非线性聚合反应及分子自组装
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性高分子在溶解性、粘度、稳定性及多功能性等方面比线性分子具有明显的优势,因而在近些年的研究中受到青睐。采用计算机模拟的方法研究复杂的非线性聚合反应、分子的结构和性能,不仅具有重要的科学价值,同时对实验中控制反应及加速材料的应用也具有重要的指导意义。本论文中,我们对非理想超支化聚合反应、超支化分子的构象及ABC星形三嵌段共聚物的自组装进行了研究。研究的主要内容及结果如下:
     1、采用Monte Carlo方法,在三维键涨落格子模型中研究了分子链刚性及反应的可逆性对AB2和AB*型超支化聚合反应的影响。随着分子链的刚性增强,分子内成环的概率逐渐降低,环的尺寸逐渐增大,这导致分子的分子量和多分散指数在高转化率下逐渐增大。反应的可逆性对体系的平衡状态和动力学平衡过程有显著影响。在逆向反应发生的概率较大时,各参数同时达到平衡值;逆向反应发生的概率较小时,达到平衡转化率以后,重均聚合度和多分散指数继续增大。
     2、基于扩散限制凝聚模型,建立了扩散限制的聚合反应模型,并系统研究了具有不同支化程度的超支化分子的构象。分子的回转半径和聚合度具有指数关系,随着聚合度增加,有效指数趋近于0.4。同时,采用静态光散射技术和单元的径向分布表征了分子的内部结构。在低支化度下,分子具有紧密的中心核结构;在高支化度下,超支化分子呈现疏松-紧密-疏松的结构。
     3、结合分子动力学和Monte Carlo方法,建立了粗粒化反应模型,并对3,5-二羟基苯甲酸(DHBA)的本体聚合反应进行了定量研究。研究中,采用反Boltzmann迭代法分别提取单体与单体、大分子与大分子之间的非成键力场。单体和大分子之间的力场采用组合方式计算。通过迭代二分法,成功拟合了实验数据,并得到了与实验体系对应的最佳反应活性参数。在最佳的反应活性参数下,模拟中得到的聚合度和支化度与实验结果吻合得很好。此外,模拟可以提供聚合反应中其它参数的信息,包括多分散指数和分子内成环等。
     4、采用外势场动力学方法研究了ABC星形三嵌段共聚物在稀溶液中的自组装。结果表明,各嵌段的体积分数和两种疏溶剂嵌段的疏溶剂强度对胶束的内部结构具有显著影响。研究中发现了含有中心核的横向囊泡、点状镶嵌囊泡和多隔段笼型胶束三种新颖的胶束结构。在考察囊泡的形成机理时,发现多室囊泡都可以通过成核、归并、生长的路径形成。
Nonlinear polymers attract many attentions recently because of their betterproperties in solubility, viscosity, stability and multi-functionalities than linearmacromolecules. Investigating complex nonlinear polymerizations andconformational properties of molecules by employing computer simulation methodnot only has significant value in scientific research, but also can provide meaningfulsuggestions for controlling polymerization reactions and accelerating the applicationof materials. In this dissertation, we have studied the reaction kinetics of nonlinearhyperbranched polymerizations, the conformational properties of hyperbranchedpolymers and the self-assembly of ABC star terpolymer. The research contents andresults are shown as follows.
     1. The reaction kinetics of nonideal hyperbranched polymerizations consideringthe chain rigidity and reaction reversibility are studied using the reactive3D bondfluctuation lattice model with Monte Carlo method. It is found that, with the increaseof chain rigidity, the formation probability of intramolecular rings decreases and lessintramolecular rings with larger size are formed. It results in the increase of thedegrees of polymerization and polydispersity index with the rise of chain rigidity athigher conversion. Furthermore, our simulation shows that the reversibility of reactionhas strong influences on the equilibrium state and kinetic process of hyperbranchedpolymerizations. When the ratio of reverse reaction probability is larger, eachparameter grows to the equilibrium value simultaneously. At smaller reverse reactionprobability, however, the weigh-average degree of polymerization and polydispersityindex further increase after approaching the equilibrium conversion.
     2. Based on the diffusion-limited aggregation model, we propose adiffusion-limited polymerization model and systematically study the conformationalproperties of hyperbranched polymers with different degrees of branching. The radiusof gyration and degree of polymerization show exponential relationship, and theeffective exponents approach0.4with the increase of the degree of polymerization.Meanwhile, the static light scattering technique and the radial distribution of units areapplied to characterize the internal structural property of polymers. It shows that themolecule has dense core structure at smaller degree of branching, andloose-dense-loose structure at larger degree of branching.
     3. Combining the molecular dynamics and Monte Carlo methods, we develop a coarse-grained reactive model to investigate hyperbranched polyesterification of3,5-Dihydroxybenzoic acid (DHBA) quantitatively. The iterative Boltzmann inversionmethod is employed to obtain the coarse-grained nonbonded force fields between twomonomers and two polymers respectively. Further, the interaction potentials betweencoarse-grained monomers and hyperbranched polymers are calculated by applying thecombining rule. The reactivity parameters are optimized according to theexperimental data using the iterative dichotomy method. At the optimized reactivityparameters, the degrees of polymerization and branching predicted in molecularsimulation agree well with experiments. Furthermore, more information such as thepolydispersity index and intramolecular cyclization are achieved quantitatively.
     4. The self-assembly of ABC star terpolymer in dilute solution is studied byusing the external potential dynamics method. The volume fraction of each block andthe solvophobicity of two solvophobic blocks have significant influence on theinternal structure of micelles. Three novel structures are observed including laterallystructured vesicle with a core, spotted vesicle with a core and segmented cage-likemicelle. There are three steps in the evolution pathway of multi-compartment vesicles,which are nucleation, coalescence and growth.
