喷射电沉积法直接制备多孔泡沫镍基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对目前泡沫金属制备方法普遍存在的工艺复杂、成本较高的缺点,提出了一种直接制备泡沫金属的新方法─喷射电沉积法。该方法基本原理是:在喷射电沉积过程中,采用很高的电流密度,金属沉积层会形成疏松、多孔的泡沫组织;此外,在高电流密度下,析氢反应的发生将产生大量气泡也有助于形成多孔沉积层。同其它方法相比,喷射电沉积法生成的泡沫组织完全是自组织原位生长的,在加工过程中,没有其它辅助材料的介入,工艺简单、成本也相对低廉。本方法在常温、常压下进行,对外界环境和设备要求不高。该项研究对丰富泡沫金属的制造工艺具有重要的现实意义。本文主要做了以下工作:
     (1)、分析喷射电沉积过程中枝晶生长的基本规律,并采用扩散限制凝聚模型(DLA)对喷射电沉积过程的多孔泡沫组织的形状和生长过程进行了模拟研究,使用喷射电沉积设备对DLA模型获得的枝晶进行了验证性试验。研究表明:用DLA模型来说明枝晶生长规律是有效的,DLA模型中的粒子移动速度、粒子释放数、结合概率分别同喷射电沉积工艺中电压、电沉积时间、电解液温度存在着内在的对应联系;模拟生成的粒子沉积层具有明显的枝晶结构,金属粒子从远端沿着主运动方向向阴极移动,被阴极极板俘获,形成了多孔的金属沉积层形貌。
     (2)、研制了包括控制系统、喷嘴提升机构、机床机械本体、电解液喷射与循环系统、电解液温控装置、阳极腔、喷嘴等部件在内的泡沫金属直接制备试验系统。使用该装置进行了喷射电沉积试验研究,成功制备了一组具有简单形状和一定厚度的泡沫镍金属样品;讨论了泡沫镍的显微结构、孔隙率和相对密度。结果表明:①可采用很高的阴极电流密度进行喷射电沉积,其电流密度约为常规电沉积的100倍,甚至更高;②枝晶容易在高的电流密度下生长,泡沫镍具有比较典型的多孔枝状晶结构;③在高电流密度下,很容易发生析氢反应,释放大量气泡;金属离子在气泡之间的空隙被还原形成多孔的沉积层;④电沉积参数对泡沫镍的相对密度和孔隙率有着比较明显的影响。泡沫镍的孔隙率随着电流密度的提高而减小,随着电解液喷射速度和电解液喷射距离的增加而减小;随着Ni2+浓度增大而减小。泡沫镍样品的孔隙率在50~70%之间、相对密度在0.3~0.5之间、孔径在0.3mm以内。
     (3)、分析了泡沫镍样品的相关力学性能、电学性能、热传导性能。结果表明:泡沫金属的硬度明显低于实体金属,不同孔隙率的泡沫镍的硬度也相差较大;泡沫镍的静态压缩性能具有明显的三阶段特征,即线弹性变形段、塑性平台段和压实段。孔隙率越高,平台应力越小;泡沫金属的电阻率明显高于实体金属,且随着孔隙率的增加,泡沫镍电阻率也随着增加。喷射电沉积直接制备的泡沫镍具有良好的散热性能,能够作为散热元件在电子行业中应用。鉴于上述特性,泡沫镍有望在电池电极材料、催化剂载体等方面有所应用。
Based on the all-pervading complicated technology and high cost on preparing the porous foam metal, jet electrodeposition, a new method to prepare porous foam metal directly was put forward. Its principle were listed as follows. Deposited Layers generated loose and porous vesicular tissue on the condition of high current density. What’s more, the hydrogen evolution reaction produced a lot of bubbles and porous deposition layers were easily formed owing to that metal could only depose among those bubbles’clearance. Compared to other methods, vesicular tissue formed by jet electrodeposition growed totally all by itself at original place, without any auxiliary materials added. Meanwhile, the process is rather simplied and the cost is low relatively. This process can be carried out at normal temperature and atmospheric pressure, having no high requirement of external environment and equipments. This research is meaningful to enrich processes for preparing porous foam metals. The major works were as follows:
     1. The principles about jet electrodeposition and preparation of porous metals were investigated. The shape and growth process of porous dendritic structure in jet electrodeposition were simulated by the Diffusion-Limited Aggregation(DLA) model. Then, experiments were carried out to verify the simulation products by jet electrodeposition equipments. The results show that the DLA model was rather usable to explain the growth of dendritic structure. Migration of particles, releasing number of particles, joint probability in the DLA model were corresponding to voltage, deposition time, and electrolyte temperature during jet electrodeposition inherently. The deposition layer in simulation had obvious dendritic structures. Some particles which were moving toward cathode along main migration direction were captured by cathode polar plate and deposited together, forming the dendritic structure. At last, morphology of metal deposited layer was generated with foam point’s growth and extension.
