粒子凝聚模拟软件开发与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粒子凝聚是自然界常见现象,雪花的形成、晶体薄膜的生长、闪电的产生、土壤胶体凝聚等都是粒子凝聚过程。粒子凝聚是一个随机的非线性过程,在随机过程的背后往往存在自组织现象和自相似性。一些社会现象,如城市的增长等,也具有类似的特征。但是不同现象的粒子是如何凝聚的?不同条件下形成的凝聚体有什么样的特征?如何控制粒子凝聚?这些问题一直是科学家不断探索的问题,对这些问题的认识有助于了解这些自然和社会现象的形成和发展规律。由于实验方法研究粒子凝聚很难得到随机现象背后的规律性,因此利用计算机模拟粒子凝聚的结构和行为,正逐渐成为一种有力的研究手段。论文研究的目的是结合GIS中的一些方法,改进计算机粒子凝聚模拟算法和分析方法,开发一个粒子凝聚模拟软件,为粒子凝聚模拟应用提供技术平台。
     本研究的主要工作和成果有以下六个方面:
     1、粒子凝聚模型的算法研究与改进。论文研究了Eden模型、扩散限制凝聚模型(DLA)、反应限制凝聚模型(RLA)、电击穿模型(DBM)和团簇-团簇凝聚模型(CCA),包括扩散限制团簇凝聚模型(DLCA)、反应限制团簇凝聚模型(RLCA)等粒子凝聚模型的实现算法。针对已有算法存在的不足,提出了改进方法:1)已有的DLA算法在确认粒子周围是否被占据时,采用遍历查找的方法,速度较慢,本研究采用在已凝聚粒子上标记前后左右四个位置的占据情况,不再查找,加快了模拟速度。2)在DLCA算法中使用并查集方法对粒子进行查找和合并粘结处理,加快了DLCA模拟的速度。3)在DLCA模型中,目前的实现算法没有考虑粒子的同步运动,即在分析一个粒子移动时,假定其它粒子是静止的。本论文提出了粒子同步运动的连续碰撞检测DLCA算法,方法是先根据粒子运动方向和速度,估计粒子运动轨迹是否相交;如果在相同时间点有相交,则使用自适应技术检测粒子移动的步长;然后采用回退技术将检测出粒子在这种情况下的碰撞位置。使用这种连续检测粒子碰撞的方法,更符合粒子运动的实际情况。
     2、凝聚体的分形特征分析,包括不同模型凝聚体的分维值比较、分维值的随机性分析、凝聚过程中分维值的变化、粘结概率对分形的影响和不同分维值计算方法的结果比较等。分析结果表明:1)Eden凝聚体的分维值接近整数,表明分形特征不明显;DLCA和DLA凝聚体的分形特征明显,DLCA凝聚体分维值比DLA凝聚体分维值小;DBM凝聚体分维值与被击穿的概率指数m相关,随着m的增大,分维值变小。2)DLA凝聚过程和DLCA凝聚过程中分维值都是波动的,但波动的幅度都不大。3)粘结概率对分形模型有影响,粘结概率越小,形成的凝聚体越密实,分维值越大。4)对同个凝聚体,用不同的分维值计算方法(盒计数法、回转半径法、SandBox法和密度-密度相关函数法)得到的分维值是有差异的,盒计数法和密度-密度相关函数法计算的分维值比较相近,回转半径法计算出来的分维值偏小,SandBox法计算出来的分维值较大。
     3、凝聚体几何特征及与分形特征的关系研究。以往对凝聚体的特征研究主要以分形维数作为定量研究指标,而对其他的几何特征及其与分形维数的定量关系研究较少。论文针对目前孔隙度计算方法在计算各向异性凝聚体的孔隙度时存在的问题,提出利用外接凸多边形来代替原先的外接圆,并利用GIS中的凸包算法来获得外接凸多边形,计算出的孔隙度更符合实际情况。根据实际分析的需要,引入开放度和紧凑度的概念,并提出了计算方法。研究选取了不同模型凝聚体进行比较,分析结果表明:分维值大的凝聚体孔隙度和开放度小、紧凑度大,定量地反映了分维值与孔隙度、开放度、紧凑度的关系。
     4、粒子凝聚模拟及可视化软件开发。本研究利用GDI+技术和OpenGL技术,开发了粒子凝聚模拟软件,软件包括粒子凝聚(二维和三维)模拟、凝聚体分形分析、凝聚体几何特征分析等模块。为了能更好地分析具有地理空间特征的粒子凝聚,在软件中还扩展了GIS功能,包括GIS基本功能、模拟结果与背景地图的叠置、研究对象的分形计算等。
     5、粒子凝聚模拟及分形分析在土壤胶体凝聚的应用。本研究应用软件系统中的三维团簇凝聚模型模拟土壤胶体凝聚过程,显示随着粒子浓度或体积分数的增大,凝聚体分维值增大的规律;研究不同作用力下形成的凝聚体形态,这些作用力在形式上表现为粘结概率的影响,显示随着粘结概率由0.1变化到1时,凝聚体的分形维数值由2.48降低至1.87,即粘结概率越小,形成的凝聚体结构越致密;研究温度对凝聚的影响,显示温度对团聚体分形结构影响不大,只是影响凝聚的速度。
     6、上海市中心城区城市扩展模拟及分形分析。本研究应用改进的Eden模型来模拟城市扩展,方法是根据影响城市发展的因素,确定建成区凝聚体外围栅格转化为城市的概率,再根据转化概率随机选取外围栅格作为新的城市栅格,通过确定性与随机性相结合方法模拟城市扩展。利用改进的Eden模型模拟了1947—1964年、1964—1979年和1979—1993年的城市扩展,通过与实际的建成区范围进行比较,显示模拟结果能够反映城市发展趋势。研究上海市中心城区四个时期建成区形态的分维值,发现除了1947年外,不同时期的城市建成区形态都具有比较明显的分形特征,分维值基本一致(1.7左右)。研究还发现对分形特征明显的城市建成区凝聚体来说,分维值越大,紧凑度也越大。
