纳米杂化薄膜微结构分子模拟与表征及电性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用X射线衍射和小角X射线散射分析、扫描电镜、透射电镜分析及材料结构与性能模拟软件等方法,研究溶胶-凝胶方法制备无机纳米颗粒杂化聚酰亚胺薄膜和Dupont 100CR薄膜显微结构、纳米颗粒的分布、大小、形状,以及在DC阶梯电场作用下,Dupont 100CR杂化薄膜与Dupont100 HN普通薄膜的击穿特件及击穿机理。
     采用Materials Studio软件模拟PI和纳米杂化PI薄膜电子结构、几何结构及能量状态。模拟结果表明,在能量最低和几何结构优化基础上,PI/α-Al_2O_3体系总能量比PI/SiO_2低得多,范德华能比PI/SiO_2高出约十倍,PI/α-Al_2O_3体系比PI/SiO_2体系更稳定,与实验结果相一致。
     SEM和TEM观察表明,采用溶胶-凝胶方法制备的纳米杂化薄膜中含有SiO_2团簇和Al_2O_3颗粒,SiO_2团簇结构不稳定,在高能电子束照射下易分解,Al_2O_3颗粒结构稳定;SAXS分析表明,该薄膜的分形维数比扩散限制凝聚模型(DLA)的理论值大,团簇是由大量小颗粒构成。
     SEM、TEM和XRD测试结果表明,Dupont 100CR纳米掺杂薄膜中只含有Al_2O_3颗粒,颗粒主要分布在聚酰亚胺有序大分子区域的边界上,在高能电子束照射下Al_2O_3颗粒结构稳定;薄膜分形维数接近于三维扩散限制凝聚模型(DLA)的理论值,粒子的回旋半径与实验测试结果一致。
     采用DC阶梯升压方式,研究Dupont 100CR杂化薄膜和Dupont 100HN普通薄膜击穿特性,击穿属稳态热击穿类型,出现直径为200 μm的丝状孔洞。研究结果表明,两种薄膜击穿孔及周围形貌存在明显差别:100CR击穿孔边缘粗糙不平,破坏范围只在孔附近;100HN变形区域很光滑且破坏范围大,变形区为一个个突起的区域。
     研究结果表明,无机纳米颗粒改变了PI薄膜基体的结构环境,起到了改善导热、提高耐电晕性、降低热损伤以及阻止电极损坏等作用。
The microstructure of the film, distribution, shape and size of inorganic nanoparticle in hybrid PI film prepared by sol-gel method and Dupont 100 CR film have been studied by means of XRD, SAXS, SEM, TEM and materials structure and property simulation soft. Under UC step electrics field, the breakdown property and mechanism of Dupont 100 CR and 100 HN have also been studied.
    The electrons structure, geometric structure and energy state of PI and nanohybrid PI have been studied by Materials Studio. The results show that the whole energy of PI/α -Al_2O_3 system is more lower than that of PI/SiO_2 under the basic of the lowest energy and optimized geometric structure. The energy of Van der Waals of PI/α -Al_2O_3 is higher 10 times than that of PI/SiO_2, thus the system of PI/α -Al_2O_3 is more stable than that of PI/SiO_2, and the conclusions are consistent with the experiment results.
    SEM and TEM observations show that the nanohybrid films prepared by sol-gel contain SiO_2 clusters and A1_2O_3 particles. Under the high energy electron beam bombarding, compared with the structure of SiO_2 clusters decomposed, the structures of Al_2O_3 particles are rather stable. The SAXS analysis show that the fractional dimensions of the film is larger than the theory value of Diffusion Limited Aggregation (DLA) and the clusters consist of a great number of small particles.
    The measuring results of SEM, TEM and XRD show that Dupont 100CR films only contain Al_2O_3 particles and the most of particles distribute on the domains (making up of arranged macromolecule) interface of PI. Under the high energy electron beam bombarding, the structures of Al_2O_3 particles are stable. The fractional dimensions of the film close to the theory value of DLA and the rotary radius agrees with the experiment results.
    Raising DC voltage by step, the breakdown characteristics of 100CR and 100HN films have been studied. The results show that the film breakdown belongs to stable heat type accompanying a wire hole with 200 μm in radius. The results show that breakdown holes for both films have obviously differences. The hole edges are coarse and uneven for 100CR and the damage zone is only around the hole. But for 100HN, the deformation zones are smooth and the damage zones are large forming many projection zones.
    The research results show that the inorganic nanoparticles change environment of PI matrix and play a role of improving thermal conductivity, increasing corona-resistance, decreasing heat damage and preventing electrode damage.
引文
[1] M.Modesti, A. Lorenzetti, D.Bon, S.Besco, Effect of processing conditions on morphology and mechanical properties of compatibilized polypropylene nanocomposites Polymer 2005, 46(23), 10237-10245.
    [2] P.Reichert, H.Nitz, S.Klinke, R.Brandsch, R.Thomann, R.Mulhaupt, Poly (propylene)/organoclay nanocomposite formation: Influence of compatibilizer functionality and organoclay modification. Macromol. Mater. Eng., 2000, 275, 8-17.