     2. The devices of the direct fabrication of porous metals were designed and developed all by ourselves, including computer control system, nozzle lifting mechanism, the mechanical body, electrolyte injection and circulatory system, equipment to constant temperature and circulation of electrolyte, anode cavity and nozzle. A group of foam nickel metal samples with simple shape and a certain thickness were prepared. Microstructure, porosity and relative density of foam nickel metal were investigated. The results show as follows. One, current density in Jet electrodeposition can be very high. It can be 100 times of conventional one or even higher. Two, dendritic structure tended to grow under a higher current density and foam nickel has a typical dendritic structure. Three, hydrogen evolution reaction occured easily under a high current density, releasing a lot of bubble. It was only in the vacuity among the bubbles that metal ions could be reduced to be porous deposition layers. Four, experimental parameters in jet electrodeposition had a apparent effect on relative density and porosity of nickel foam. With current density, concentration of Ni2+, jet speed and distance of electrolyte increasing, the porosity of nickel foam became lower. Generally speaking, the porosity of nickel foam samples range from 50~70%, relative density 0.3~0.5 and aperture was confined within 0.3mm.
     3. Relational mechanical properties, electrical properties and heat transfer properties were studied. The results show that: hardness of foam metal is much lower than entitative metal. There were also much difference among the nickel foams. Static compressive properties of nickel foam had three stages: linear elastic deformation, plateau region and compacted section. The higher porosity was , the smaller plateau stress was. And, foam metal’s resistivity was much higher than entitative metal. Opening nickel foam prepared by jet electrodeposition had excellent heat dissipation performance, capable to be used in electronic industry as heat radiation elements. Give its basic nature, nickel foam is potential to be applied in battery or catalyst carrier , et al.
引文
[1]曹立宏,马颖.多孔泡沫金属材料的性能及其应用.甘肃科技,2006, 22(6): 144-149
    [2]刘培生,李铁藩,傅超,等.多孔金属材料的应用.功能材料,2001, 32 (1): 11-15
    [3]刘培生.多孔材料引论.北京:清华大学出版社,2004
    [4] Kosak J R, Prunier M. Catalysis of Organic Reactions In : Chemind the 15th Conference on Catalysis of Organic Reaction. Phoenix, 2005: 621
    [5]陈雯,刘中华,朱诚意,等.泡沫金属材料的特性、用途及制备方法.有色矿冶,1999,(1): 33-36
    [6]刘海.超厚泡沫金属的制备及其性能的研究[硕士学位论文].秦皇岛:燕山大学,2006
    [7] L. J. Gibson, M. F. Ashby. Cellular Solids Structure and Properties. Pergamon Press, Oxford , 1988
    [8] J. Banhart. Manufacture Characteristion and Application of Cellular Metals and Metal Foams.. Progr. Mater. Sci. 2001, 46: 559-632
    [9] Xin Tang, Qing Tian, Binyuan, et al. The microwave electromagnetic and absorption properties of some porous iron powders. Materials Science and Engineering, 2007, 445: 135-140