Common nature phenomenon of the formation of snowflakes, crystal film growth, lightning and soil colloid aggregation are particle aggregation process which is a rando nonlinear one. There is phenomenon of self-organization and self-similarity behind the random process. But how do the particles unite? What are the characteristics of the aggregates formed under different conditions? How to control particle cohesion? The understanding of these problems, which scientists continue to explore, helps to understand these natural and social phenomena of the formation and evelopment of law. The experimental method simulating particle cohesion is difficult to get regularity behind random phenomena, thus the use of computer simulating the structure and behavior of particle cohesion is becoming a powerful tool. In this context, this paper attempts to study the theory, methods, and applications of particle cohesion problem through computer simulation.
     The main scientific findings of this research include:
     1) This research has achieved and improved algorithm of variety models of particle cohesion. The algorithms of model of Eden, Diffusion-limited aggregation (DLA), Reaction-limted aggredation (RLA), Dielectric Breakdown Model(DBM) and Cluster-cluster aggregation (CCA),including Diffusion-limited aggregation cluster (DLCA) and Reaction-limted aggregation cluster (RLCA) have been achieved and cohesion results of a variety of models and qualitative analysis have been given. There are three improved methods for shortcomings of the existing algorithms.1) In exisitng DLA algorithms, the traversal find was used and slower in particles around the occupied ones, can not meet the particles aggregation requirements.This study used the mark four locations around the aggregated particles, speeding up the simulation speed.2)The union-find sets have been used in DLCA algorithm for finding and merging particles and the other nodes in the culster are removed, retaining only the root node of the clusters after bonding of the culsters. So the run speed has been enhanced.3) The continuous collision detection, which has been presented in the DLCA algorithm, makes simulation more accord with Colloidal Brownian motion laws.
