喷射电沉积法制备多孔金属镍机理、工艺及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔金属材料作为一种性能优异的新型功能材料和结构材料,具有广泛的多功能应用前景,已成为当前国内外功能材料领域的研究热点。多孔金属材料的功能性能与其结构直接相关,改变其孔隙率和孔的形貌及尺寸将直接影响到材料的性能。
     本文工作针对传统多孔金属制备方法在上述方面普遍存在工艺复杂、成本较高等缺陷,采用一种全新的多孔金属制备方法─喷射分层扫描电沉积法制备以多孔枝晶沉积层为层芯、普通薄沉积层作面板而制成的夹心式层合式的块状三明治结构多孔金属镍。
     以孔隙结构优化设计和应用为目标,通过调节各种工艺参数和控制条件,使沉积的工作状态在枝晶沉积层和普通电沉积层间交替进行,控制多孔金属镍块的生长,并通过改变试验参数调节芯层孔隙结构和孔隙率,调节普通沉积层生长位置,改变多孔金属镍的三明治状闭孔形貌及尺寸。
     喷射电沉积法生成的多孔枝晶组织完全是自组织原位生长的,加工过程在常温、常压下进行,不需要其它辅助材料,工艺简单,成本较低,对丰富多孔金属的制造工艺具有重要的现实意义。本文的主要研究工作如下:
     1.进行喷射电沉积多孔枝晶层的电化学行为机理研究。主要包括:喷射电沉积多孔金属镍的动力学过程及其阴极极化的特点,喷射电沉积过程阴极极化的类型,喷射电沉积的交流阻抗行为,喷射电沉积镍的电结晶行为。
     2.对喷射电沉积过程中喷射速度场和压力场进行了理论分析,建立单股冲击射流紊流流动的基本数学模型。采用扩散限制凝聚模型(DLA)对喷射电沉积过程的多孔枝晶组织的形状和生长过程进行了模拟研究,并进行了验证性试验。
     3.研制了喷射电沉积逐层扫描制备三明治状多孔金属镍试验系统。成功制备了具有一定形状和厚度的块状多孔金属镍样品;并对制备的多孔镍的表面形貌、孔隙结构、显微组织和力学性能进行了研究。
     4.通过采用喷射电沉积制备的三明治状多孔金属镍为集流体,以纳米NiO为电极活性材料制成电化学电容器电极,并对组装的电容器性能特性进行了表征,结果表明:电容器储能方式主要以赝电容形式存在,单电极比容量为582-527F/g,电极电荷传递阻抗小,电容电化学行为优良。
Porous metal material is a new type of functional and structural material with good performance; it has prospective application in a wide range and has been a heated research area of functional material all over the world. Meanwhile, the performance and characteristics of the porous metal material are directly related to its structure; variations in the porosity, features and sizes of the pores can directly influence the performance of the material.
     With the background mentioned above, this paper presents researches and discussions over the following aspects: aiming at the complicated processes and high costs that generally exist in the traditional porous metal preparation techniques, a whole new porous metal preparation technique-layer scanning jet electrodeposition of "sandwich-structured" porous nickel metal-is introduced. This bulk "sandwich structure" of the nickel metal has porous dendritic crystalline deposited layers as core layers, and normal thin deposited layers as the surface panels on both sides.
     This technique aims at the optimal design and the application of pore structure in the nickel metal, and through the manipulation of different kinds of machining parameters and control conditions, the working condition of the electrodeposition is able to shift between dendritic crystalline layer electrodepositing and normal layer electrodepositing alternately, and growth condition of the porous dendritic crystalline layers can be fairly controlled; this technique can also regulate pore structure and porosity of the core layer, growth location of normal deposited layer, and make variations to features and sizes of sandwich-like pores in the porous metal.
     Compared to other methods, the foam structures generated by jet electrodeposition technique totally grow up from the origin structure position. During the machining procedure, no subsidiary materials are added in, which allows a simpler process and a relatively lower cost. This technique is achieved under normal temperature and normal pressure condition, and requires not much of the environment or the equipment. This research has important and realistic significance on enriching applicable preparation processes of foam metals. Following works have been done and included in this paper:
     1. Researches on electrochemical mechanism and behavior of jet electrodeposition of porous metal preparation, which include: its kinetic process and polarization characteristics on cathode, the type of cathodic polarization during the process, the AC impedance behavior of the jet electrodeposition, and the electrical crystallization behavior of the jet electrodeposition of nickel.