    [10] I. S. Golovin, H. R.Sinning. Internal friction in metallic foams and some related cellular structures. Materials Science and Engineering, 2004, 370(2): 504-511
    [11] Hideo. Nakajima. Fabrication, properties and application of porous metals with directional pores. Progress in Materials Science, 2007, 52(7): 1091-1173
    [12] Chao-Nan Wng, Yan-Min Kuo, Shih-Kai Chen. Effects of compression on the sound absorption of porous materials with an elastic frame. Applied Acoustics, 2008, 69(1): 31-39
    [13] Wei Peng, Liu Lin. Influence of Density on Compressive Properties and Energy Absorption of Foamed Aluminum Alloy. Journal of Wuhan University of Technology-Materlias and Science Edition, 2007, 10(s11): 225-228
    [14]闫长海,孟松鹤,陈贵清,等.开孔金属泡沫的传热分析.功能材料,2006, 37(8): 1293-1297
    [15] CAO Xiao-qing, WANG Zhi-hua, MA Hong-wei, et al. Effects of heat treatment on dynamic compressive properties and energy absorption characteristics of open-cell aluminum alloy foams. Trans Nonferrous Met. Soc. China, 2006, 16: 159-163
    [16] Li Q. M. Attenuation or enhancement-a one-dimensional analysis on shock transmission in the solid phase of a cellular material. International Journal of Impact Engineering, 2002, 27(10):1049-1065
    [17] Takayuki. Doi, Hirotaka. Fukudome, Shigeto. Okada, et al. Computer simulation of a porous positive electrode for lithium batteries. Journal of Power Sources, 2007,174(2): 779-783
    [18] Suresh. Kumar , Jinsu. Yoo, Kyunghae. Kim, et al. Study of electrical properties of oxidized porous silicon for back surface passivation of silicon solar cells. Renewable Energy, 2008, 32(2): 282-285
    [19]陈祥,李言祥.金属泡沫材料研究进展.材料导报, 2003, 17(5): 6-11
    [20] L. J. Gibson, M. F. Ashby.著,刘培生译,田民波校.材料结构与性能,北京:清华大学出版社, 2003
    [21] M. F. Ashby, Evans. A. G, N. A. Fleck, et al. Metal Foams: A Design Guide. Butterworth-Heinermann, Oxford, 2000, 150
    [22] Cooks. F. H. Proc Conf Light Metals. New Orleans, USA, 2~6 March 1986, 2: 1019
    [23] S.Yamamura, H. Shiota, K. Murakami, et al. Evaluation of porosity in porous copper fabricated by unidirectional solidification under pressurized hydrogen. Mater Sci Eng A, 2001,318: 137-141
    [24] I. Duarte, J. Banhart. A study of aluminiun foam formation-kinetics and microstructure. Acta Mater, 2000, 48: 2349-2362
    [25] Apprill. J. M, Poirier. D. R, Maguire. M. C. GASAR porous metals process control. Materials Research Society Symposium-Proceedings, 1998, 521(13): 291
    [26]肖华星,陈光,崔棚.定向凝固多孔金属制造人工骨的前景展望.特种铸造及有色合金,2001, 12(2): 88-92
    [27] Chanman. P, Steven. R. N. Metallographic study of GASAR porous magnesium. Materials Research Society Symposium Proceedings, 1998, 521(13): 315-319
    [28] Duarte. I, Banhart. J. A Study of aluminium foam formation kinetics and microstructure. Acta materialism, 2000, 48: 2349-2352
    [29]余欢,林再学,周尧和.多孔铝制备中铝液渗流过程的模拟.航空学报,2000,205(5): 477-480
    [30]程和法,黄笑梅,陈国宏.渗流法制备泡沫铝合金工艺的研究.轻合金加工技术,2001,29(1): 38-40