     2) The fractal characteristics of particle aggregation simulating by different aggregation model have been analyzed. The random statistical analyses on fractal dimension of aggregation have been studied for DLA and DLCA simulation. The study compared with different methods of fractal dimension calculation.1) The research results show that Eden aggregation have no distinct fractal structure because its fractal dimension is approximately2, that the fractal dimensions of DLCA aggregation are smaller than those of DLA. The fractal dimensions of DBM are associated with the breakdown probability index m, as m increases, the fractal dimensions are smaller.2) The dimensional values of the DLA and DLCA aggregation process are fluctuating and the magnitude of the fluctuations is not large, indicating that the particle aggregaiton process is random, but has incomplete self-similarity and scale invariance.3) The bond probability affect the fractal model, as the smaller of bond probability, the aggregates are more dense, the greater fractal dimension.4) The same aggregates with different fractal dimension calculation method including box counting method, radius of gyration method, SandBox and density-density corrlation function, the fractal value is different. The calculated value by box counting method is similar by using density-density correlation function one, and the calculated value of radius of gyration method is less and greater by SandBox.
     3) The quantitative relationship between geometric charcteristics and fractal dimension value of aggregates has been discussed. In the past research people made fractal dimension as quantitative indicator of research for aggregates characteristics, and other geometric features, such as porosity, openness and compactness, and their quantitative relationship with fractal dimension were less studied. The geometric characteristics of porosity, openness and compactness have been defined and the calculated methods have been brought forward. The different aggregations of various models have been studied and the results show that the greater the fractal value, the porosity and openness is the less and the compactness is the greater. These results have clarified the quantitative relationship between geometric charcteristics and fractal value.
     4) Based on the technology of GDI+and OpenGL in.Net IDE, the architecture of the2D and3D system of particle cohesion simulation and software prototype system have been prsented. The functions of various levels and their inner-relationship have been clarified. The architecture is further described in two aspects:Platform Function and Platform Interface. It provids holistic framework and top-level guidance for studying technologies and implementing platform. Under the guidance of the overall architecture, the algorithms of particles aggregation simulation, the analysis of fractal and geometric characteristics have been implemented using computer program and the software platform of particles aggregate simulation has been constructed. The system also extends GIS functions, including basic functions of GIS, the DLA aggregations loading on map and fractal calculations of urban elements.
     5) The conceptual framework and methods presented in this research have been successfully applied to soil colloid aggregation simulation. The process of soil colloidal aggregation has been simulated by the three-dimensional cluster aggrgation model in software systems. The fractal dimension values of aggregation under various concentrations, the morphology of the aggregates formed in the different biasing force have been studied and the influence on aggregates of temperature also has been discussed. Soil colloidal particle simulation of three-dimensional cluster aggregation is an application example of software platform of the particle cohesion simulation system. These specific application cases have been developed to further verify the feasibility and applicability of the proposed methods and system.The application demonstrate that the fractal method renders a powerful mean for correlative applied research.
     6) The urban expansion simulation and fractal analysis in this research have been successfully applied to Shanghai downtown urban, China. In this study, the improved Eden model is used to simulate urban expansion. Based on the factors influencing urban development, the probabilities of periphery grids of bulit-up areas translating to city are detemined. According to the probabilty the peripheral grids are randomly selected as a new city. The improved Eden model is used to simulate urban expansion of from1947to1964, from1964to1979and from1979to1993, and compared with the actual range of built-up areas, the simulation results can reflect developed trends of urban morphology. The value of fractal dimension of built-up area in downtown of Shanghai four times is calculated. In addition to1947, the urban built-up area forms at different times have obvious fractal characteristics consistent with the fractal dimension about1.7. The study also finds a significant fractal urban built-up area, the greater the fractal dimension, the greater compactness.
引文
Bail R.C.,Witten T.A. Causality bound on the density of aggregates[J]. Phys.Rev.A, 1984,29(5):2966-2967.
    Batty M.,Longley P. urban growth and form:scaling fractal geometry and diffusion limited aggregation[J]. Environment and Planning A,1989,21(3):1447-1472.
    Batty M. Generating urban forms from diffusive growth[J]. Environment and Planning A, 1991,23(1):511-544.
    Batty M, Longley P A. Fractal Cities:A Geometry of Form and Function. London:Academic Press, 1994.
    Batty M.,Yichun X. Self-organized criticality and urban development[J]. DiscreteDynamicsin NatureandSociety,1999,12(3):109-124.
    Becker V., Schlauch E.,Behr M.et al. Restructuring of colloidal aggregates in shear flows and limitations of the free-draining approximation[J]. J Colloid Interf Sci,2009,339(2):362-372.