引文
[1]Kim Y H, Hyperbranched polymers10years after. Journal of Polymer Science PartA: Polymer Chemistry,1998,36(11):1685-1698
    [2]Gao C, Yan D. Hyperbranched polymers: from synthesis to applications. Progressin Polymer Science,2004,29(3):183-275
    [3]Voit B, Hyperbranched polymers-All problems solved after15years of research?Journal of Polymer Science Part A: Polymer Chemistry,2005,43(13):2679-2699
    [4]Voit B I, Lederer A. Hyperbranched and Highly Branched PolymerArchitectures—Synthetic Strategies and Major Characterization Aspects. ChemicalReviews,2009,109(11):5924-5973
    [5]Flory P J. Molecular Size Distribution in Three Dimensional Polymers. VI.Branched Polymers Containing A-R-Bf-1Type Units. Journal of the AmericanChemical Society,1952,74(11):2718-2723
    [6]Kricheldorf H R, Zang Q Z, Schwarz G. New polymer syntheses:6. Linear andbranched poly(3-hydroxy-benzoates). Polymer,1982,23(12):1821-1829
    [7]Kim Y H, Webster O W. Water soluble hyperbranched polyphenylene:"aunimolecular micelle?". Journal of the American Chemical Society,1990,112(11):4592-4593
    [8]Fréchet J M J, Henmi M, Gitsov I, et al. Self-Condensing Vinyl Polymerization: AnApproach to Dendritic Materials. Science,1995,269(5227):1080-1083
    [9]Jikei M, Chon S H, Kakimoto M, et al. Synthesis of Hyperbranched AromaticPolyamide from Aromatic Diamines and Trimesic Acid. Macromolecules,1999,32(6):2061-2064
    [10]Percec V, Chu P, Kawasumi M. Toward "Willowlike" Thermotropic Dendrimers.Macromolecules,1994,27(16):4441-4453
    [11]Gooden J K, Gross M L, Mueller A, et al. Cyclization in Hyperbranched PolymerSyntheses: Characterization by MALDI-TOF Mass Spectrometry. Journal of theAmerican Chemical Society,1998,120(39):10180-10186
    [12]Kricheldorf H R, Vakhtangishvili L, Schwarz G, et al. Cyclic HyperbranchedPoly(ether ketone)s Derived from3,5-Bis(4-fluorobenzoyl)phenol. Macromolecules,2003,36(15):5551-5558
    [13]Cameron C, Fawcett A H, Hetherington C R, et al. Step growth of an AB2monomer, with cycle formation. The Journal of Chemical Physics,1998,108(19):8235
    [14]Du ek K, Somvarsky J, Smrckova M, et al. Role of cyclization in thedegree-of-polymerization distribution of hyperbranched polymers Modelling andexperiments. Polymer Bulletin,1999,42(4):489-496
    [15]He X, Tang J. Kinetics of self-condensing vinyl hyperbranched polymerization inthree-dimensional space. Journal of Polymer Science Part A: Polymer Chemistry,2008,46(13):4486-4494
    [16]Wang L, He X. Investigation of ABn(n=2,4) type hyperbranched polymerizationwith cyclization and steric factors: Influences of monomer concentration, reactivity,and substitution effect. Journal of Polymer Science Part A: Polymer Chemistry,2009,47(2):523-533
    [17]Radke W, Litvinenko G, Muller A H E. Effect of Core-Forming Molecules onMolecular Weight Distribution and Degree of Branching in the Synthesis ofHyperbranched Polymers. Macromolecules,1998,31(2):239-248
    [18]Hanselmann R, Holter D, Frey H. Hyperbranched Polymers Prepared via theCore-Dilution/Slow Addition Technique: Computer Simulation of Molecular WeightDistribution and Degree of Branching. Macromolecules,1998,31(12):3790-3801
    [19]Bharathi P, Moore J S. Controlled Synthesis of Hyperbranched Polymers by SlowMonomer Addition to a Core. Macromolecules,2000,33(9):3212-3218
    [20]M ck A, Burgath A, Hanselmann R, et al. Synthesis of Hyperbranched AromaticHomo-and Copolyesters via the Slow Monomer Addition Method. Macromolecules,2001,34(22):7692-7698
    [21]H lter D, Frey H. Degree of branching in hyperbranched polymers.2.Enhancement of the DB: Scope and limitations. Acta Polymerica,1997,48(8):298-309
    [22]Müller A H E, Yan D, Wulkow M. Molecular Parameters of HyperbranchedPolymers Made by Self-Condensing Vinyl Polymerization.1. Molecular WeightDistribution. Macromolecules,1997,30(23):7015-7023
    [23]Schmaljohann D, Barratt J G, Komber H, et al. Kinetics of NonidealHyperbranched Polymerizations.1. Numeric Modeling of the Structural Units and theDiads. Macromolecules,2000,33(17):6284-6294
    [24]Galina H, Lechowicz J B, Walczak M. Kinetic Modeling of HyperbranchedPolymerization Involving an AB2Monomer Reacting with Substitution Effect.Macromolecules,2002,35(8):3253-3260
    [25]Zhou Z, Yan D. Distribution function of hyperbranched polymers formed by AB2type polycondensation with substitution effect. Polymer,2006,47(4):1473-1479
    [26]Zimm B H, Stockmayer W H. The Dimensions of Chain Molecules ContainingBranches and Rings. The Journal of Chemical Physics,1949,17(12):1301-1314
    [27]de Gennes P G, Hervet H. Statistics of starburst polymers. Journal de PhysiqueLetters,1983,44(9):351-360
    [28]Lescanec R L, Muthukumar M. Configurational characteristics and scalingbehavior of starburst molecules: a computational study. Macromolecules,1990,23(8):2280-2288
    [29]Alexandrowicz Z. Kinetics of Formation and Mean Shape of Branched Polymers.Physical Review Letters,1985,54(13):1420-1423
    [30]Ba X, Wang H, Zhao M, et al. Conversion Dependence of the z-Average MeanSquare Radii of Gyration for Hyperbranched Polymers with Excluded Volume Effect.Macromolecules,2002,35(10):4193-4197