    [31] Ma. L. Q, Song. Z. L, He. D. P. Cellular structure control of aluminium foams produced by high pressure infiltration process. Scripta Materialism, 1999, 41(7): 785-790
    [32]程桂萍,陈锋,何德坪,等.共晶凝固法法制备通孔泡沫金属.东南大学学报,1997,27(3): 73-76
    [33] Maire. S. A., Haomi. H. H. Experimental Investigation of Sintered Porous Metal filters. J Aerosol Sci, 2000, 31(6): 721-725
    [34] Hsieh. W. H, Lu. S. F. Heat-transfer Analysis and Thermal Dispersion in Thermally-developing Region of a Sintered Porous Metal Channel. Int J Heat Mass Transfer, 2000, 43: 3001-3004
    [35]左孝青,史庆南.粉末冶金法制备通孔泡沫铝.云南冶金,2003, 32(4): 31-35
    [36] S. K. Hyun, K. Murakami, H. Nakajima. Anisotropic mechanical properties of porous copper fabricated by unidirectional solidification. Materials Science and Engerineering, 2000, 299: 241-248
    [37]张景怀,惠志林,方政秋,等.泡沫镍的准备工艺与性能.稀有金属, 2001, 25(3): 230-234
    [38]孙伟成,武小娟.电沉积泡沫铝.金属功能材料,2003, 10(2): 19-21
    [39]江山,潘勇,唐甜,等.喷射电沉积纳米晶镍镀层的制备与表征.湘潭大学自然科学学报,,2004, 26(3): 61-65
    [40] I. Garcia, J. Fransaer, J.-P.Cells. Electrodeposition and sliding wear resistance of nickel composite coatings containing micron and submicron SiC particles. Surface and coatings Technology, 2001, (148): 171-178
    [41] QIAO Gui-ying, JING Tian-fu, WANG Nan, et al. High-speed jet electrodeposition and microstructure of nanocrystalline Ni–Co alloys. Electrochemical Acta, 2005, 16(5): 46-50
    [42]荆天辅,乔桂英,熊毅,等.添加剂对喷射电沉积纳米晶镍的影响.材料保护,2001, 34(7): 16-17
    [43]陈劲松,黄因慧,田宗军,等.喷射电沉积快速成形的定域性试验研究.中国机械工程,2006,17(13): 1408-1410
    [44] CHEN Jin-song, HUANG Yin-hui, LIU Zhi-dong, et al. Jet electrodeposition oriented by rapid prototyping. Trans Nonferrous Met. Soc. China, 2005,15(s3): 145-149
    [45] CHEN Jin-song, HUANG Yin-hui, LIU Zhi-dong, et al. Jet electrodeposited Cu-Al2O3 nanocomposite coatings. International conference and exhibition: Integration and commercialization of Micro and Nanosystems , SANYA, China, 2007: 1-4
    [46]陈劲松,黄因慧,田宗军,等.喷射电铸快速制造试验研究.华南理工大学学报,2006, 34(11): 16-20
    [47] Booker. G. R, Stickler. R. Large area jet electrolyte polishing of Ge and Si. J. Electrochem. Soc,1962, 109: 1167-1171
    [48] Alkire. R. C, Chen. T. J. High-speed selective electroplating with single circular jets. J. Electrochem. Soc, 1982, 129: 2424-2432
    [49] Datta. M, Romankiw. L. T, Vigliolti. D.R, et al. Jet and laser-jet electrochemical micromachining of Nickel and steel. J. Electrochem. Soc, 1989,136(8): 2251-2256
    [50] Kunieda. M, Yoshida. M, Akamatsu. Y, et al. Influence of micro indents for formed by electrochemical jet machining on rolling bearing fatigue life. Manufacturing. Science and Engineering, 1993, 64: 693-699
    [51] F .Erler, C. Jakob, H. Romanus, et al. Interface behaviour in nickel composite coatings with nano-particles of oxidic ceramic. Electrochimica Acta, 2003,(48): 3063-3070
    [52] Doryll. J .K, Haynes .R, Sinitskiand .R .E, et al. Thermocompression Bonding Using High-Speed Selective Gold Plating. Plating & Surface Finish, 1980, (5): 81-85.