    Benguigui L. When and where is a city fractal? Environment and Planning B,2000,27:507-519.
    Benguigui L,Czamanski D. Simulation analysis of the fractality of cities. Geographical Analysis, 2004,36(1):69-84.
    Caprile B., Levi A.C.,Ciggieri. Fractals in Physics.[M]. Amsterdam:Elsevier Science Publishers B.V.,1986.
    Chen Yangguang. Characterizing Growth and Form of Fractal Cities with Allometric Scaling Exponents[J]. Discrete Dyn Nat Soc,2010,1-22.
    Chen Yanguang. Fractal dimension evolution and spatial replacement dynamics of urban growth[J]. Chaos, Solitons & Fractals,2012,45(3):115-124.
    Coeurjolly D. Fast and accurate approximation of digital shape thickness distribution in arbitrary dimension[J]. Comput Vis Image Und,2012,116(12):1159-1167.
    Crawford J.W., Verrall S.,Young I.M. The origin and loss of fractal scaling in simulated soil aggregates[J]. European Journal of Soil Science,1997,48(3):643-650.
    Ehrl L S,M.L.M. Generation and Geometrical Analysis of Dense Clusters with Variable Fractal Dimension[J]. J Phys Chem B,2009,113(31):10587-10599.
    Gonzalez A.E., Francisco Mart'inez-Lo'pez, Francisco Mart'inez-Lo'pez,et al. Two-Dimensional Colloidal Aggregation:Concentration Effects[J]. J Colloid Interf Sci,2002,246(2):227-234.
    Gonzalez A.E., Marti-nez-Lopez F.,Moncho-Jorda A.et al. Concentration effects on two-and three-dimensional colloidal aggregation[J]. Physica A:Statistical Mechanics and its Applications,2002,314(1):235-245.
    Gonzalez A.E., Marti A.,Xet al. Simulations of colloidal aggregation with short- and medium-range interactions [J]. Physica A:Statistical Mechanics and its Applications, 2004,333(257-268.
    Gordesli F.P.,Abu-Lail N.I. Impact of ionic strength of growth on the physiochemical properties, structure, and adhesion of Listeria monocytogenes polyelectrolyte brushes to a silicon nitride surface in water[J]. J Colloid Interf Sci,2012,388(257-267.
    Haw M.D., Poon W.C.,Pusey P.N. Structure and arrangement of clusters in cluster aggregation. [J]. Phys. Rev. E.,1997,56(2):1918-1933.
    Homberg J.R. Measuring behaviour in rodents:Towards translational neuropsychiatric research[J]. Behav Brain Res,2013,236(295-306.
    Karden M., Parisi G.,Zhang Y.C. Dynamic Scaling of growing interfaces.[J]. Phys. Rev.Lett, 1986,56(3):889-892.
    Keersmaeeker M L D, Frankhauser P, Thomas L. Using fractal dimensions for characterizing intra-urban diversity:the example of Brussels. Geographical Analysis.2003.35(4):310-328.
    Kim S., Lee K.,Zachariah M.R.et al. Three-dimensional off-lattice Monte Carlo simulations on a direct relation between experimental process parameters and fractal dimension of colloidal aggregates[J]. J Colloid Interf Sci,2010,344(2):353-361.
    Mandelbrot B.B. The Fractal Geometry of Nature[M]:San Francisco:Freeman,1982.
    Marco L., Hua W.,Massimo M. A simple model for the structure of fractal aggregates[J]. Journal of Colloid and Interface Science,2003,268(2):106-120.
    Marco L., Hua W.,Massimo M. Radial density distribution of fractal clusters[J]. Chem Eng Sci, 2004,59(21):4401-4413.
    Meakin P. Formation of Fractal Clusters and Networks by Irreversible Diffusion-Limited Aggregation[J]. Phys Rev Lett,1983,51(13):1119-1122.
    Meakin P. Diffusion-controlled aggregation on two-dimensional square lattices:Results from a new clustec-cluster aggregation model[J]. Phys. Rev. B,1984,29(6):2642-2930.