     2. Theoretical analysis is conducted on the jet velocity field and pressure field of the jet electrodeposition procedure, then a fundamental mathematical model for the single-strand turbulent flow is set up. We apply the diffusion-limited aggregation (DLA) model to simulate the feature and growth process of the dendritic structures that exist during the electrodeposition procedure, and made verifying tests.
     3. Develop a test system for the preparation of bulk porous nickel metal processed by layer scanning jet electrodeposition. Use this system to make some bulk porous nickel samples with certain shapes and thicknesses, and study the surface features, pores, micro structures and mechanical properties.
     4. Porous nickel metal prepared by jet electrodeposition is treated as the current collector. Then make the electrochemical capacitor electrodes using electrode active nano-NiO material, and finally characterize the capacitor properties. Tests made indicate: Capacitors using the jet electrodeposited porous nickel metal as current collectors show typical characteristics of super capacitor, and they exist mostly in the form of faradic pseudocapacitance. With Specific capacitance of single electrode of the specimen varies within 582-527F/g. Capacitors have the advantages of low particle transfer impedance, good electrochemical capacitor performance.
引文
[1] Gibson L J, Ashby M F.材料结构与性能.北京:清华大学出版社, 2003.
    [2] Suresh Kumar, Jinsu Yoo, Kyunghae Kim, et al. Study of electrical properties of oxidized porous silicon for back surface passivation of silicon solar cells. Renewable Energy, 2008, 32(2): 282-285.
    [3] Dvies G J, Shu Z. Manufacture Characteristion and Application of Cellular Metals and Metal Foams. Journal of Materials science 1993, (18): 1899-1911.
    [4]蒂吉斯切,克雷兹特.多孔泡沫金属.北京:化学工业出版社, 2004, 39-58.
    [5]刘培生,牵铁藩,傅超.多孔金属材料的应用.功能材科, 2001, 32(1): 12-15.
    [6]曹立宏,马颖.多孔泡沫金属材料的性能及其应用.甘肃科技, 2006, 22(6): 144-149.
    [7] Sosnik A. Process for making foamlike mass of metal, US, Patent, 2434775, 1948.
    [8] Elliott J C. Method of producing metal foam, US, Patent, 2751289, 1956.
    [9]陈文革,张强.泡沫金属的特点、应用、制备与发展.粉末冶金工业, 2005, 15(2):37-42
    [10]刘海彪,超厚泡沫金属的制备及其性能研究,[硕士学位论文],秦皇岛:燕山大学,2006.
    [11] Gibson L J, Ashby M F. Cellular Solids Structure and Properties. Oxford , Pergamon Press, 1988.
    [12] Ashby M F, Gibson L J .泡沫金属设计指南.北京:冶金工业出版社, 2006.
    [13] Banhart J. A Study of Aluminium foam formation kinetics and microstructure , 2000.
    [14] Gibson,L J Ashby M F. New Transfer in Open-cell Metal Foams Cellular Solids: Structures and Properties.UK: Cambridge University Press, 1997:103-109
    [15]陈祥,李言祥.金属泡沫材料研究进展.材料导报, 2003, 17(5): 6-11.
    [16]刘培生,黄林国.多孔材料制备方法.功能材料, 2002, 33(1): 5-8.
    [17]于英华,梁冰,李智超,等.多孔泡沫金属研究现状及分析.青岛建筑工程学院学报, 2003, 24(1): 54-56.
    [18] Ashby M F, Evans A G, Fleck N A, et al. Metal Foams: A Design Guide. Butterworth-Heinermann, UK: Oxford, 2000.
    [19]程申涛,鲁雄刚,李重河,等.泡沫铝工业化生产现状及发展趋势.上海金属, 2008, 30(4): 49-51.
    [20]刘源,李言祥,张华伟.金属-气体共晶定向凝固工艺参数对藕状多孔金属镁结构的影响.稀有金属材料与工程, 2005 34(7)1128-1131.
    [21]卢天健,刘涛,邓子辰,等.多孔金属材料多功能化设计的若干进展.力学与实践, 2008,10: 17-35
    [22]陈雯,刘中华,朱诚意,等.泡沫金属材料的特性、用途及制备方法.有色矿冶, 1999, (1):33-36.
    [23] Duarte I, Banhart J. A study of aluminiun foam formation-kinetics and microstructure. Acta Materialia, 2000, 48: 2349-2362.