    [53] C. Bocking. Laser enhanced and high speed jet selective electrodeposition. Trans IMF, 1988, 66: 50-53
    [54] C. Bocking, B. Cameron. The use of high speed selective jet electrodeposition of gold for the plating of connectors. Trans IMF, 1994, 72 (1): 33-35
    [55] C. Bocking, Dover. S. J, Bennet. G. R, et al. An investigation into suitability of high speed selective jet electrodeposition for rapid tooling. J. Electrochem. Soc, 1995, 143(4): 157-173
    [56] C. Karakus, D. T. Chin. Metal distribution in jet plating. J. Electrochem. Soc, 1994, 141(4): 691-696
    [57] Kunieda .M, Katoh .R, Mori Y. Rapid prototying by selective electrodeposition using electrolyte jet. Annals of CIRP, 1994, 47: 161-164.
    [58] E. l. Sherik, Erb .U. Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition. J Mater Sci, 1995, 30: 5743-5749.
    [59]王帮峰,黄因慧,余承业.射流电铸技术初探.机械科学与技术,2002, 21(2): 263-265.
    [60]吴安德,王帮峰,黄因慧,等.一种新的快速成形技术一选择性电铸.中国机械工程,2000, 11(增刊): 81-82.
    [61]赵阳培,黄因慧,赵剑锋,等.射流电沉积快速成型基础试验研究.南京航空航天大学学报,2004, 36(4): 458-460
    [62]李荻.电化学原理.北京:北京航空航天大学出版社,1999
    [63]雷卫宁.纳米晶电铸镍的试验研究[博士学位论文].南京:南京航空航天大学,2002
    [64] XUE Yujun, ZHU Di, ZHAO Fei. Electrodeposition and mechanical properties of Ni-La2O3 nanocomposites. Journal of Materials Science, 2004, 39(5): 4063-4066
    [65]刘晋春,赵家齐著.特种加工(第2版).北京:机械工业出版社,1998
    [66]安茂忠主编.电镀理论与技术.哈尔滨:哈尔滨工业大学出版社,2004
    [67] ZHU Zeng-wei, ZHU Di, QU Ning-Song, et al. Pulse electroforming of nickel under perturbation of hard particles. Trans. Nonferrous Met. Soc.China, 2005, 15(S3): 251-254
    [68]贾梦秋,杨文胜.应用电化学.北京:高等教育出版社,2007
    [69] J.A. MacGeough, M.C. Leu,K.P. Rajurkar, et al. Electroforming Process and Application to Micro/Macro Manufacturing. Annals of the CIRP, 2001, 50 (2): 499-514
    [70] SM. Silaimani, S. John. Review on Recent Advances in Electroforming During the Last Decade. Bulletin of Electrochemistry, 2001, 17(12): 553-560
    [71] Bogdan Szczygiel, Malgorzata Kolodziej. Composite Ni/Al2O3coatings and their corrosion resisitance. Electrochemical Acta, 2005, 16(9): 1-5
    [72]查全性著.电极过程动力学.北京:科学出版社,2002
    [73]韩东生.喷射电沉积纳米晶镍的阴极极化行为及其微观组织结构[硕士学位论文].秦皇岛:燕山大学,2005.
    [74]王桂峰.金属镍电沉积过程中枝晶生长的分形研究[硕士学位论文].南京:南京航空航天大学,2007
    [75] Ramagopal .Anantha, William N. Gill. Dendritic growth in microgravity and forced convection. Journal of Crystal Growth, 1997, 179(3): 263-266
    [76]蔡英文,苏俊义.约束凝固枝晶尖端扩散场的Zener近似因子.西安交通大学学报,1998, 32(10): 43-46.