    Meakin P. Diffusion-limited aggregation in three dimensions:Results from a new cluster-cluster aggregation model[J]. J. Colloid Interface Sci.,1984,102(2):491-504.
    Meakin P. Reaction-limited cluster-cluster aggregation in dimensionalities 2-10[J]. Phys. Rev,A, 1988,38(9):4799-4814.
    Meakin P. Simplified diffusion-limited aggregation models[J]. PhysicaA,1992,187(1):1-17.
    Meakin P. Progress in DLA research[J]. Physica D,1995,86(86):104-112.
    Meakin P. A Historical Introduction to Computer Models for Fractal Aggregates [J]. J Sol-Gel Sci Techn,1999,15(4):97-117.
    Meek M.,Craggs J.D. Electrical Breakdown of Gases[M]. New York:Wiley,1978.
    Menshutin A.Y., Lev N.S.,Valery M.V. Finite size effect of harmonic measure estimation in a DLA model variable size of probe particles[J]. Physica A,2008,387(6299-6309.
    Menshutin A.Y.,L. N.S. Morphological diagram of diffusion driven aggregate growth in plane competition of anisotropy and adhesion[J]. Comput Phys Commun,2011,182(1819-1823.
    Moncho-Jorda A., Marti-nez-Lopez F.,Hidalgo-Alvarez R. Simulations of aggregation in 2D. A study of kinetics, structure and topological properties[J], Physica A:Statistical Mechanics and its Applications,2000,282(1):50-64.
    Nasser E. Fundamentals of Gaseous Ionization and Plasma Electronics[M]. New York:Wiley, 1971.
    Niemerer L., Pietronero L.,Wiesmann H.J. Fractal dimension of electric breakdown [J]. Physical Revew Letters,1984,52(3):1033-1036.
    Park S., Seo S.,Kang J.et al. Preparation of photocured azidophenyl-fish gelatin and its capturing of human epidermal growth factor on titanium plate[J]. J Appl Polym Sci, 2013,127(1):154-160.
    Perfect E.M.,Grove J.H. A prefractal model for predicting soil fragment mass—size distribution[J]. Soil Til. Res.,2002,64):90-91.
    Redon S., Kheddar A.,Coquillart S. Fast contiuous collision detection between rigid bodies[J]. Comput Graph Forum,2002,21(3):279-287.
    Richardson H.W. The economics of urban size lexington[M]:Mass,1973.
    Robinson D.J.,Earnshaw J.C. Experimental study of colloidal aggregation in two dimensions I.Structural aspects[J]. Phys. Rev. A.,1992,46(4):2045-2054.
    Ryabov A.B., Postnikov E.,Loskutov R.A. Diffusion-Limited Aggregation A Continuum Mean Field Model[J]. J Exp Theor Phys+,2005,101(2):253-258.
    Rzepiela. Brownian Dynamics Simulation of Aggregation Kinetics of Hard Spheres with Flexible Bonds[J]. J Colloid Interf Sci,2001,244(2):43-50.
    Satoh A. Three-dimensional Monte Carlo simulations of internal aggregate structures in a colloidal dispersion composed of rod-like particles with magnetic moment normal to the particle axis[J]. J Colloid Interf Sci,2008,318(1):68-81.
    Shen Guoqing. Fractal dimension and fractal growth of urbanized areas[J].International Journal of Geographical Information Science,2002,16(5):419-437.
    Shepard J S. Using a Fractal Model to Calculate the Hydraulic Conductivity Function. [J]. Soil Sci. Soc. Am. J.,1993,57(2):1047-1054.
    Sorensen C. Light scattering by fractal aggregates:a review[J]. Aerosol Sci. Tech,2001,35(648.
    Tolman S.,Meakin P. Two,three and four-dimensionaldiffusion-limitedaggregation models[J]. Physica A,1989,158(801-816.
    Tsidall J.M.,Oades J.M. Organic matter and water-stable aggregates in Soil[J]. Journal of Soil sciences,1982,33(3):141-163.
    Tyler S.W.,Wheatcraft S.W. Fractal processes in soil water retention[J]. Water Resour Res, 1990,5(26):1047-1054.
