循环流化床积灰结渣的分形特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
循环流化床锅炉是近年来发展起来的一种新型炉型,作为一种新型高效低污染燃煤技术,在国内外已得到广泛应用。为了保证锅炉工作的安全可靠和节约能源,当今锅炉工作者的工作重点往往着眼于锅炉受热面外部过程,即燃烧产物对锅炉受热面烟气侧工作的影响。但是随着煤粉炉大型化及以生物质为新开发燃料的应用之后,流化床锅炉遇到了普遍性的积灰结渣危害问题。本文采用新的视角和研究方法对流化床积灰结渣过程和形态进行研究,从以下4个方面进行了具体分析:首先,分析流化床积灰结渣的机理以及影响因素,比较不同的运行参数在数学建模和实际工程中对积灰结渣的影响,并分析工程中常用的数学模型存在的问题和优缺点;第二,以扩散限制凝聚模型为基础,对灰颗粒在炉内凝聚生长的过程进行模拟和分析;第三,对燃料和灰颗粒在受热面上的积灰结渣生长过程进行建模和模拟,并对模拟结果进行分析;第四,利用迭代函数系统(IFS)方法对积灰结渣的结构建立数学模型,并对其动力学过程进行分析。
     本文在分析和解决循环流化床积灰结渣问题中提出了新的观点和方法,即利用分形理论对灰粒凝聚体和受热面上积灰结渣的生长过程进行模拟和分析,并提出建立函数迭代系统模型对积灰结渣结构进行研究和模拟。运用此新的方法,模拟结果取得理想的结果。本文的最大成果即利用分形理论对积灰结渣过程进行分析建模,特别是利用MATLAB语言编写计算机程序,模拟颗粒凝聚体的形成过程和特性、受热壁面上积灰结渣的动态生长过程、以及利用迭代函数系统对积灰结渣结构建立数学模型,此三方面是本文的创新点。文章最后对以后的研究方向和分形理论在流化床锅炉燃烧过程中的应用进行了前景分析和展望。
Circulating fluidized bed boiler developed to be a new furnace in recent years. As a new type of high efficiency and low pollution technology, it has been widely used at home and abroad. In order to ensure safe and economizing energy of boiler, nowadays boiler workers always focus on boiler heating surface external process, that is, the effect of combustion production to boiler heating surface. But as boiler becomes large and biomass is applied as new development fuels, fluidized bed boiler fouling encountered universal harm of slagging and fouling. This paper, adopting new perspective and research methods, studies the slagging and fouling process and form of circulating fluidized bed boiler, and does specific analysis from the following four aspects: First of all, analyzes the mechanism and impact factors of fluidized bed slagging, compares the impact of different operating parameters on slagging and fouling in mathematical modeling and practical engineering, and analyzes the advantages and disadvantages of mathematical model generally used in engineering; Secondly, based on diffusion and limited aggregation model, simulates and analyzes the process of ash particles agglomeration and growth in the furnace; Thirdly, modeling and simulates the process of fuel and ash particles fouling and slagging in heating surface, and analyzes simulation results; Fourthly, using IFS (IFS) method, establishes mathematical model of the structure of fouling and slagging, and analyzes its dynamics process.
     This paper puts forward new viewpoints and methods in analyzing and solving the problem of circulating fluidized bed fouling and slagging, that is, using fractal theory simulates and analyzes fouling and slagging growth process of ash particles agglomeration and heating surface, and proposes establishing iteration system model to study and simulate the structure of fouling and slagging. Using this new method, simulation achieves desired results. The biggest achievement of this paper is using fractal theory for analyzing and modeling fouling and slagging process, especially using MATLAB language for compiling computer program to simulate the formation process and characteristics of particle cohesion, dynamic growth process of fouling and slagging on heating wall, and using IFS to establish mathematical model of the structure of fouling slagging, these three aspects are creative achievements of this paper. Finally, analyzes intending research orientation and the prospects of the application of fractal theory in fluidized bed boiler combustion process.