    [77] Witten. T. A, Sander. L. M. Effective Harmonic Fluid Approach to low Energy Properties of One Dimensional Quantum Fluids. Phys Rev Let, 1981, 47: 1400-1408
    [78]陈书荣,谢刚.金属铜电沉积过程中分形研究.中国有色金属学报,2002, 12(4): 846~850
    [79]高睿,谢淑云.在MATLAB平台下实现DLA分形聚集生长的模拟.西南师范大学学报(自然科学版),2005, 30(1): 83-86
    [80]杨绮琴,方兆龙著.应用电化学.广州:中山大学出版社,2001
    [81] Steffen. R, Michel Zinsmeister. Some remarks on Laplacian growth. Topology and its Applications, 2005, 152(2): 26-43
    [82] Satoru. Miyashita, Yukio Saito, Makio Uwaha. Fractal aggregation growth and the surroundingdiffusion field. Journal of Crystal Growth, 2005, 283(3): 533-539
    [83] G. Odriozola, M. Tirado-Miranda, A. Schmitt, et al. A Light Scattering Study of the Transition Region between Diffusion- and Reaction-Limited Cluster Aggregation. Journal of Colloid and Interface Science, 2001, 240(1): 90-96
    [84] T. R. Mhíocháin, J. M. D. Coey. Adapted diffusion limited aggregation model for the effects of magnetic fields on fractal electrodeposits. Journal of Magnetism and Magnetic Materials, 2001, 230(4): 1281-1283
    [85] L. Frachebourg, A. Martin, J. Piasecki. Ballistic aggregation: a solvable model of irreversible many particles dynamics. Physica A: Statistical Mechanics and its Applications, 2000, 279(4): 69-71
    [86] Francesco Mallamace, Norberto Micali, Andrea Romeo, et al. Fractal aggregation of dyes such as porphyrins and related compounds under stacking.Current Opinion in Colloid & Interface Science, 2000, 5(2): 49-55
    [87] Hepel. T. Effect of Surface Diffusion in Electrodeposition of Fractal Structures. J. Electrochem. Soc, 1997, 134(11): 2685-2690
    [88]梅家斌.分形在电镀中的应用.中南民族大学学报(自然科学版),2002, 21(1): 42-43
    [89] Alexander. Kuhn, Francoise. Argoul. Diffusion- limited kinetics in thin-gap electroless deposition. Journal of Electroanalytical Chemistry,1995, 397(2): 93-104
    [90] Christophe. Leger, Laurent Servant, Francoise Argoul, et al. Growth patterns in electrodeposition. Physics A:Statistical Mechanics and its Applications. 1999, 263(4): 305-314
    [91]陈书荣.金属电沉积过程中枝晶生长的分形研究[博士学位论文].昆明:昆明理工大学,2002
    [92]谢刚,张郑.点阴极下金属电沉积过程枝晶二维生长的计算机模拟.科学技术与工程,2003,3(4): 343-345
    [93]欧阳礼,任红轩.电化学沉积金属铅的二维枝晶生长及其结构.武汉大学学报(自然科学版),,2000,46(6): 689-691
    [94]吴黎黎,陆杭军.稳恒磁场下金属电沉积枝晶生长的模拟.计算物理,2006,23(4): 499-504.
    [95]罗明道.分形在化学中的应用.自然杂志,1998, 21(1): 15-18
    [96]柴立和,马德刚.分形生长的新模型.天津大学学报,2004, 37(4): 326-330
    [97] Fleury. V, Chazalviel. J. N, Rosso. M, et al. The Role of the Anions in the Growth Speed of Fractal Electrodeposits . J. Electroanal. Chem, 1990, 290: 249-255
    [98] Yasuji. Sawada, A. Dougherty, J. P. Gollub. Dendritic and Fractal Patterns in Electrolytic Metal Deposits. Phys. Rev. Lett, 1986, 56(12): 1260-1263
    [99] G. Odriozola, M. Tirado-Miranda, A. Schmitt, et al. A Light Scatlering Study of the Transition Region between Diffusion-and Reaction-Limited Cluster Aggregation. Journal of Colloid and Interface Science, 2001, (240): 90-96