    Vicsek T. Fractal growth phenomena[J]. World Scientific Publishing Co Pte Ltd,1992,215-257.
    Witten T.A.,Sander L.M. Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon[J]. Phys Rev Lett,1981,47(1):1400-1403.
    White R, Engelen G.Cellular automata and fractal urban form:a cellular modeling approach to the evolution of urban land-use patterns [J]. Environment and Planning A,1993,25:1175-1199.
    Xiong H., Li H.,Chen W.et al. Application of the Cluster-Cluster Aggregation model to an open system[J]. J Colloid Interf Sci,2010,344(1):37-43.
    昌庆,沈琴,李敬生.外力场下超微细颗粒及簇团微观结构的研究进展[J].化学工业与工程,2006,23(1):65-69,74.
    陈乐,翁甲强.局部区域粒子源与其凝聚集团关系的模拟[J].计算物理,2012,29(5):766-774.
    陈彦光,周一星.基于RS数据的城市系统异速生长分析和城镇化水平预测模型:基本理论与应用方法[J].北京大学学报(自然科学版),2001,37(6):819-826.
    陈彦光,罗静,Jing L城市形态的分维变化特征及其对城市规划的启示[J].城市发展研究,2006,13(5):35-40.
    丁文峰,丁登山.黄土高原植被破坏前后土壤团粒结构分形特征[J].地理研究,2002,21(6):700-706.
    冯健.杭州城市形态和土地利用结构的时空演化[J].地理学报,2003,58(3):343-353.
    高国良,钱昌吉,李洪等.杂质区域对金原子凝聚体分形结构的影响[J].浙江师范大学学报(自然科学版),2003,26(1):21-26.
    龚庆杰,向运川,张荣华等.地球化学场分形维数的计算方法及其C++函数实现[J].矿床地质,2002,21(9):1136-1139.
    顾菊观,叶阳,吴锋民.各向异性基底上超簿膜生长的计算机模拟[J].浙江工业大学学报, 2000,28(1):31.
    郭坤.絮凝体分形仿真模拟[D].西安建筑科技大学,2006.
    侯光炯.紫色土肥力研究五十年.农业土壤学,2000:96-102.
    黄昌勇.土壤学(第1版)[M].北京:中国农业出版社,2000.
    黄通浪,唐敏,董金祥.一种快速精确的连续碰撞检测算法[J].浙江大学学报(工学版),2006,40(6):1051-1055.
    胡纪华,杨兆禧,郑忠.胶体与界面化学[M].广州:华南理工大学出版社,1997:255-330.
    贾明云,朱华铃,李航.光散射技术在土壤胶体颗粒相互作用研究中的应用[J].土壤学报,2010,47(2):253-261.
    姜世国,周一星,Yi-xing Z北京城市形态的分形集聚特征及其实践意义[J].地理研究,2006,25(2):204-212.
    蒋先军,李航,谢德体等.分形理论在土壤肥力研究中的应用与前景[J].土壤,2007,39(5):677-683.
    蒋新MATLAB平台上的DLCA过程模拟[J].计算机仿真,2003,20(6):68-70,86.
    蒋新.扩散双电层作用下的胶体粒子聚集过程模拟[J].高校化学工程学报,2004,18(1):33-37.
    蒋志勇,郑忠.薄膜生长的三维元胞自动机模拟[J].材料导报,2008,22(专辑Ⅺ):228-231.
    金鹏康,王晓昌,郭坤.絮凝体的DLA分形模拟及其分形维数的计算方法[J].环境化学,2007,26(1):5-9.
    靳军.分形理论及其在地理研究中的应用[J].信阳师范学院学报(自然科学版),2000,13(4):425-428.
    况颐,陈彦光.DLA和DBM模型与城市生长的分形模拟——关于城市分形形态模拟方法的一个理论探讨[J].信阳师范学院学报(自然科学版),2001,14(3):303-308.
    类成新,吴振森,张化福等.激光在随机分布烟尘团簇粒子中的衰减特性[J].光子学报,2010,39(6):1021-1025.
    李冬梅,谭万春,黄明珠等.絮凝体的分形特性研究[J].给水排水,2004,30(5):5-10.