    [31]Zhou Z, Yu M, Yan D, et al. Mean-Square Radius of Gyration and Degree ofBranching of Highly Branched Copolymers Resulting from the Copolymerization ofAB2With AB Monomers. Macromolecular Theory and Simulations,2004,13(8):724-730
    [32]Konkolewicz D, Gilbert R G, Gray-Weale A. Randomly Hyperbranched Polymers.Physical Review Letters,2007,98(23):238301
    [33]Richards E L, Buzza D M A, Davies G R. Monte Carlo Simulation of RandomBranching in Hyperbranched Polymers. Macromolecules,2007,40(6):2210-2218
    [34]Antonietti M, Heinz S, Schmidt M, et al. Determination of the MicelleArchitecture of Polystyrene/Poly(4-vinylpyridine) Block Copolymers in DiluteSolution. Macromolecules,1994,27(12):3276-3281
    [35]Won Y Y, Davis H T, Bates F S. Giant Wormlike Rubber Micelles. Science,1999,283(5404):960-963
    [36]Yu K, Eisenberg A. Multiple Morphologies in Aqueous Solutions of Aggregatesof Polystyrene-block-poly(ethylene oxide) Diblock Copolymers. Macromolecules,1996,29(19):6359-6361
    [37]Zhang L, Eisenberg A. Multiple Morphologies and Characteristics of “Crew-Cut”Micelle-like Aggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers inAqueous Solutions. Journal of the American Chemical Society,1996,118(13):3168-3181
    [38]Yu K, Eisenberg A. Bilayer Morphologies of Self-Assembled Crew-CutAggregates of Amphiphilic PS-b-PEO Diblock Copolymers in Solution.Macromolecules,1998,31(11):3509-3518
    [39]Zhang L, Eisenberg A. Thermodynamic vs Kinetic Aspects in the Formation andMorphological Transitions of Crew-Cut Aggregates Produced by Self-Assembly ofPolystyrene-b-poly(acrylic acid) Block Copolymers in Dilute Solution.Macromolecules,1999,32(7):2239-2249
    [40]Shen H, Eisenberg A. Control of Architecture in Block-Copolymer Vesicles.Angewandte Chemie International Edition,2000,39(18):3310-3312
    [41]Jain S, Bates F S. On the Origins of Morphological Complexity in BlockCopolymer Surfactants. Science,2003,300(5618):460-464
    [42]Laschewsky A. Polymerized micelles with compartments. Current Opinion inColloid&Interface Science,2003,8(3):274-281
    [43]Gohy J F, Willet N, Varshney S, et al. Core–Shell–Corona Micelles with aResponsive Shell. Angewandte Chemie International Edition,2001,40(17):3214-3216
    [44]Kubowicz S, Baussard J F, Lutz J F, et al. Multicompartment Micelles Formed bySelf-Assembly of Linear ABC Triblock Copolymers in Aqueous Medium.Angewandte Chemie International Edition,2005,44(33):5262-5265
    [45]Li Z, Kesselman E, Talmon Y, et al. Multicompartment Micelles from ABCMiktoarm Stars in Water. Science,2004,306(5693):98-101
    [46]Li Z, Hillmyer M A, Lodge T P. Morphologies of Multicompartment MicellesFormed by ABC Miktoarm Star Terpolymers. Langmuir,2006,22(22):9409-9417
    [47]Li Z, Hillmyer M A, Lodge T P. Laterally Nanostructured Vesicles, PolygonalBilayer Sheets, and Segmented Wormlike Micelles. Nano Letters,2006,6(6):1245-1249
    [48]Li Z, Hillmyer M A, Lodge T P. Control of Structure in MulticompartmentMicelles by Blending μ-ABC Star Terpolymers with AB Diblock Copolymers.Macromolecules,2006,39(2):765-771
    [49]Frenkel D, Smit B. Understanding molecular simulation: from algorithms toapplications. California: Academic Press,2002.23~90
    [50]Wall F T, Hiller L A, Wheeler D J. Statistical Computation of Mean Dimensionsof Macromolecules. I. The Journal of Chemical Physics,1954,22(6):1036-1041
    [51]Wall F T, Hiller J L A, Atchison W F. Statistical Computation of MeanDimensions of Macromolecules. II. The Journal of Chemical Physics,1955,23(5):913-921
    [52]Wall F T, Hiller J L A, Atchison W F. Statistical Computation of MeanDimensions of Macromolecules. III. The Journal of Chemical Physics,1955,23(12):2314-2321
    [53]Wall F T, Hiller J L A, Atchison W F. Statistical Computation of MeanDimensions of Polymer Molecules. IV. The Journal of Chemical Physics,1957,26(6):1742-1749
    [54]Gillespie D T. A general method for numerically simulating the stochastic timeevolution of coupled chemical reactions. Journal of Computational Physics,1976,22(4):403-434
    [55]Gillespie D T. Exact stochastic simulation of coupled chemical reactions. TheJournal of Physical Chemistry,1977,81(25):2340-2361
    [56]Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equation of StateCalculations by Fast Computing Machines. The Journal of Chemical Physics,1953,21(6):1087-1092
    [57]Tsch p W, Kremer K, Batoulis J, et al. Simulation of polymer melts. I.Coarse-graining procedure for polycarbonates. Acta Polymerica,1998,49(2-3):61-74
    [58]Abrams C F, Kremer K. Combined Coarse-Grained and Atomistic Simulation ofLiquid Bisphenol A Polycarbonate: Liquid Packing and Intramolecular Structure.Macromolecules,2003,36(1):260-267
    [59]Reith D, M Pütz, Müller-Plathe F. Deriving effective mesoscale potentials fromatomistic simulations. Journal of Computational Chemistry,2003,24(13):1624-1636
    [60]Qian H J, Carbone P, Chen X, et al. Temperature-Transferable Coarse-GrainedPotentials for Ethylbenzene, Polystyrene, and Their Mixtures. Macromolecules,2008,41(24):9919-9929