    [24]刘志东,王景丽,黄因慧,等.泡沫金属的制备方法及应用.航空精密制造技术, 2008.44(1):27-30.
    [25] . Banhart J. Manufacture Characteristion and Application of Cellular Metals and Metal Foams. Progr. Mater. Sci. 2001, 46: 559-632.
    [26] Qiao G Y, Jing T F, Wang N, et al. High-speed jet electrodeposition and microstructure of nanocrystalline Ni–Co alloys. Electrochemical Acta, 2005, 16(5): 46-50.
    [27] Cao X Q, Wang Z H, Ma H W, et al. Effects of heat treatment on dynamic compressive properties and energy absorption characteristics of open-cell aluminum alloy foams. Trans Nonferrous Met. Soc. China, 2006, 16: 159-163.
    [28]伊藤雅夫,西河彻,森本一男.など.发泡アルニウム"アルポラス"の开发.日本金属学会会报,1987,26(4):311-313.
    [29] Ma L Q, Song Z. L, He D P. Cellular structure control of aluminium foams produced by high pressure infiltration process. Scripta Materialism, 1999, 41(7): 785-790.
    [30] Hideo, Nakajima. Fabrication, properties and application of porous metals with directional pores Progress in Materials Science, 2007, 52(7): 1091-1173.
    [31]张景怀,惠志林,方政秋,等.泡沫镍的准备工艺与性能.稀有金属, 2001, 25(3): 230-234.
    [32]张茗.泡沫金属发泡基础理论研究.[硕士学位论文].昆明:昆明理工大学, 2004.
    [33] Apprill J M, Poirier D R, M C Maguire. GASAR porous metals process control. Materials Research Society Symposium-Proceedings, 1998, 521(13): 291.
    [34]程桂萍,陈锋,何德坪,等.共晶凝固法法制备通孔泡沫金属.东南大学学报, 1997, 27(3): 73-76.
    [35]左孝青,史庆南.粉末冶金法制备通孔泡沫铝.云南冶金, 2003, 32(4): 31-35.
    [36]程和法,黄笑梅,陈国宏.渗流法制备泡沫铝合金工艺的研究.轻合金加工技术, 2001, 29(1): 38-40.
    [37]左孝青,孙加林.泡沫金属的性能及应用研究进展.昆明理工大学学报(理工版),2005,30(1): 13-17.
    [38]刘培生.多孔材料引论.北京:清华大学出版社, 2004
    [39] Golovin I S, Sinning H R. Internal friction in metallic foams and some related cellular structures. Materials Science and Engineering, 2004, 370(2): 504-511.
    [40]左孝青,孙加林.泡沫金属制备技术研究进展.材料科学与工程学报, 2004, 22(3): 452-456.
    [41]汤慧萍,张正德.金属多孔材料发展现状.稀有金属材料与工程,1997,26(1):1-6
    [42] Ma L Q, Song. Z. L, He. D. P. Cellular structure control of aluminium foams produced by high pressure infiltration process. Scripta Materialism, 1999, 41(7): 785-790
    [43]张勇,赵增典,杨思一.新型泡沫铝材料的性能研究.铸造,1998, (3):10-12.
    [44] Maire S A, Haomi H. Experimental Investigation of Sintered Porous Metal filters. J Aerosol Sci, 2000, 31(6): 721-725.
    [45]何德坪,闻德荪,张勇.铝熔体在多孔介质中的渗流过程.材料研究学报, 1997, 11(2): 113-119
    [46] Conder J R, Liew T P.Fine mist filtration by wet filters:Sintered disc filters. Aerosol Sci, 1989, 20(1): 59–66.
    [47] Gupta A, Novick V J, Biswas P, et al. Effect of humidity and particle hygroscopicity on the mass loading capacity of high efficiency particulate air (HEPA) filters. Aerosol Sci. Technol. 1993, 19: 94–107.
    [48] Langer G, Lieberman A. Anomalous behavior of aerosol produced by atomization of monodisperse polystyrene latex. J. Colloid Sci. 1960, 15: 357–360.
    [49] Vincent J H, Mark D. Porous plastic foam filtration media:penetration characteristics and applications in particle size-selective sampling. Aerosol Sci. 1993, 24(7): 929–944.
    [50]闫长海,孟松鹤,陈贵清,等.开孔金属泡沫传热分析.功能材料, 2006, 37(8): 1292-1295.