    [100] B. Mandelbrot. Fractal: Form Chance and Dimension. San Francisco: W H Freeman, 1987
    [101] Falconer. K. J著.曾文曲译.分形几何-数学基础及其应用.沈阳:东北工学院出版社,1991
    [102]张皓东,谢刚.平行板阴极金属电沉积过程枝晶二维生长的计算机模拟.昆明理工大学学报(理工版),2005, 30(3): 31-34
    [103] S.Yapici, S.Kuslu, C.Ozmetin, et al. Surface shear stress for a submerged jet impingement using electrochemical technique. J. Electrochem. Soc, 1999, 29: 185-190
    [104]熊毅.纳米晶块体镍的喷射高速电沉积及其微观结构研究[硕士学位论文].秦皇岛:燕山大学,2001
    [105] Jaeyoung Lee, Yongsug Tak.. Selective Electrodepostion of ZnO onto Cu2O. Electrochemistry Communication, 2000, 2: 765-768
    [106]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2005
    [107]阎照文等编著.ANSYS10.0工程电磁学分析技术与实例详解.北京:中国水利水电出版社, 2006
    [108]孙敏,孙亲锡,叶齐政编著.工程电磁场基础.北京:科学出版社,2001
    [109] Bhattacharyya .S, Ghosh .A, Mallik .A .K. Cathode Shape Prediction in Electrochemical Machining Using a Simulated Cut-an–Try Procedure. Journal of Materials Processing Technology, 1997, 66:146-152
    [110] Michael. F. Ashby, Lorna. J. Gibson等著,刘培生等译.泡沫金属设计指南.北京:冶金工业出版社,2006
    [111]汤国华,杨俊和,张琢,等.一种定量分析多孔材料孔隙结构的新方法.煤炭转化,2004,21(1): 71-74
    [112]任世彪,张代林.图像分析在焦炭气孔结构参数测定中的应用.安徽工业大学学报,2003,20(1): 66-68 .
    [113] Francus. P. An Image-analysis Technique to Measure Grain-size Variation in Thin Sections ofSoft Clastic Sediments. Sedimentary Geology, 1998, 1(21): 289-298
    [114]师春生,田永琦.图像处理软件Photo Shop在金相分析中的应用.东北大学学报(自然科学版),2000,增刊(9): 42-44.
    [115] Shin. H. C, Dong .J, Liu .M. Nanoporous structures prepared by an electrochemical deposition process. Adv. Mater, 2003, 15(19): 1610-1613
    [116] Shin. H. C, Liu .M. Copper foam structures with highly porous nanostructured wall. Chem. Mater, 2004, 16: 5460-5464
    [117]孙雅峰,牛振江,岑树琼,等.氢气泡模板法电沉积制备三维多孔铜薄膜.电化学,2006, 12(2): 1-6
    [118]牛振江,孙雅峰,陈蝶,等.氢气泡模板电沉积多孔金属镍薄膜.无机化学学报,2006,22(5): 1-5
    [119]左孝青,孙加林.泡沫金属的性能及应用研究进展[J].昆明理工大学学报(理工版),2005,30(1): 13-17
    [120] H. P.蒂吉斯切,B.克雷兹特主编,左孝青译.多孔泡沫金属.北京:化学工业出版社,2005
    [121] Smone. A. E, Gibson. L. J. Effects of solid distribution on the stiffness and strength of metallic foams. Acta Meter, 1998, 46(6): 2139-2150
    [122] Smone. A. E, Gibson. L. J. The effects of cell face corrugation and corrugation on the stiffness and strength of metallic foams. Acta Meter, 1998,46(11): 3929-3935
    [123] Liu Pei-sheng, Yu Bing, Hu An-min, et al. Development in application of porous menals. Trans Nonferrous Met Soc China, 2001, 11(5): 629-638
    [124] Bo Yang, Gang Yu, Danmeng Shuai. Electrocatalytic hydrodechlorination of chlorobiphenyl in aqueous solution using palladized nickel foam cathode. Chemosphere, 2007, 67(7): 1361-1367
    [125] Rodolfo Gómez-Reynoso, Jorge Ramírez, Rubén Nares, et al. Characterization and catalytic activity of Ni/SBA-15 synthesized by deposition–precipitation. Catalysis Today, 2005, 107(30): 926-932