    [61]Marrink S J, de Vries A H, Mark A E. Coarse Grained Model for SemiquantitativeLipid Simulations. The Journal of Physical Chemistry B,2004,108(2):750-760
    [62]Marrink S J, Risselada H J, Yefimov S, et al. The MARTINI Force Field: CoarseGrained Model for Biomolecular Simulations. The Journal of Physical Chemistry B,2007,111(27):7812-7824
    [63]Izvekov S, Voth G A. Multiscale coarse graining of liquid-state systems. TheJournal of Chemical Physics,2005,123(13):134105-13
    [64]Izvekov S, Voth G A. A Multiscale Coarse-Graining Method for BiomolecularSystems. The Journal of Physical Chemistry B,2005,109(7):2469-2473
    [65]Edwards S F. The statistical mechanics of polymers with excluded volume.Proceedings of the Physical Society,1965,85(4):613-624
    [66]Helfand E. Theory of inhomogeneous polymers: Fundamentals of the Gaussianrandom-walk model. The Journal of Chemical Physics,1975,62(3):999-1005
    [67]Noolandi J, Hong K M. Theory of block copolymer micelles in solution.Macromolecules,1983,16(9):1443-1448
    [68]Maurits N M, Fraaije J G E M. Mesoscopic dynamics of copolymer melts: Fromdensity dynamics to external potential dynamics using nonlocal kinetic coupling. TheJournal of Chemical Physics,1997,107(15):5879-5889
    [69]He X, Schmid F. Dynamics of Spontaneous Vesicle Formation in Dilute Solutionsof Amphiphilic Diblock Copolymers. Macromolecules,2006,39(7):2654-2662
    [70]He X. Schmid F. Spontaneous Formation of Complex Micelles from aHomogeneous Solution. Physical Review Letters,2008,100(13):137802
    [71]Matsen M W, Schick M. Stable and unstable phases of a diblock copolymer melt.Physical Review Letters,1994,72(16):2660-2663
    [72]Drolet F, Fredrickson G H. Combinatorial Screening of Complex BlockCopolymer Assembly with Self-Consistent Field Theory. Physical Review Letters,1999,83(21):4317-4320
    [73]Tzeremes G, Rasmussen K, Lookman T, et al. Efficient computation of thestructural phase behavior of block copolymers. Physical Review E,2002,65(4):041806
    [74]Turner S R, Voit B I, Mourey T H. All-aromatic hyperbranched polyesters withphenol and acetate end groups: synthesis and characterization. Macromolecules,1993,26(17):4617-4623
    [75]Morgenroth F, Müllen K. Dendritic and hyperbranched polyphenylenes via asimple Diels-Alder route. Tetrahedron,1997,53(45):15349-15366
    [76]Stumpe K, Komber H, Voit B I. Novel Branched Polyphenylenes based on A2/B3and AB2/AB Monomers via Diels-Alder Cycloaddition. Macromolecular Chemistryand Physics,2006,207(20):1825-1833
    [77]Schmaljohann D., Komber H, Barratt J G, et al. Kinetics of NonidealHyperbranched Polymerizations.2. Kinetic Analysis of the Polycondensation of3,5-Bis(trimethylsiloxy)benzoyl chloride Using NMR Spectroscopy. Macromolecules,2003,36(1):97-108
    [78]Yan D, Zhou Z. Molecular Weight Distribution of Hyperbranched PolymersGenerated from Polycondensation of AB2Type Monomers in the Presence ofMultifunctional Core Moieties. Macromolecules,1999,32(3):819-824
    [79]He X, Liang H, Pan C. Monte Carlo Simulation of HyperbranchedCopolymerizations in the Presence of a Multifunctional Initiator. MacromolecularTheory and Simulations,2001,10(3):196-203
    [80]Cheng K C, Wang L Y. Kinetic Model of Hyperbranched Polymers Formed inCopolymerization of AB2Monomers and Multifunctional Core Molecules withVarious Reactivities. Macromolecules,2002,35(14):5657-5664
    [81]He X, Liang H, Pan C. Self-condensing vinyl polymerization in the presence ofmultifunctional initiator with unequal rate constants: Monte Carlo simulation.Polymer,2003,44(21):6697-6706
    [82]Miller T M, Neenan T X, Kwock E W, et al. Dendritic analogs of engineeringplastics: A general one-step synthesis of dendritic polyaryl ethers. Journal of theAmerican Chemical Society,1993,115(1):356-357
    [83]Xue Z, Finke A D, Moore J S. Synthesis of Hyperbranched Poly(m-phenylene)svia Suzuki Polycondensation of a Branched AB2Monomer. Macromolecules,2010,43(22):9277-9282
    [84]James Feast W, Keeney A J, Kenwright A M, et al. Synthesis, structure andcyclics content of hyperbranched polyesters. Chemical Communications,1997,(18):1749-1750
    [85]Zhou Z, Yan D. A General Model for the Kinetics of Self-Condensing VinylPolymerization. Macromolecules,2008,41(12):4429-4434
    [86]Cheng K C, Su Y Y, Chuang T H, et al. Kinetic Model of HyperbranchedPolymers Formed by Self-Condensing Vinyl or Self-Condensing Ring-OpeningPolymerization of AB Monomers Activated by Stimuli with Different Reactivities.Macromolecules,2010,43(21):8965-8970
    [87]Lee Y U, Jang S S, Jo W H. Off-lattice Monte Carlo simulation of hyperbranchedpolymers,1Polycondensation of AB2type monomers. Macromolecular Theory andSimulations,2000,9(4):188-195
    [88]Matyjaszewski K, Gaynor S G, Kulfan A, et al. Preparation of HyperbranchedPolyacrylates by Atom Transfer Radical Polymerization.1. Acrylic AB*Monomers in“Living” Radical Polymerizations. Macromolecules,1997,30(17):5192-5194
    [89]Behera G C, Ramakrishnan S. Controlled Variation of Spacer Segment inHyperbranched Polymers: From Densely Branched to Lightly Branched Systems.Macromolecules,2004,37(26):9814-9820