    [51] Hsieh W H, Lu S F. Heat-transfer Analysis and Thermal Dispersion in Thermally-developing Region of a Sintered Porous Metal Channel. Int J Heat Mass Transfer, 2000, 43: 3001-3004.
    [52]余兴泉,何德坪,陈峰.泡沫金属对流换热性能研究.功能材料, 1993, 24(5): 438-442.
    [53] Lu T J, Hess A, Ashby M F. Sound absorption in metallic foams. J App Phys, 1999, 85:7528-7539.
    [54]程文龙,韦文静.高孔隙率泡沫金属相变材料储能、传热特性.太阳能学报, 2007, 28(7): 739-742.
    [55]王坤,鲁雪生,顾安忠,等.一种新型强化换热材料-泡沫金属材料在脉管制冷机中的初步试验.低温与超导, 2006, 34(3): 660-663.
    [56] Banhart J. Manufacture Characterisation and Application of Cellular Metals and Metal Foams. Progr Mater Sci, 2001, 46: 55-62.
    [57]黄福祥,金吉琰,范嗣元,等.发泡金属的电磁屏蔽性能研究.功能材料, 1996, 27(2): 739-743.
    [58] Hyun K, Murakami K, Nakajima H. Anisotropic mechanical properties of porous copper fabricated by unidirectional solidification. Materials Science and Engerineering, 2000, 299: 241-248.
    [59] Wei P, Liu L. Influence of Density on Compressive Properties and Energy Absorption of Foamed Aluminum Alloy. Journal of Wuhan University of Technology-Materlias and Science Edition, 2007, 10(s11): 225-228.
    [60] Xin T, Qing T, Bin Y, et al. The microwave electromagnetic and absorption properties of some porous iron powders. Materials Science and Engineering, 2007, 445: 135-140.
    [61]李钧,田庆华,郭学益.泡沫铅的制备性能及应用研究的现状.电池, 2007,(06): 25-27.
    [62]刘培生,开明,顾守仁.多孔金属电极基体材料.稀有金属, 2000, 24(6): 418-422.
    [63] Li Q M. Attenuation or enhancement-a one-dimensional analysis on shock transmission in the solid phase of a cellular material. International Journal of Impact Engineering, 2002, 27(10): 1049-1065
    [64]周建新,沈湘黔.超级电容器电极材料研究进展.功能材料, 2004, 35:1020-1023.
    [65]黄金昌,徐秀茹.用作人体值入材料的稀有金属合金.粉末冶金, 10: 37-38.
    [66]晓敏.生物相容性良好的多孔钛和镁.金属功能材料, 2002, 7(3): 13.
    [67]伍本德,郭福合.人工髓关节用复合多孔钛股骨头制备方法的研究.粉末冶金技术, 1990, 8(4): 216-220.
    [68]宋春福.多孔钛制造方法.中国,新方法, CN86107285A: l-4.
    [69]石建民.生物活性多孔钛涂层的制备研究. [硕士学位论文].上海,上海交通大学. 2001.
    [70] Santosa S,Wierzbicki T. Crash behaviour of box columns filled with aluminiumhoneycomb or foam.Computers and Structures,1998,68(4): 156-164.
    [71]王录才,王芳,游晓红.泡沫铝管道气流消音器的研制.噪声与振动控制, 2002, 3: 42-43.
    [72]卢天健,何德坪,陈常青,等.超轻多孔金属材料的多功能特性及应用.力学进展, 2006 (9):517-534.
    [73] Lu T J, Valdevit L, Evans A G. Active cooling by metallic sandwich structures with periodiccores. Prog Mater Sci, 2005, 50:789-815.
    [74] Hamdan A, loni M A, Rudd C D, et al.Behavior of Core Materials During Resin Transfer Moulding of Sandwich Structures.Material Science and Technology,2000, 16: 929-934.
    [75]尉海军,姚广春,成艳,等.闭孔泡沫铝吸声性能的影响因素.中国有色金属学报, 2008 18(8):1487-1493
    [76] Staud K P, Murr L E, Meyers M A. Fundamental Issues and Application of Shock-Wave and High-Strain-Rate Phenomena Proceedings. Amsterdam: Elsevier Science B, 2001.429-433.
    [77] Ashby M F, Lu T J.Metal foams: a survey. Science in China(B) , 2003, 46(6):521-532.