    李宏,郭洛方,潘永红等.应用DLA模型对钢中夹杂物凝聚过程的三维模拟[J].过程工程学报,2009,9(z1):312-316.
    李宏,温娟,张炯明等.应用DLA模型模拟钢中夹杂物集团凝聚[J].北京科技大学学报,2006,28(4):343-347.
    李洪,钱昌吉,高国良等.薄膜生长的元胞自动机模型[J].计算机仿真,2004,21(9):51-53,77.
    李敬生,MarkRodger P剪应力下弱作用势胶体颗粒聚团的特点[J].物理化学学报,1997,13(1):20-27.
    李琰.不同土地利用方式下紫色土团聚体分形特征和肥力研究[D].西南大学,2008.
    刘东京,邱祖民.反应概率置限二维DLCA模型分形模拟[J].计算机与应用化学,2012,4):451-453.
    刘继生,陈彦光.人口的区位过程与城市的分形形态--关于城市生长的一个理论探讨[J].人文地理,2002,17(1):24-28,18.
    刘林双,杨国录,余明辉.考虑电离作用的淤泥异向絮凝三维数值模拟[J].计算物理,2012,29(4):511-518.
    刘妙龙,陈鹏,冯永玖.上海市人口分形的时空演化与区域差异研究中国人口科学[J],2005(2):51-60.
    卢金伟,李占斌.土壤团聚体研究进展[J].水土保持研究,2002,9(1):81-85.
    陆杭军,吴锋民.非均匀基底上三维薄膜生长的模拟研究[J].物理学报,2006,55(1):424-429.
    陆娟,王建,石丽.基于GIs和分形理论的海岸线模拟方法研究[J].中国图象图形学报A辑, 2003,8(6):692-696.
    倪毅,冯健.基于遥感和地理信息系统的经济发达地区城市空间形态重构——以浙江省义乌市为例[J].现代城市研究,2011,11(3):25-32.
    祁迎春,王益权,刘军等.不同土地利用方式土壤团聚体组成及几种团聚体稳定性指标的比较[J].农业工程学报,2011,27(1):340-347.
    齐灿,吴世先.应用DLCA模型模拟超细气溶胶粒子的凝并行为[J].桂林航天工业高等专科学校学报,2008,13(2):31-34.
    钱昌吉,高国良,李洪等.无序杂质区域对沉积在胶体基底表面的金原子凝聚体分形结构的影响[J].物理学报,2002,51(9):1960-1964.
    钱昌吉,高国良,余作喜等.各向异性胶体基底表面的分形凝聚体[J].真空科学与技术学报,2002,22(2):107-111.
    疏学明,方俊,申世飞等.火灾烟雾颗粒凝并分形特性研究[J].物理学报,2006,55(9):4466-4471.
    孙霞.分形原理及其应用[M].中国合肥:中国科学技术大学出版社,2003.
    谭万春.黄河泥沙絮凝形态学研究——絮体生长的计算机模拟与絮体模型[D].西安建筑科技大学,2004.
    谭万春,廖晓希,李杰华等.水中泥沙颗粒聚集的二维数值模拟——单体凝聚模型[J].长沙理工大学学报(自然科学版),2010,07(4):49-54.
    唐强,方文波,刘杰.基于MATLAB平台的分形图形的模拟[J].武汉科技学院学报,2008,21(5):5-8.
    王昊鹏,赵凯,关止.基于DLA模型的植物生长模拟研究[J].微计算机信息,2007,23(24):234-235,154.
    王晓平,赵特秀,吴锋民等.超薄膜多中心生长过程的计算机模拟[J].物理学报,1999,48(8):1412-1419.
    王晓荣,王萌,李春贵.基于AABB包围盒的碰撞检测算法的研究[J].计算机工程与科学,2010,32(4):59-61.
    王新生,刘纪远,庄大方等.中国特大城市空间形态变化的时空特征[J].地理学报,2005,60(3):392-400.
    吴兵,葛昭攀.分形理论在地理信息科学研究中的应用[J].地理学与国土研究,2002,18(3):23-26.