    [126]王芳,吴峰,陈实,等.双级性叠层MH/Ni蓄电池研究进展.电源技术,2004, 28(9): 592-594
    [127]王曦,虞吉林.泡沫铝的单向压缩力学行为.实验力学,2001, 16(4): 428-431
    [128]周亮,姚英学.两种微纳米硬度测试方法的比较.测试技术学报,2006, 20(1): 6-10
    [129]刘美华,王静,王东爱.对压痕硬度试验方法的分析研究.工程塑料应用,2005, 33(7): 38-42
    [130] Ramesh. T. N, Jayashree. R. S, Kamath. P. V, et al. Effect of lightweight supports on specificdischarge capacity of beat-nickel hydroxide. J Power Sources, 2002, 104(2): 295-298
    [131] Kim. J. H, Shin K. H, Jin. C .S, et al. The effect of nickel foam current collector in carbon electrode based electric double layer capacitor. Electrochemistry ,2001, 69(11): 853-857
    [132] Liu. P. S, Chen. H, Liang. K. M, et al. Relationship between apparent electrical–conductivity and preparation conditions for nickel foam. J Appi Electrochem, 2000, 30(10): 1183-1186
    [133]刘培生,李铁藩,付超,等.泡沫金属电阻率的计算方法.稀有金属材料与工程,1999, 21(4): 260-264
    [134]于青,吕明,付超,等.制备工艺条件对泡沫镍电阻率的影响.功能材料,2000, 31(2): 164-168
    [135]王彦刚,武力,崔青雪.IGBT模块封装热应力分析.电力电子技术,2000, (39): 52-54
    [136]闫长海,孟松鹤,陈贵清,等.开孔金属泡沫传热分析.功能材料,2006, 37(8): 1292-1295
    [137] Z. Q. Zhou, G. W. Lin, J. L. Zhang, et al. Degradation behavior of foamed nickel positive electrodes of Ni/MH batteries. Journal of Alloys and Compounds, 1999, 293(20): 795-798
    [138] Zhigang Hao, Qingshan Zhu, Ze Lei, et al. CH4–CO2 reforming over Ni/Al2O3 aerogel catalysts in a fluidized bed reactor. Powder Technology, 2008, 182(3): 474-479
    [139] Q. S. Song, G. K. Aravindaraj, H. Sultana, et al. Performance improvement of pasted nickel electrodes with multi-wall carbon nanotubes for rechargeable nickel batteries. Electrochimica Acta, 2007, 53(4): 1890-1896
    [140] Cen Jiwen, Li Xinjun, He Mingling, et al. The effect of background irradiation on photocatalyic efficiencies of TiO2 thin films. Chemosphere, 2006, 62(5): 810-816
    [141] About a correlating equation for predicting pressure drops through packed beds of spheres in a large range of Reynolds numbers, Chemical Engineering and Processing, 2007, 46(4): 329-333
    [142] X. H. Xia, J. P. Tu, J. Zhang, et al. Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition. Solar Energy Materials and Solar Cells, 2008, 92(6): 628-633
    [143]张密林,杨晨,陈野,等.纳米MnO2超级电容器电解液性能研究.电源技术,2004, 28(10): 626-630
    [144]王晓峰.碳纳米管超级电容器的研制和应用.电源技术,2005, 29(1): 27-31
    [145]丁震,冯小刚,陈晓东,等.金属泡沫镍负载纳米TiO2光催化降解甲醛和VOCs.环境科学,2001, 27(9): 1815-1819
    [146]杨莉萍,刘震炎,施建伟,等.负载TiO2的泡沫镍网光催化降解甲醛的膜厚优化.中国环境科学,2007, 27(3): 404-408
    [147] S.Yamamura, H. Shiota, K. Murakami, et al. Evaluation of porosity in porous copper fabricated by unidirectional solidification under pressurized hydrogen. Mater Sci Eng A, 2001,318: 137-141
    [148] X. Badiche, S. Forest, T. Guibert, et al. Mechanical properties and non-homogenous deformation of open-cell nickel foam: application of the mechanics of cellular solids and of porous materials. 2000, 289: 276-288

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700