    [90]Simon P F W, Müller A H E. Kinetic Investigation of Self-Condensing GroupTransfer Polymerization. Macromolecules,2004,37(20):7548-7558
    [91]Komber H, Georgi U, Voit B.1H and13C NMR Spectra of Highly BranchedPoly(4-chloromethylstyrene). Signal Assignment, Structure Characterization, and aSCVP Kinetics Study. Macromolecules,2009,42(21):8307-8315
    [92]Miura T, Kishi R, Mikami M, et al. Effect of rigidity on the crystallizationprocesses of short polymer melts. Physical Review E,2001,63(6):061807
    [93]Winter D, Eisenbach C D. Synthesis and characterization of novel aryl-ethynylenepolymers of tuned rigidity/flexibility. Journal of Polymer Science Part A: PolymerChemistry,2004,42(8):1919-1933
    [94]Bulacu M, van der Giessen E. Effect of bending and torsion rigidity onself-diffusion in polymer melts: A molecular-dynamics study. The Journal ofChemical Physics,2005,123(11):114901-13
    [95]Franc G, Kakkar A K. Diels–Alder “Click” Chemistry in Designing DendriticMacromolecules. Chemistry–A European Journal,2009,15(23):5630-5639
    [96]Sanyal A. Diels–Alder Cycloaddition-Cycloreversion: A Powerful Combo inMaterials Design. Macromolecular Chemistry and Physics,2010,211(13):1417-1425
    [97]Flory P J. Principles of Polymer Chemistry. New York: Cornell University Press,1953.87~91
    [98]Odian G. Principles of Polymerization. New York: Wiley,2004.65~69
    [99]Deutsch H P, Dickman R. Equation of state for athermal lattice chains in a3dfluctuating bond model. The Journal of Chemical Physics,1990,93(12):8983-8990
    [100]Hawker C J, Lee R, Frechet J M J. One-step synthesis of hyperbrancheddendritic polyesters. Journal of the American Chemical Society,1991,113(12):4583-4588
    [101]Gaynor S G, Edelman S, Matyjaszewski K. Synthesis of Branched andHyperbranched Polystyrenes. Macromolecules,1996,29(3):1079-1081
    [102]Parker D, Feast W J. Synthesis, Structure, and Properties of HyperbranchedPolyesters Based on Dimethyl5-(2-Hydroxyethoxy)isophthalate. Macromolecules,2001,34(7):2048-2059
    [103]Cheng K C, Chuang T H, Chang J S, et al. Effect of Feed Rate on Structure ofHyperbranched Polymers Formed by Self-Condensing Vinyl Polymerization inSemibatch Reactor. Macromolecules,2005,38(20):8252-8257
    [104]Zhou Z, Jia Z, Yan D. Effect of slow monomer addition on molecular parametersof hyperbranched polymers synthesized in the presence of multifunctional coremolecules. SCIENCE CHINA Chemistry,2010,53(4):891-897
    [105]Witten T A, Sander L M. Diffusion-Limited Aggregation, a Kinetic CriticalPhenomenon. Physical Review Letters,1981,47(19):1400-1403
    [106]Matsushita M, Sano M, Hayakawa Y, et al. Fractal Structures of Zinc MetalLeaves Grown by Electrodeposition. Physical Review Letters,1984,53(3):286-289
    [107]Sander L M. Fractal growth processes. Nature,1986,322(6082):789-793
    [108]Biswas R, Han Y, Karra P, et al. Diffusion-Limited Agglomeration and DefectGeneration during Chemical Mechanical Planarization. Journal of TheElectrochemical Society,2008,155(8): D534-D537
    [109]Singer H M, Singer I. Bilgram J H. Experimental Observation and ComputerSimulations of3D Triplet Structures in Diffusion Limited Growth of Xenon Crystals.Physical Review Letters,2009,103(1):015501
    [110]Kockar H, Bayirli M, Alper M. A new example of the diffusion-limitedaggregation: Ni-Cu film patterns. Applied Surface Science,2010.256(9):2995-2999
    [111]Zhdanov V P, Kasemo B. Diffusion-limited kinetics of adsorption ofbiomolecules on supported nanoparticles. Colloids and Surfaces B: Biointerfaces,2010,76(1):28-31
    [112]Meakin P. Formation of Fractal Clusters and Networks by IrreversibleDiffusion-Limited Aggregation. Physical Review Letters,1983,51(13):1119-1122
    [113]Jullien R, Kolb M. Hierarchical model for chemically limited cluster-clusteraggregation. Journal of Physics A: Mathematical and General,1984,17(12):L639-L643
    [114]Kolb M. Reversible diffusion-limited cluster aggregation. Journal of Physics A:Mathematical and General,1986,19(5): L263-L268
    [115]Meakin P, Chen Z Y, Evesque P. Aggregation of anisotropic particles. TheJournal of Chemical Physics,1987,87(1):630-635
    [116]Seager C R, Mason T G. Slippery diffusion-limited aggregation. PhysicalReview E,2007,75(1):011406
    [117]Gould H, Family F, Stanley H E. Kinetics of Formation of Randomly BranchedAggregates: A Renormalization-Group Approach. Physical Review Letters,1983,50(9):686
    [118]Meakin P. Diffusion-controlled cluster formation in2--6-dimensional space.Physical Review A,1983,27(3):1495-1507
    [119]Muthukumar M. Mean-Field Theory for Diffusion-Limited Cluster Formation.Physical Review Letters,1983.50(11):839-842
    [120]Witten T A, Sander L M. Diffusion-limited aggregation. Physical Review B,1983,27(9):5686-5697
    [121]Hentschel H G E. Fractal Dimension of Generalized Diffusion-LimitedAggregates. Physical Review Letters,1984,52(3):212-215
    [122]Rothenbuhler J R, Huang J R, DiDonna B A, et al. Mesoscale structure ofdiffusion-limited aggregates of colloidal rods and disks. Soft Matter,2009,5(19):3639-3645