    [78] Davies G J, Zhen Shu.Metallic oams: their production,properties and applications.Mater Science,1983,18: 1899-1911.
    [79] Lu T J, Hutchinson J W, Evans A G. Optimal design of a flexural actuator. J M ech Phys Solids, 2001, 49:2071-2093.
    [80] Matsumoto I, waki T, Yanagihara N. Battery electrode. US ,Patent 4, 251, 603, 1981.
    [81]陈劲松,黄因慧,田宗军,等.喷射电铸快速制造试验研究.华南理工大学学报, 2006, 34(11): 16-20.
    [82] Chen J S, Huang Y H, Liu Z D, et al. Jet electrodeposition oriented by rapid prototyping. Trans Nonferrous Met. Soc. China, 2005, 15(s3): 145-149.
    [83]吴安德,王帮峰,黄因慧,等.一种新的快速成形技术-选择性电铸.中国机械工程, 2000, 11(1): 81-82.
    [84]陈劲松,黄因慧,刘志东,等.喷射电沉积快速成形的定域性实验研究.中国机械工程, 2006, 17(13): 1408-1410.
    [85]赵阳培,黄因慧,赵剑峰,等.射流电铸快速成形纳米晶铜的研究.材料导报, 2003, 17(7): 79-81.
    [86] Chen J S, Huang Y H, Liu Z D, et al. Jet electrodeposited Cu-Al2O3 nanocomposite coatings. International conference and exhibition: Integration and commercialization of Micro and Nanosystems , SANYA, China, 2007: 1-4.
    [87] Booker G. R, Stickler R. Large area jet electrolyte polishing of Ge and Si. J Electrochem Soc, 1962, 109: 1167-1171.
    [88] Alkire R C, Chen T J. High-speed selective electroplating with single circular jets. J Electrochem Soc, 1982, 129: 2424-2432.
    [89] Bocking C. Laser enhanced and high speed jet selective electrodeposition. Trans IMF, 1988, 66:50-53.
    [90] Bocking C, Cameron B. The use of high speed selective jet electrodeposition of gold for the plating of connectors. Trans IMF, 1994, 72 (1): 33-35.
    [91] Bocking C, S Dover, G R Bennet, et al. An investigation into suitability of high speed selective jet electrodeposition for rapid tooling. J Electrochem. Soc, 1995, 143(4): 157-173.
    [92] Kunieda M, Yoshida M, Akamatsu Y, et al. Influence of micro indents for formed by electrochemical jet machining on rolling bearing fatigue life. Manufacturing Science and Engineering, 1993, 64: 693-699.
    [93]李荻.电化学原理.北京:北京航空航天大学出版社, 1998.
    [94]荆天辅,乔桂英,熊毅,等.添加剂对喷射电沉积纳米晶镍的影响.材料保护, 2001, 34(7): 16-17.
    [95]查全性.电极过程动力学导论.北京:科学出版社, 2002.
    [96]阿伦J,巴德拉里, R福克纳.电化学方法原理和应用.北京:化学工业出版社, 2005.
    [97] Xue Y J, Zhu D, Zhao F. Electrodeposition and mechanical properties of Ni-La2O3 nanocomposites. Journal of Materials Science, 2004, 39(5): 4063-4066.
    [98]吴浩青,李永舫.电化学动力学,北京:高等教育出版社, 2001.
    [99] Carter T J, Cornish L A. Hydrogen in Metals. Engineering Failure Analysis, 2001, (8) :113-121.
    [100] Eniko Toth-Kadar, Imre Bakonyi. Microstructure and electrical transport properties of pulsed- plated nanocrystalline nickel electrodeposits .Surface Coat. Technol, 1996, (88) :57-65 .
    [101]尤红军,方吉祥,孔鹏,等.扩散限制和非扩散限制对电沉积银形貌的影响.稀有金属材料与工程, 2008, 37(6): 1042-1045.
    [102] Park J W, Lee E S,Won C H, , et al. Development of electrochemical micro machining for air-lubricated hydrodynamic bearings. Microsystem Technologies, 2002,9(1-2) .
    [103] Witten T A, Sander L M. Effective Harmonic Fluid Approach to low Energy Properties of One Dimensional Quantum Fluids. Phys Rev Let, 1981, 47: 1400-1408.
    [104] Sagtes F, Lopez M Q, Clare J, et. al.Growth and forms in quasi-two-dimensional electrocrystallization. Phys Rep, 2000,337: 97-115.