引文
[1]杨倩,循环流化床锅炉灰渣特性的研究:[硕士学位论文],保定;华北电力大学,2004
    [2]林宗虎,魏郭崧,安恩科等,循环流化床锅炉,北京:化学工业出版社,2004,1~25
    [3]连国红,循环流化床燃烧技术的特点及应用,工业技术(A),2007,NO.09:103~103
    [4]陈伟,陈一平,循环流化床锅炉特点及其发展现状,湖南电力,2005,25(1):59~62
    [5]赵学旺,孔德浩,冯玉滨,循环流化床锅炉的特点及发展概况,山西能源与节能,2004,34(3):26~27
    [6]赵新木,吕俊复,张建胜等,循环流化床燃烧技术的最新进展,电站系统工程(B),2004,20(6):1~4
    [7] Maitland J E, Skowyra RS, Wilhem B W. Design consideration for utility size CFB steam generators [A]. Proc. 10th Korea-Usa Joint Workshop on Coal Utilization Technology, 1994, IV-71
    [8] Nadjee F, Jaoquet L. The retrofitting of EDF 250MW oil fired vnits with circulating fluidized bed boilers [A] 3rd int conf on CFB[C]. Japan. Preprint, 1980, 23(6):540~550
    [9]冯俊凯,岳光溪,吕俊复,循环流化床燃烧锅炉,北京:中国电力出版社,2003,1~20
    [10]还博文,锅炉燃烧理论与应用,上海:上海交通大学出版社,1999,10~30
    [11]撒应禄,锅炉受热面外部过程,北京:水利电力出版社,1994,15~35
    [12] Bryers R W. Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels[J].Progress in Energy and combustion Science,1996,22(1):29~120.
    [13]李彦林,煤粉锅炉结渣的研究现状及进展[J],电力安全技术,2000,2(2):8~13
    [14]张忠孝,用模糊数学方法对电厂锅炉结渣特性的研究[J],中国电机工程学报,2000,20(10):64~66
    [15]岑可法,樊建人,锅炉和换热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算[M],北京:科学出版社,1994,15~145
    [16] Huafeng W, Harb J N. Modeling of ash deposition in large-scale combustion facilities burning pulverized coal [J]. Progress in Energy and Combustion Science, 1997, 23(3):267~282
    [17]周涌,由长福,祁海鹰等,锅炉结渣过程数值模拟研究进展,燃烧科学于技术:2004,10(4):375~382
    [18] Chai LH, Shoji M, Self-organization and self-similarity in boiling systems, ASME Journal of Heat Transfer, 2002, 124(3):505~517
    [19]郑援,生物膜分形结构形成的模拟及理论分析, [硕士学位论文],天津:天津大学,2007
    [20]文孝强,基于监测的燃煤锅炉积灰、结渣研究, [硕士学位论文],河北:东北电力大学,2006
    [21]许明磊,严建华,马增益等,流化床垃圾焚烧过程受热面烧结积灰的生长特性,燃烧化学学报(A),2006,34(5):547~551
    [22]许明磊,严建华,马增益等,循环流化床垃圾焚烧炉固体残留物的特性研究,中国电机工程学报(A),2007,27(8):16~20
    [23]许明磊,严建华,马增益等,CFB垃圾焚烧炉烟道沿程烧结积灰的特性,动力工程,2006,26(4):550~553
    [24]张军,范志林,徐益谦等,流化床中煤掺混垃圾燃烧时受热面积灰的研究,燃烧科学与技术,2004,10(5):383~387
    [25]龚德生,一种预测煤灰结渣特性的新方法[J],中国电力:1993,(02):34~37
    [26]赵利敏,路丕思,电站锅炉结渣的模糊数学预示分析[J],黑龙江电力技术,1996,18(3).:129~132
    [27]陈立军,文孝强,王恭燃等,煤锅炉结渣特性预测方法综述,热力发电,2006,35(6):1~5
    [28] Huafeng W. Modeling of ash formation and deposition in PC fired utility boilers [D]. Provo: Brigham Young University, 1998
    [29] Lee F C C, Lockwood F C. Modeling ash deposition in pulverized coal-fired applications [J]. Progress in Energy and Combust Science, 1999, 25(2):117~132
    [30] Costen P G, Lockwood F C, Siddique M M. Mathematical modeling of ash deposition in pulverized fuel-fired combustors [A]. In: Proceedings of the Combustion Institute[C]. Pittsburgh, 2000, 28:224~2250
    [31]孙霞,吴自勤,黄畇,分形原理及其应用,合肥:中国科学技术大学出版社,2003,111~122
    [32]齐东旭,分形及其计算机生成,北京:科学出版社,1996,50~125
    [33]张济忠,分形,北京:清华大学出版社,1995,141~203
    [34] Vicsek T, Fractal Growth Phenomena, Singapore: World Scientific, 1992, 12:15~36
    [35]高志成,电站锅炉结渣研究及预防,[硕士学位论文],河北:华北电力大学,2002,19~23