    [123]Konkolewicz D, Thorn-Seshold O, Gray-Weale A. Models for randomlyhyperbranched polymers: Theory and simulation. The Journal of Chemical Physics,2008,129(5):054901-13
    [124]Rubinstein M, and Colby P H. Polymer Physics. New York: Oxford UniversityPress,2003.60~62
    [125]Grosberg A Y, Khokhlov A R. Statistical Physics of Macromolecules. New York:AIP Press,1994.236~244
    [126]Burchard W, Schmidt M. Stockmayer W H. Information on Polydispersity andBranching from Combined Quasi-Elastic and Intergrated Scattering. Macromolecules,1980,13(5):1265-1272
    [127]Glatter O, Kratky O. Small Angle X-ray Scattering. London: Academic Press.1982.3~13
    [128]Sch rtl W. Light Scattering from Polymer Solutions and NanoparticleDispersions. Berlin: Springer2007.1~16
    [129]Burchard W. Particle Scattering Factors of Some Branched Polymers.Macromolecules,1977,10(5):919-927
    [130]Giupponi G, Buzza D M A. A Monte Carlo Simulation Scheme for NonidealDendrimers Satisfying Detailed Balance. Macromolecules,2002,35(26):9799-9812
    [131]Burchard W. Angular Dependence of Scattered Light from HyperbranchedStructures in a Good Solvent. A Fractal Approach. Macromolecules,2004,37(10):3841-3849
    [132]de Gennes P G. Scaling Concepts in Polymer Physics. New York: CornellUniversity Press,1979.54~96
    [133]Gotze I O, Likos C N. Conformations of Flexible Dendrimers: A SimulationStudy. Macromolecules,2003,36(21):8189-8197
    [134]Oh C, Sorensen C M. Structure factor of diffusion-limited aggregation clusters:Local structure and non-self-similarity. Physical Review E,1998,57(1):784-790
    [135]Burchard W. Solution Properties of Branched Macromolecules BranchedPolymers. Advances in Polymer Science,1999,143:113-194
    [136]K os J S, Sommer J U. Simulations of Terminally Charged Dendrimers withFlexible Spacer Chains and Explicit Counterions. Macromolecules,2010,43(9):4418-4427
    [137]Maiti P K, Li Y, Cagin T, et al. Structure of polyamidoamide dendrimers up tolimiting generations: A mesoscale description. The Journal of Chemical Physics,2009,130(14):144902-10
    [138]Reisch A, Komber H, Voit B. Kinetic Analysis of Two Hyperbranched A2+B3Polycondensation Reactions by NMR Spectroscopy. Macromolecules,2007,40(19):6846-6858
    [139]Farah K, Müller-Plathe F, B hm M C. Classical Reactive Molecular DynamicsImplementations: State of the Art. A European Journal of Chemical Physics andPhysical Chemistry,2012,13(5):1127-1151
    [140]Gao J. An efficient method of generating dense polymer model melts bycomputer simulation. The Journal of Chemical Physics,1995,102(2):1074-1077
    [141]Akkermans R L C, Toxvaerd S, Briels W J. Molecular dynamics of polymergrowth. The Journal of Chemical Physics,1998,109(7):2929-2940
    [142]Stevens M J. Manipulating Connectivity to Control Fracture in NetworkPolymer Adhesives. Macromolecules,2001,34(5):1411-1415
    [143]Tsige M, Stevens M J. Effect of Cross-Linker Functionality on the Adhesion ofHighly Cross-Linked Polymer Networks: A Molecular Dynamics Study of Epoxies.Macromolecules,2004,37(2):630-637
    [144]Liu H, Qian H J, Zhao Y, et al. Dissipative particle dynamics simulation study onthe binary mixture phase separation coupled with polymerization. The Journal ofChemical Physics,2007,127(14):144903-8
    [145]Perez M, Lame O, Leonforte F, et al. Polymer chain generation forcoarse-grained models using radical-like polymerization. The Journal of ChemicalPhysics,2008,128(23):234904-11
    [146]Liu H, Li M, Lu Z Y, et al. Influence of Surface-Initiated Polymerization Rateand Initiator Density on the Properties of Polymer Brushes. Macromolecules,2009,42(7):2863-2872
    [147]Nyden M R, Noid D W. Molecular dynamics of initial events in the thermaldegradation of polymers. The Journal of Physical Chemistry,1991,95(2):940-945
    [148]Nyden M R, Forney G P, Brown J E. Molecular modeling of polymerflammability: application to the design of flame-resistant polyethylene.Macromolecules,1992,25(6):1658-1666
    [149]Stoliarov S I, Westmoreland P R, Nyden M R, et al. A reactive moleculardynamics model of thermal decomposition in polymers: I. Poly(methyl methacrylate).Polymer,2003,44(3):883-894
    [150]Stoliarov S I, Lyon R E, Nyden M R. A reactive molecular dynamics model ofthermal decomposition in polymers. II. Polyisobutylene. Polymer,2004,45(25):8613-8621
    [151]Smith K D, Stoliarov S I, Nyden M R, et al. RMDff: A smoothly transitioning,forcefield-based representation of kinetics for reactive molecular dynamicssimulations. Molecular Simulation,2007,33(4-5):361-368
    [152]Smith K D, Bruns M, Stoliarov S I, et al. Assessing the effect of molecularweight on the kinetics of backbone scission reactions in polyethylene using ReactiveMolecular Dynamics. Polymer,2011,52(14):3104-3111
    [153]Brenner D W. Empirical potential for hydrocarbons for use in simulating thechemical vapor deposition of diamond films. Physical Review B,1990,42(15):9458-9471
    [154]Harrison J A, White C T, Colton R J, et al. Molecular-dynamics simulations ofatomic-scale friction of diamond surfaces. Physical Review B,1992,46(15):9700-9708