    [105] Weiss L E, Merz R. Shape deposition manufacturing of heterogeneous structure . Journal of Manufactureing Systems,1997,16(4): 239-248.
    [106] Ramagopal Anantha, William N Gill. Dendritic growth in microgravity and forced convection. Journal of Crystal Growth, 1997, 179(3): 263-266.
    [107]李军,李冰.高择优取向TiB2电沉积层的制备及其表征.稀有金属材料与工程,2006,35(5): 833.
    [108]周绍民.金属电沉积原理与研究方法.上海:上海科学技术出版社, 1987. 247-249.
    [109]韩东生.喷射电沉积纳米晶镍的阴极极化行为及其微观组织结构. [硕士学位论文],秦皇岛:燕山大学, 2005.
    [110]刘永辉.电化学测试技术.北京:科学出版社, 1987. 136-138.
    [111] Compton R G, Eklund J C, Page S D,et, al. Voltammetry in the Presence of ultrasound: mass transport effiets. Joural of Electroanalytical Chemistry, 1996,26(8): 775-784.
    [112] Hyde M E, Compton R G. How Ultrasound Influences the Electrodeposition of Metals. Joural of Electroanalytical Chemistry, 2002,531(6): 19-24.
    [113]安特罗波夫.理论电化学.北京:高等教育出版社, 1984: 216-220.
    [114]弗鲁姆金等著,朱荣昭译.电极过程动力学.科学出版社, 1957: 259-263.
    [115]马浩,蒋雄.析氢反应动力学的交流阻抗法研究.应用化学, 1995, 12(6): 25-29.
    [116]吴继勋,刘永勤,卢燕平等.锌-镍合金共沉积的交流阻抗行为.材料保护, 1994, 27(1): 16-19
    [117] Karayianni H S, Patermarakis G S. The Electrical Properties and Quality Factor of Nickel Electrodeposits. Journal of Materials Science, 1996,31:6535-6539.
    [118] Natter H, Loffler M S, Krill C E. Crystalline Growth of Nanocrystalline Transition Metals Studied in Situ by High Temperature Synchrotron X-ray Differ Diffraction. Scripta Mater,2001(44): 2321-2325.
    [119] Zech N, Landolt D. The influence of Boric Scid and Sulfate Ions on the Hydrogen Formation in Ni-Fe Plating Electrolytes. Electrochimica Acta, 2000,(45): 3461-3471.
    [120]刘晋春,赵家齐.特种加工.北京:机械工业出版社,1998.
    [121] Frank F C, The Influence of Dislocations on Crystal Growth .Discussions of the Faraday Society.1949, 5: 48.
    [122] Bogdan Szczygiel, Malgorzata Kolodziej. Composite Ni/Al2O3coatings and their corrosion resisitance. Electrochemical Acta, 2005, 16(9): 1-5.
    [123]贾铮,戴长松,陈玲.电化学测量方法.北京:化学工业出版社,1999.
    [124] Greef R, Peat R,Peter L. M. et, al. Instrumental Methods in Electrochemistry. Ellishorwood limited,Chichester,1985. 304-306.
    [125] Schariflker B, Hills G. Theoresical and experimental studies of mulitple nucleations. Electrchimica Acita,1983, 28(7): 879-889.
    [126]雷卫宁.纳米晶电铸镍的试验研究.[博士学位论文],南京:南京航空航天大学, 2002.
    [127] Andreas B, Barry A, Richard G. et,al. Modeling hot wire electrochemistry. coupled heat and mass transport at a directly and continuously heated wire. J. Phys. Chem. B, 200.104 (4): 764–769.
    [128]董志勇.冲击射流.北京:科学出版社, 2005.
    [129]刘沛清.自由紊动射流理论.北京:北京航空航天大学, 2008.
    [130] Tamir.A, Kitton.A. Application of impinging streams in chemical engineering process review Chem Commun, 1987, 50 :241-330.
    [131] Chen J S, Huang Y H, Liu Z D, et al. Jet electrodeposition oriented by rapid prototyping. Trans Nonferrous Met.Soc.China, 2005, 15(special 3): 247-251.
    [132]王敏尔.单股、多股紊动射水流数值模拟研究. [硕士学位论文],杭州,浙江工业大学, 2005.
    [133]傅德薰.流体力学数值模拟.北京:国防工业出版社, 1993.
