制造技术,2008,6:32-33
    [37]郎风超,邢永明,朱静.应用纳米压痕技术研究表面纳米化后316L不锈钢力学性能[J].工程力学,2008,25(10):66-71
    [38]冯帅,赵秀娟,陈春焕,等.GH4169高能喷丸表面纳米化的研究[J].新技术新工艺,2008,6:88-90
    [39]王振波,雍姓平,陶乃镕,等.表面纳米化对低碳钢摩擦磨损性能的影响[J].金属学报,2002,37(12):1251-1255
    [40]Zhang Y. S, Han Z, Wang K, et al. Friction and wear behaviors of nanocrystalline surface layer of pure copper [J]. Wear,2006,260(9-10):942-948
    [41]Ba D. M, Ma S. N, Meng F. J, et al. Friction and wear behaviors of nanocrystalline surface layer of chrome-silicon alloy steel [J]. Surface and Coatings Technology,2007, 202(2):254-260
    [42]Wang X. Y, Li D. Y. Mechanical, electrochemical and tribological properties of nano-crystalline surface of 304 stainless steel [J]. Wear,2003,255:836
    [43]Yan W. L, Fang L, Zheng Z, et al. Effect of surface nanocrystallization on abrasive wear properties in hadfield steel [J]. Tribology International,2009,42(5):634-641
    [44]Li G. B, Chen J, Guan D. L. Friction and wear behaviors of nanocrystalline surface layer of medium carbon steel [J]. Tribology International,2010,43(11):2216-2221
    [45]Dai K, Villegas J, Stone Z, et al. Finite element modeling of the surface roughness of 5052A1 alloy subjected to a surface severe plastic deformation process [J]. Acta Materialia,2004,52:5771-5782
    [46]Dai K, Villegas J, Shaw L. An analytical model of the surface roughness of an aluminum alloy treated with a surface nanocrystallization and hardening process [J]. Scripta Materialia.2005.52:259-263
    [47]Horvdth J. Birringer R, Gleiter H. Diffusion in nanocrystalline material [J]. Solid State Communications,1987,62(5):319
    [48]Tong W. P, Tao N. R, Wang Z. B, et al. Nitriding iron at lower temperatures [J]. Science,2003,299:686
    [49]Wang Z. B, Lu J, Lu K. Chromizing behaviors of a low carbon steel processed by means of surface mechanical attrition treatment [J]. Acta Materialia,2005,53:2081
    [50]Wang Z. B, Tao N. R, Tong W. P, et al. Diffusion of chromium in nanocrystalline iron produced by means of surface mechanical attrition treatment [J]. Acta Materialia,2003, 51:4319
    [51]Tong W. P, Liu C. Z, Wang W, et al. Gaseous nitriding of iron with a nanostructured surface layer [J]. Scripta Materialia,2007,57:533
    [52]Li W, Wang X. D, Meng Q. P, et al. Interdiffusion of alloying elements in nanocrystalline Fe-30 wt% Ni alloy during surface mechanical attrition treatment and its effect on a-Fe transformation [J]. Scripta Materialia,2008,59:344
    [53]Wu X. L, Tao N. R, Wei Q. M, et al. Microstructural evolution and formation of nanocrystalline intermetallic compound during surface mechanical attrition treatment of cobalt [J]. Acta Materialia,2007,55:5768
    [54]Wang Z. B, Lu J, Lu K. Wear and corrosion properties of a low carbon steel processed by means of SMAT followed by lower temperature chromizing treatment [J]. Surface and Coating Technology,2006,201:2796
    [55]方培源,钟澄,曹永明.纳米化纯铁中A1扩散的深度剖析[J].质谱学报,2009,30(2):114-117
    [56]周小玲,盛光敏,韩静,等.表面自纳米化对钛合金与不锈钢的扩散焊接的影响[J].核动力工程,2009,30(1):78-81
    [57]韩靖,盛光敏,胡国雄,等.表面纳米化不锈钢与钛合金扩散连接中的扩散系数[J].焊接学报,2008,29(5):25-29
    [58]Liu G, Wang S. C, Lou X. F, et al. Low carbon steel with nanostructured surface layer induced by high-energy shot peening [J]. Scripta Materialia,2001,44(8-9):1791-1795
    [59]Chen X. H, Lu J. Tensile properties of a nanocrystalline 316L austenitic stainless steel [J]. Scripta Materialia,2005,52:1039
    [60]Roland T, Retraint D, Lu K, et al. Enhanced mechanical behavior of a nanocrystallized stainless steel and its thermal stability [J]. Material Science and Engineering A,2007, 2445-2446:81
    [61]Huang L, Lub J. Troyon M. Nanomehanical properties of nanostructured titanium prepared by SMAT [J]. Surface and Coating Technology,2006,201:208
    [62]Chen A. Y, Zhang J. B, Lu J, et al. Necking propagated deformation behavior of layer-structured steel prepared by co-warm rolled surface nanocrystallized 304 stainless steel [J]. Material Letters,2007,61:5191
    [63]Roland T, Retraint D, Lu K, et al. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment [J]. Scripta Materialia,2006,54:1949
    [64]石东艳,龙建旭,车正伟.残余应力对表面纳米化3161不锈钢疲劳性能影响[J].广西大学学报:自然科学版,2009,34(2):154-157