    [155]Robertson D H, Brenner D W, Mintmire J W. Energetics of nanoscale graphitictubules. Physical Review B,1992,45(21):12592-12595
    [156]Robertson D H, Brenner D W, White C T. On the way to fullerenes: moleculardynamics study of the curling and closure of graphitic ribbons. The Journal ofPhysical Chemistry,1992,96(15):6133-6135
    [157]Harrison J A, White C T, Colton R J, et al. Effects of chemically bound, flexiblehydrocarbon species on the frictional properties of diamond surfaces. The Journal ofPhysical Chemistry,1993,97(25):6573-6576
    [158]Robertson D H, Brenner D W, White C T. Temperature-Dependent Fusion ofColliding C60Fullerenes from Molecular Dynamics Simulations. The Journal ofPhysical Chemistry,1995,99(43):15721-15724
    [159]Glosli J N, Ree F H. Liquid-Liquid Phase Transformation in Carbon. PhysicalReview Letters,1999,82(23):4659-4662
    [160]Stuart S J, Tutein A B, Harrison J A. A reactive potential for hydrocarbons withintermolecular interactions. The Journal of Chemical Physics,2000,112(14):6472-6486
    [161]van Duin, A C T, Dasgupta S, Lorant F, et al. ReaxFF: A Reactive Force Fieldfor Hydrocarbons. The Journal of Physical Chemistry A,2001,105(41):9396-9409
    [162]van Duin A C T, Strachan A, Stewman S, et al. ReaxFFSiO Reactive Force Fieldfor Silicon and Silicon Oxide Systems. The Journal of Physical Chemistry A,2003,107(19):3803-3811
    [163]Nielson K D, van Duin A C T, Oxgaard J, et al. Development of the ReaxFFReactive Force Field for Describing Transition Metal Catalyzed Reactions, withApplication to the Initial Stages of the Catalytic Formation of Carbon Nanotubes. TheJournal of Physical Chemistry A,2005,109(3):493-499
    [164]Mueller J E, van Duin A C T, Goddard W A. Development and Validation ofReaxFF Reactive Force Field for Hydrocarbon Chemistry Catalyzed by Nickel. TheJournal of Physical Chemistry C,2010,114(11):4939-4949
    [165]Chenoweth K, Cheung S, van Duin A C T, et al. Simulations on the ThermalDecomposition of a Poly(dimethylsiloxane) Polymer Using the ReaxFF ReactiveForce Field. Journal of the American Chemical Society,2005,127(19):7192-7202
    [166]Mueller J E, van Duin A C T, Goddard W A. Application of the ReaxFF ReactiveForce Field to Reactive Dynamics of Hydrocarbon Chemisorption and Decomposition.The Journal of Physical Chemistry C,2010,114(12):5675-5685
    [167]Han S, van Duin A C T, Goddard W A, et al. Thermal Decomposition ofCondensed-Phase Nitromethane from Molecular Dynamics from ReaxFF ReactiveDynamics. The Journal of Physical Chemistry B,2011,115(20):6534-6540
    [168]Müller-Plathe F. Coarse-Graining in Polymer Simulation: From the Atomistic tothe Mesoscopic Scale and Back. A European Journal of Chemical Physics andPhysical Chemistry,2002,3(9):754-769
    [169]Peter C, Kremer K. Multiscale simulation of soft matter systems-from theatomistic to the coarse-grained level and back. Soft Matter,2009,5(22):4357-4366
    [170]Farah K, Karimi-Varzaneh H A, Müller-Plathe F, et al. Reactive MolecularDynamics with Material-Specific Coarse-Grained Potentials: Growth of PolystyreneChains from Styrene Monomers. The Journal of Physical Chemistry B,2010,114(43):13656-13666
    [171]Farah K, Leroy F, Müller-Plathe F, et al. Interphase Formation during Curing:Reactive Coarse Grained Molecular Dynamics Simulations. The Journal of PhysicalChemistry C,2011,115(33):16451-16460
    [172]Liu H, Li M, Lu Z Y, et al. Multiscale Simulation Study on the Curing Reactionand the Network Structure in a Typical Epoxy System. Macromolecules,2011,44(21):8650-8660
    [173]Van Der Spoel D, Lindahl E, Hess B, et al. GROMACS: Fast, flexible, and free.Journal of Computational Chemistry,2005,26(16):1701-1718
    [174]Schüttelkopf, A W, Van Aalten D M F. PRODRG: a tool for high-throughputcrystallography of protein–ligand complexes. Acta Crystallographica Section D,2004,60(8):1355-1363
    [175]Oostenbrink C, Villa A, Mark A E, et al. A biomolecular force field based on thefree enthalpy of hydration and solvation: The GROMOS force-field parameter sets53A5and53A6. Journal of Computational Chemistry,2004,25(13):1656-1676
    [176]Tsch p W, Kremer K, Hahn O, et al. Simulation of polymer melts. II. Fromcoarse-grained models back to atomistic description. Acta Polymerica,1998,49(2-3):75-79
    [177]Hess B, León S, van der Vegt N, et al. Long time atomistic polymer trajectoriesfrom coarse grained simulations: bisphenol-A polycarbonate. Soft Matter,2006,2(5):409-414
    [178]Santangelo G, Matteo A D, Müller-Plathe F, et al. From Mesoscale Back toAtomistic Models: A Fast Reverse-Mapping Procedure for Vinyl Polymer Chains.The Journal of Physical Chemistry B,2007,111(11):2765-2773
    [179]Rzepiela A J, Sch fer L V, Goga N, et al. Reconstruction of atomistic detailsfrom coarse-grained structures. Journal of Computational Chemistry,2010,31(6):1333-1343
    [180]Hamley I. Block Copolymers in Solution: Fundamentals and Applications.Hoboken, NJ: Wiley,2005.7~91
    [181]Discher D E, Eisenberg A. Polymer Vesicles. Science,2002,297(5583):967-973.