    吴承祯,洪伟.不同经营模式土壤团粒结构的分形特征研究[J].土壤学报,1999,36(2):162-167.
    吴锋民,王衍,吴自勤.一维随机成核生长模型[J].物理学报,1996,45(12):1960-1969.
    吴锋民,朱启鹏,施建青等.有限步扩散反应置限分形聚集[J].物理学报,1998,47(4):542-550.
    吴锋民,施建青,吴自勤.高温下金属薄膜生长初期的模拟研究[J].物理学报,2001,50(8):1555-1559.
    吴锋民.超薄薄膜各向异性生长的KMC模拟[D].浙江大学,2005.
    吴建章,徐昌业.DLA模型与分形生长研究综述[J].山东工业大学学报,1996,26(6):403-410.
    吴黎黎.分形生长的图象生成及其处理[D].浙江工业大学,2003.
    吴一琦,许晓军.三角点阵基底上基于幂次相互作用的二维磁性团簇磁结构研究[J].真空科学与技术学报,2012,32(1):63-67.
    吴子若,程鑫彬,王占山.动力学晶格蒙特卡洛方法模拟Cu薄膜生长[J].光子学报,2010,39(1):62-66.
    熊海灵.土壤胶体凝聚动力学的计算机模拟研究[J].西南大学博士学位论文,2007,
    熊海灵,袁勇智,李航等.长程范德华力导向作用下胶体凝聚的计算机模拟[J].物理化学学报,2007,23(8):1241-1246.
    熊顺贵.基础土壤学[M]:中国农业大学出版社,2001.
    熊毅.土壤有机无机复合,In:中国科学院南京土壤研宄所编,e.熊毅文集.北京:科学出版社,2003.pp.307-374.
    许晓军,王凤飞.不同温度下团簇生长的Monte Carlo模拟[J].计算物理,2009,26(5):758-762.
    杨晓飞,马启敏,江翠芸.扩散限制凝聚过程的凝聚体分形特征研究[J].给水排水,2007,33(z1):211-214.
    殷人昆,陶永雷,谢若阳.数据结构(用面向对象方法与C++描述)[M]:清华大学出版社,1998.
    尹占娥,许世远,贾宁.上海人口郊区化的分形研究[J]。华东师范大学学报(哲学社会科学版),2007,39(1):84-87.
    于天仁.土壤电化学性质及其研究法(修订版)[M]:科学出版社,1976.
    袁勇智,熊海灵,李航等.重力场和电解质浓度对胶体凝聚体分形结构的影响[J].物理化学学报,2007,23(5):688-694.
    张济忠.分形[M].北京:清华大学出版社,2011.
    张健,谭小苹,裴觉民.肺支气管树的DLA分形生长模拟[J].四川大学学报(工程科学版),2003,35(1):66-68.
    赵春艳,马学强.基于DLA的虚拟植物根系模拟方法研究[J].计算机技术与发展,2012,22(2):119-122.
    赵京考,刘作新,韩永俊.土壤团聚体的形成与分散及其在农业生产上的应用[J].水土保持学报,2003,17(6):163-166.
    赵晶,徐建华,梅安新,吴健平等.上海市土地利用结构和形态演变的信息熵与分维分析[J].地理研究,2004,23(2):137-146.
    赵晶.上海城市土地利用与景观格局的空间演变研究[D].华东师范大学博士学位论文,2004.
    郑红波,吴健平,丁维龙.基于粒子系统的土壤胶粒快速凝聚的三维可视化仿真[J].农业工程学报,2011,27(6):219-224.
    郑忠,李宁.分子力与胶体的稳定和聚沉.第1版.北京:高等教育出版社,1995.
    周有丹,梁虹.团簇-团簇聚集模型及模拟实现[J].计算技术与自动化,2005,24(2):81-84.
    朱华,姬翠翠.分形理论及其应用[M].北京:科学出版社,2010.
    朱华玲.土壤有机、无机胶体颗粒凝聚的激光散射研究[J].西南大学博士学位论文,2009,
    朱华玲,李兵,熊海灵等.不同电解质体系中土壤胶体凝聚动力学的动态光散射研究[J].物理化学学报,2009,25(6):1225-1231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700