    [134] Kostiuk L W, Bray K N C, Cheng R K. Experimental study of premixed turbulent combustion in opposed streams(Ⅰ):Nonreacting flow field . Combustion and Flame, 1993, 92(4) : 377-395.
    [135]谢象春.湍流射流理论与计算.北京:科学出版社,1975.
    [136] Champion M, Libby P A. Reynolds stress description of opposed and impinging turbulent jets(Ⅰ):Closely spaced opposed jets .Physics of Fluids, 1993, (5):203-215 .
    [137] Stan G, Johnson D A. Experimental and numerical analysis of turbulent opposed impinging jets .AIAAJournal, 2001, 39(10): 1901-1908.
    [138]余常昭.紊动射流.北京:高等教育出版社,1993.
    [139]傅德燕,马延文.计算流体力学.北京:高等教育出版社, 2002.
    [140]孙雅峰,牛振江,岑树琼,等.氢气泡模板法电沉积制备三维多孔铜薄膜.电化学, 2006, 12(2): 1-6.
    [141]孙雅峰.氢气泡模板法电沉积制备多孔金属薄膜. [硕士学位论文],杭州:浙江师范大学, 2003.
    [142]徐惊雷,徐忠,黄淑娟,等.冲击射流研究综述.力学与实践, 1999(6):32-37.
    [143]韩占忠,王敬,兰小平. FLUENT流体工程仿真计算实例与应用.北京:北京理工大学出版社, 2005.
    [144]罗奇.流体动力学.北京:科学出版社,1983.
    [145]王瑞金,张凯,王刚. FLUENT技术基础与应用实例.北京:清华大学出版社, 2007.
    [146] Rajaratnam N.Turbulent Jets. Amsterdam: Elsevier Scientific Publishing Company, 1976.
    [147]宫凯,黄因慧,田宗军,等.加工参数对喷射电沉积制备多孔金属镍的影响,机械工程材料, 2008, 32(8): 40-42.
    [148] Li W F, Sun Z G, Liu H F, et al. Experimental and numerical study on stagnation point offset of turbulent opposed jets .ChemicalEngineering Journal, 2008, 138 (1) : 283-294.
    [149]李东生.平面射流流场的数值模拟与实验研究.沈阳:东北大学, 2000.
    [150]郭占成,卢维昌,巩英鹏,等.超重力水溶液金属镍电沉积及极化反应研究.中国科学, 2007, 37(3): 360-369.
    [151]熊毅.纳米晶块体镍的喷射高速电沉积及其微观结构研究. [硕士学位论文].秦皇岛:燕山大学, 2001.
    [152]孙斌,任大志,邹宪武,等.铅的电沉积枝晶生长.武汉大学学报(理学版), 2002, 48(1): 81-83.
    [153] Witten T A, Sander L M. Effective Harmonic-Fluid Approach to low-Energy Properties of One-Dimensi-onal Quantum Fluids. Phys Rev Let, 1981, 47(25): 1400-1408.
    [154] Grier D, Ben-Jacob E, Clarke R, et al. Morphology and Microstructure in Electrochemical Deposition of Zinc. Phys Rev Lett. 1986, 56(12): 1264-1267.
    [155]王桂峰,黄因慧,田宗军,等.平行板电极喷射电沉积中的枝晶分形生长.华南理工大学学报(自然科学版), 2008, 36(4): 35-39.
    [156]王桂峰,黄因慧,刘志东,等.金属镍电沉积中枝晶分形生长的研究.电镀与环保, 2007, 27(3): 14-16.
    [157]杨兵初,戎茂华,罗成林.锌电解沉积物生长形态转变的研究.长沙理工大学学报(自然科学版), 2005, 2(3): 85-88.
    [158]谢刚,张郑,陈书荣,等.点阴极下金属电沉积过程枝晶二维生长的计算机模拟.科学技术与工程, 2003 (4): 343-346.
    [159]张皓东,谢刚,李荣兴,等.金属锌电沉积过程的分形研究.化学研究, 2005, 16(1): 52-54.
    [160]王桂峰,黄因慧,田宗军,等.不同条件下金属镍电沉积中枝晶生长的分形维数.机械工程材料, 2008, 32(8): 16-19.
    [161]宫凯,黄因慧,田宗军,等.块体多孔镍的逐层扫描法喷射电沉积制备.材料工程, 2009, 8: 63-67.