    [65]Mordyuk B. N, Prokopenko G I. Fatigue life improvement of titanium by novel ultrasonically assisted technique [J]. Material Science and Engineering A,2006,437: 396
    [66]温爱玲,闫秀侠,任瑞明,等.高能喷丸时间对TC4疲劳性能的影响[J].热加工工艺,2009,38(14):127-129
    [67]Dai K. Shaw L. Analysis of fatigue resistance improvements via surface severe plastic deformation [J]. International Journal of Fatigue,2008,30(8):1398-1408
    [68]朱其芳,孙泽明,朱宝宏,等.超声冲击纳米化对7B04高强铝合金疲劳性能的影响[J].纳米科技,2009,6(6):25-28
    [69]Angel L. O, Tian J. W, Villegas J.C, et al. Experimental study of the microstructure and stress state of shot peened and surface mechanical attrition treated nickel alloys [J]. Scripta Materialia,2010,62(3):129-132
    [70]李东,陈怀宁,刘刚,等.SS400钢对接接头表面纳米化及其对疲劳强度的影响[J].焊接学报,2002,23(2):18-21
    [71]王婷,王东坡,刘刚,等.40Cr超声表面滚压加工纳米化[J].机械工程学报,2009,45(5):177-183
    [72]李东.纳米结构铜的制备及其拉伸性能研究[博士后研究工作报告].上海:华东理工大学,2009.5
    [73]Mishra A, Kad B. K, Gregori F, et al. Microstructural evolution in copper subjected to severe plastic deformation:Experiments and analysis [J]. Acta Materialia,2007,55: 13-28
    [74]Tao N. R, Lu K. Nanoscale structural refinement via deformation twinning in face-centered cubic metals [J]. Scripta Materialia,2009,60:1039-1043
    [75]Rose J. W, Tanasawa I, Utaka Y. Dropwise condensation. Handbook of Phase Change-Boiling and Condensation [M],1999
    [76]兰忠,王爱丽,马学虎,等.蒸汽冷凝过程的分子团聚模型及其对不凝性气体影响传热性能的解释[C].中国工程热物理学会传热传质学学术会议论文.2009
    [77]Rose J. W. Dropwise condensation theory and experiment:a review. Journal of Power and Energy [J].2002.216:115-128
    [78]Rose J. W. Enhanced condensation heat transfer [J]. ASME International Journal,2006. 49(3):626-635
    [79]赵起,张东昌,林纪方.离子注入制备滴状冷凝表面材料的研究[J].化工学报,1990,2:244-248
    [80]Leipertz A, Choi K.H, Diezel L. Dropwise condensation heat transfer on ion implanted metallic surfaces [C]. Proceedings of 12th International Heat Transfer Conference,2002, 3:887-892
    [81]Rausch M. H, Froba A. P, Leipertz A. Dropwise condensation heat transfer on ion implanted aluminum surfaces [J]. International Journal of Heat and Mass Transfer,2008, 51:1061-1070
    [82]宋永吉,任晓光,任绍梅,等.水蒸气在超疏水表面上的冷凝传热[J].工程热物理学报,2007,28(1):95-97
    [83]Mu C. F, Pang J. J, Luan Q. Y, et al. Effects of surface topography of material on nucleation site density of dropwise condensation [J]. Chemical Engineering Science, 2008,63:874-880
    [84]Lan Z, Ma X. H, Wang S. F, et al. Effects of surface free energy and nanostructures on dropwise condensation [J]. Chemical Engineering Journal,2010,156:546-552
    [85]Manas O, Arya C, Frank M, et al. The role of solid surface structure on dropwise phase change processes [J]. International Journal of Heat and Mass Transfer,2010,53: 910-922
    [86]滕新荣.表面物理化学[M].北京:化学工业出版社,2009,69
    [87]施明恒,甘永平,马重芳.沸腾与凝结[M].北京:高等教育出版社,1995,323
    [88]肖丹.低表面能材料的流动减阻机理及应用研究[硕士学位论文].北京:北京科技大学,2006
    [89]马学虎,汪明哲,兰忠,等.表面纳米结构及其自由能对滴状冷凝传热的影响[J].工程热物理学报,2009,30(10):1752-1754
    [90]Gose E. E, Mucciardi A. N, Baer E. Model for dropwise condensation on randomly distributed sites [J]. International Journal of Heat Mass Transfer,1967,10:15-22
    [91]Mousa A. O. Modeling of heat transfer in dropwise condensation [J]. International Journal of Heat and Mass Transfer,1998,41(1):81-87
    [92]Lan Z, Ma X. H, Zhou X. D, et al. Theoretical study of dropwise condensation heat transfer:effect of the liquid-solid surface free energy difference [J]. Journal of Enhanced Heat Transfer,2009,16(1):61-71
    [93]Nam Y, Wu J. F, Warrier G, et al. Experimental and numerical study of single bubble dynamics on a hydrophobic surface [J]. Journal of Heat Transfer.2009,131: 121004-1-7
    [94]Phan H. T, Caney N, Marty P, et al. Surface wettability control by nanocoating:The effects on pool boiling heat transfer and nucleation mechanism [J]. International Journal of Heat and Mass Transfer,2009,52:5459-5471
    [95]Wua W, Bostanci H, Chow L.C, et al. Nucleate boiling heat transfer enhancement for water and FC-72 on titanium oxide and silicon oxide surfaces [J]. International Journal of Heat and Mass Transfer,2010,53:1773-1777
    [96]Kim J.H, You S. Enhancement of pool boiling heat transfer using thermally conductive microporous coating techniques [R]. The United States:The University of Texas at Arlington,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700