    [36]杨善让,徐志明,换热设备的污垢与对策,北京:科学出版社,1995,20~22
    [37] Kern D Q, Seaton RE. A Theoretical Analysis of Thermal Surface Fouling, Chem.Eng.Prog, 1959, Vol.4, pp.258~262
    [38] Kern D Q, Seaton R E. Surface Fouling: How to Limit, Br.Chem.Eng, 1959, Vol.55, No.6, pp.71~73
    [39]陈宝康,阎维平,李宵飞等,燃煤电站锅炉对受热面灰污层增长预测模型的研究,华北电力大学学报,2004,32(2):32~35
    [40]刘建忠,张光学,周俊虎等,燃煤细灰的形成及微观形态特征(A),化工学报,2006,57(12):2977~2980
    [41] Friedlander S K. Smoke, Dust, and Haze. New York: John Wiley and Sons, 1977
    [42] Mcnallen M J, Yurek G J, Elliot J F. The Formation of Inorganic Particulates by Homogeneous Nucleation in Gases Produced by the Combustion of Coal Combustion and Flame, 1981, 42: 45~60
    [43] Helble J J. Mechanisms of Ash Formation and Growh during Pulverized Coal Combustion. [Ph. D. Thesis]. MIT: Department of Chemical Engineering, 1987
    [44] Gupta R P, Wall T F. Behavior of Refractory Oxides during Combustion of High Si/Ca/Mg Coals. U niversity of Newcastle: The Institute of Coal Research, 1995
    [45] Quann R J, Sarofim A F. A Scanning Electron Microscopy Study of the Transformations of Organically Bound Metals During Lignite Combustion. Fuel, 1986, 65: 40~46
    [46] Mandelbort B B, Fratcals: Form, Chance and Dimension, San Francisco, Freeman (1977)
    [47] Feder J, Fractals. Plenum press, New York and London(1998)
    [48]胡瑞安,胡纪阳,分形的计算机图象及应用[M],北京:中国铁道出版社,1995,25~79
    [49]谢和平,薛秀谦,分形应用中的数学基础与方法[M],北京:北京科学出版社,1997:99~178
    [50]廖欣,余海,迭代函数IFS吸引子的参数控制与数目的模拟[J],计算机工程与应用,2000,36(6):28~29
    [51]王兴元,刘波,一类NMIFS吸引子的递归计算构造及特性分析,自然科学进展,2004,14(9):1039~1046
    [52]王兴元,朱伟勇,IFS吸引子的计算机模拟,计算物理,2000,17(3):407~413
    [53]梁庆永,非线性理论在信息安全及景观模拟中的应用,[硕士学位论文],辽宁:大连理工大学,2004
    [54]王婷婷,牛顿变换的Mandelbrot-Julia集,[硕士学位论文],辽宁:大连理工大学,2005
    [55]司建国,迭代方程解析理论的研究四川大学,[博士学位论文] ,2003
    [56]岑可法,高等燃烧学,杭州:浙江大学出版社,2002,701~719
    [57] Delfosse L, Ponsolle L, Jabkhiro F H. Combustion Theory and Modelling. Combustion of Twenty first Symposium (International) on Combustion, TheCombustion Institute, 1986,39:25~75
    [58] Gouldin F C, Hilton S M, Lamb T. Combustion Theory and Modelling. 22nd Sympooosium (International) on Combustion, The Combustion Institute, 1988,541
    [59] Murayama M, Takeno, T. Combustion Theory and Modelling. 22nd Sympooosium (International) on Combustion, The Combustion institute. 1988, 551
    [60] Mantxaras J, Felton P G, Bracco F V. Combustion and Flame, 1989, 77~295
    [61] Gutmark E.Hansen-Parr D M, Parr T P, Schadow K C. Combustion and Flame, 1990, 79
    [62] Strahle W C, Jagoda J I. Combustion Theory and Modelling. 22nd Sympooosium (International) on Combustion Institute, 1988, 561,
    [63] Gouldin F C, Bray K N C, Chen J Y. Combustion and Flame, 1989, 77~241.
    [64] Gulder O L. Combustion Theory and Modelling. 23rd Sympooosium (International) on Combution, The Combustion Institute, 1990,835

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700