    [162]骆桂蓬,艾竹茗,韦钰.金属银膜生长过程中的分形现象及动力学模型.科学通报, 1993, 38(13): 1191-1193.
    [163] Compton R G, Greaves C R, Waller A M. A general computational method for mass-transport problems involving wall-jet electrodes and its application to simple electron-transfer, ECE and DISP1 reactions, Journal of Applied Electrochemistry ,1990,20(4) :575-585.
    [164] Oberholtzer F, Barkey D, Wu Q. Kinetic Selection of Morphology and Growth Velocity in Electrochemical Deposition. Phys Rev E, 1998, 57 (6) :6955-6961.
    [165] Sawada Y, Dougherty A, Gollub J P. Dendritic and Fractal Patterns in Electrolytic Metal Deposits. Phys Rev Lett, 1986, 56 (12) :1260-1263.
    [166]初晓辉.喷射电沉积快速制备泡沫金属的工艺技术研究. [硕士学位论文].南京:南京航空航天大学, 2008.
    [167]杨成博.喷射电沉积法直接制备多孔泡沫镍的工艺技术和性能研究. [硕士学位论文].南京:南京航空航天大学, 2009..
    [168] Ma L Q, Song Z L, He D P. Cellular structure control of aluminium foams produced by high pressure infiltration process. Scripta Materialism, 1999, 41(7): 785-790.
    [169]刘美华,王静,王东爱.对压痕硬度试验方法的分析研究工程塑料应用, 2005, 33(7): 38-42.
    [170]张玉碧,李照美,李云东,等.脉冲电镀中脉冲参数对镍镀层显微硬度的影响.电镀与涂饰, 2005,24(2): 1-3.
    [171]田宗军,王桂峰,黄因慧,等.金属镍电沉积中枝晶的分形生长.中国有色金属学报, 2009,(01):11-13.
    [172]张俊彦,张平,甘秋兰.泡沫镍力学性能的试验研究.材料导报, 2004, 18(1): 92-95.
    [173] Pell W G, Conway B E. Analysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and do charge. J.Power Sources 2001, 96(1):57-67.
    [174] Kotz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochim. Acta,2000, 45(15): 2483-2498.
    [175] Shukla A K, Arico A S, Antonucci V. An appraisal of electric automobile power sources Renewable and Sustainable Energy Reviews, 2001, 5(2): 137-155.
    [176]张密林,杨晨,陈野,等.纳米MnO2超级电容器电解液性能研究.电源技术, 2004, 28(10): 626-630.
    [177] Conway B E. Electrochemical Supercapacitors. US: Kluwer Academic Publishers, 1999.
    [178]王晓峰.碳纳米管超级电容器的研制和应用.电源技术, 2005, 29(1): 27-31.
    [179] Kotz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochim.Acta,2000, 45(15-16):2483-2498.
    [180]郑明波,曹洁明,陈勇平,等.快速沉淀法制备多孔纳米NiO及其电容性质研究.高等学校化学学报, 2006,27(06): 1138-1140.
    [181] Zheng J P. Hydrous Rutheium Oxide as an Electrode Material for Electrochemical Capacitor. Journal of Electrochem.Soc.1995,142(8) :2699-2703.
    [182] Zheng J P. Proton insertion into Ruthenium oxide film prepared by pulsed layer deposition. Journal of Electrochem.Soc.1995, 143(3) :1068-1070.
    [183]王圣平,陈艳玲,吴金平,等.发泡镍作为Li/SOCl2电池正极集流体的研究.电池, 2006,(03): 12-15.
    [184] Conway B E., Pell W G. Power limitations of supercapacitor operation associated with resistance and capacitance distribution in porous electrode devices. Journal of Power ources, 2002,105 (2): 67-79.
    [185]邓梅根,杨邦朝,胡永达.纳米NiO的制备及其赝电容特性研究.材料工程, 2005, (05): 19-21.
    [186] Conway B E. Transition from supercapacitor to battery behavior in electrochemical energy storage . Journal of the Electrochemical Society, 1991, 138 (6): 1539-1548.
    [187]原长洲,张校刚,高博.碱性全固态纳米晶NiO电容器的电化学电容特性.应用化学, 2006, (12): 1346-1349.
    [188]高博,张校刚,原长洲,等.类普鲁士蓝为前驱体制备纳米NiO及其电化学电容行为.无机化学学报, 2006, (07): 1289-1292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700