    [182]Pochan D J, Chen Z, Cui H, et al. Toroidal Triblock Copolymer Assemblies.Science,2004,306(5693):94-97
    [183]Jang J, Ha H. Fabrication of Hollow Polystyrene Nanospheres in MicroemulsionPolymerization Using Triblock Copolymers. Langmuir,2002,18(14):5613-5618
    [184]Savi R, Luo L, Eisenberg A, et al. Micellar Nanocontainers Distribute toDefined Cytoplasmic Organelles. Science,2003,300(5619):615-618
    [185]Huang H, Chung B, Jung J, et al. Toroidal Micelles of Uniform Size fromDiblock Copolymers. Angewandte Chemie International Edition,2009,48(25):4594-4597
    [186]Zhou Z, Li Z, Ren Y, et al. Micellar Shape Change and Internal SegregationInduced by Chemical Modification of a Tryptych Block Copolymer Surfactant.Journal of the American Chemical Society,2003,125(34):10182-10183
    [187]Kubowicz S, Thünemann A F, Weberskirch R, et al. Cylindrical Micelles ofα-Fluorocarbon-ω-hydrocarbon End-Capped Poly(N-acylethylene Imine)s. Langmuir,2005,21(16):7214-7219
    [188]Lodge T P, Rasdal A, Li Z, et al. Simultaneous, Segregated Storage of TwoAgents in a Multicompartment Micelle. Journal of the American Chemical Society,2005,127(50):17608-17609
    [189]Lutz J F, Laschewsky A. Multicompartment Micelles: Has the Long-StandingDream Become a Reality? Macromolecular Chemistry and Physics,2005,206(8):813-817
    [190]Thünemann A F, Kubowicz S, von Berlepsch H, et al. Two-CompartmentMicellar Assemblies Obtained via Aqueous Self-Organization of Synthetic PolymerBuilding Blocks. Langmuir,2006,22(6):2506-2510
    [191]Saito N, Liu C, Lodge T P, et al. Multicompartment Micelle MorphologyEvolution in Degradable Miktoarm Star Terpolymers. ACS Nano,2010,4(4):1907-1912
    [192]Xia J, Zhong C. Dissipative Particle Dynamics Study of the Formation ofMulticompartment Micelles from ABC Star Triblock Copolymers in Water.Macromolecular Rapid Communications,2006,27(14):1110-1114
    [193]Zhong C, Liu D. Understanding Multicompartment Micelles Using DissipativeParticle Dynamics Simulation. Macromolecular Theory and Simulations,2007,16(2):141-157
    [194]Chou S H, Tsao H K, Sheng Y J. Morphologies of multicompartment micellesformed by triblock copolymers. The Journal of Chemical Physics,2006,125(19):194903-6
    [195]Zhu Y, Yu Li R K, Jiang W. A Monte Carlo simulation for the micellization ofABC3-miktoarm star terpolymers in a selective solvent. Chemical Physics,2006,327(1):137-143
    [196]Ma J W, Li X, Tang P, et al. Self-Assembly of Amphiphilic ABC Star TriblockCopolymers and Their Blends with AB Diblock Copolymers in Solution:Self-Consistent Field Theory Simulations. The Journal of Physical Chemistry B,2007,111(7):1552-1558
    [197]Kong W, Li B, Jin Q, et al. Helical Vesicles, Segmented Semivesicles, andNoncircular Bilayer Sheets from Solution-State Self-Assembly of ABC Miktoarm StarTerpolymers. Journal of the American Chemical Society,2009,131(24):8503-8512
    [198]Zhulina E B, Borisov O V. Scaling Theory of3-Miktoarm ABC CopolymerMicelles in Selective Solvent. Macromolecules,2008,41(15):5934-5944
    [199]Reister E, Müller M, Binder K, et al. Spinodal decomposition in a binarypolymer mixture: Dynamic self-consistent-field theory and Monte Carlo simulations.Physical Review E,2001,64(4):041804
    [200]Reister E, Muller M. Formation of enrichment layers in thin polymer films: Theinfluence of single chain dynamics. The Journal of Chemical Physics,2003,118(18):8476-8488
    [201]Adams D J, Adams S, Atkins D, et al. Impact of mechanism of formation onencapsulation in block copolymer vesicles. Journal of Controlled Release,2008.128(2):165-170
    [202]Frigo M, Johnson S G. The Fast Fourier Transform in the West2.1.5. Cambridge:MA: MIT.2003(software package freely downloadable from http://www.fftw.org)
    [203]Helfand E, Tagami Y. Theory of the interface between immiscible polymers.Journal of Polymer Science Part B: Polymer Letters,1971,9(10):741-746
    [204]Munch M R, Gast A P. Block copolymers at interfaces.1. Micelle formation.Macromolecules,1988,21(5):1360-1366
    [205]Bhargava P, Zheng J X, Li P, et al., Self-Assembled Polystyrene-block-poly-(ethylene oxide) Micelle Morphologies in Solution. Macromolecules,2006,39(14):4880-4888
    [206]Yao J H, Elder K R, Guo H, et al. Theory and simulation of Ostwald ripening.Physical Review B,1993,47(21):14110-14125
    [207]Sagui C, Grant M. Theory of nucleation and growth during phase separation.Physical Review E,1999,59(4):4175-4187

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700