    [3] E.Muh, H.Frey, J.E.Klee, R.Mulhaupt, Organic-Inorganic Hybrid Nanocomposites Prepared by Means of Sol-Gel Condensation of Bismetha-crylatesilanes in Reactive Diluents Adv. Funct. Mater. 2001, 11, 425-429.
    [4] M.F.Frechette, M.L.Trudeau, H.D.Alamdari, S.Boily, Introductory Remarks on Nanodielectrics, IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5), 808-818.
    [5] J.K.Nelson, J.C.Fothergill, Internal Charge Behavior of Nanocomposites, Nanotechnology, 2004, 15, 586-595.
    [6] K.Morton, J.Theis Richard, New High Temperature Polyimide Insulation for Partial Discharge Resistance in Harsh Environments, IEEE Electrical Insulation, 1997, 13(4): 110-115.
    [7] 韩高荣,钟敏,赵高凌,有机-无机纳米复合材料的制备与界面特性,功能材料与器件学报,2002,8(4),421-424.
    [8] T.J.Lewis, Interfaces are the Dominant feature of Dielectrics at the nanometric level, IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5), 739-753.
    [9] 叶恒强,材料界面结构与特性[M],科学出版社,1999.
    [10] 王荣国,武卫莉,谷万里,复合材料概论[M],哈尔滨工业大学出版社,1999.8.
    [11] X.Zhu, R.Birringer, U.Herr, H.Gleiter, X-ray diffraction studies of the structure of nanometer-sized crystalline materials. Phys. Rev. B, 1987, 35, 9085-9090.
    [12] R. W. Siegel, Nanostructured materials, Nanostructured Material, 1993,3:1-18.
    [13] D. X. Li, D. H. Ping, H. Q. Ye, X. Y. Qin and X.J. Wu, HREM study of the microstructure in nanocrystalline materials, Mater. Lett. 1993, 18, 29-34.
    [14] S.Sinha, R.M.Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci., 2003, 28, 1539-1641.
    [15] R. W. Siegel, What do we really know about the atomic-scale structures of nanophase materials?.J. Phys. Chem.Solids, 1994, 55, 1097-1106.
    [16] T.Tanaka, G.C.Montanari, R.Mulhaupt, Polymer Nanocomposites as Dielectrics and Electrical Insulation-perspectives for processing Technologies, Material Characterization and Future Applications, IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5), 763-784.
    [17] 吴璧耀,张超灿,章文贡,有机-无机杂化材料及其应用,化学工业出版社,2005.
    [18] 钱海霞,熊惟皓.Sol-Gel法合成有机/无机纳米复合材料的研究进展,材料导报,2001,15(12),55-57.
    [19] 任杰,刘艳,唐小真.聚合物基有机.无机纳米复合材料的制备和性能.建筑材料学报,2004,7(1):58-65.
    [20] T.Sun, J.M.Garces, High Performance Polyproplylene-Clay Nanocomposites by In-situ Polymerization with metallocene/Clay Catalysts [J] Adv. Mater. 2002, 14(2): 128-130.
    [21] M.Okamoto, S.Morita, H.Taguchi, Y.H.Kim, T.Kotaka, H.Tateyama, Synthesis and Structure of Smectic Clay/poly(methyl methacrylate) and Clay/polystyrene Nanocomposites via in Situ interalative Polymerization, [J] Polymer, 2000, 41: 3887-3890.
    [22] 柯扬船,皮特·斯壮,聚合物-无机纳米复合材料,北京,化学工业出版社,2003.
    [23] 漆宗能,尚文字,聚合物/层状硅酸盐纳米复合材料理论与实践,北京,化学工业出版社,2002.
    [24] S.S.Ray, M.Okamoto, Polymer/layered Silica Nanocomposites:a review from Preparation to processing, Progress in polymer Science, 2003, 28, 1539-1641
    [25] T.J.Lewis, Nanometric Dielectrics, IEEE Trans. Dielectr. Electr. Insul., 1994, 1812-1825.
    [26] 丁孟贤,何天白,聚酰亚胺新型材料,1998,264-267.
    [27] 吴璧耀,张超灿,章文贡,有机-无机杂化材料及应用,北京,化学工业出版社,2005年.
    [28] 张积之,固态电介质的击穿,杭州大学出版社,1994.
    [29] J.J.O'Dwyer, The Theory of Electrical Conduction and Breakdown in Solid Dielectrics, Oxford, 1973.
    [30] P.P.Budenstein, On the mechanism of dielectric breakdown of solids. IEEE Trans.Electrical Insulation, 1980, 15, 225-240.
    [31] A.K.Jonscher and R.Lacoste, On a cumulative model of dielectric breakdown. in solids. IEEE Trans.Electrical Insulation, 1984, 19, 567-577.
    [32] B.K.Ridely, Mechanism of electrical breakdown in SiO_2 films. J.Appl. Phys., 1975, 46, 998-1007.
    [33] T. Tanaka, A. Greenword. Effects of Charge injection and extraction on tree initiation in polyethylene. IEEE Trans. Pow. Appr. Sys. 1978, PAS-95: 1749-1757.
    [34] 屠德民,阚林.高氏聚合物击穿理论的验证及其在电缆上的应用.西安交通大学学报,1989,23(2):17~22.
    [35] S.S.Bamji, A. T. Bulinske, R.J. Densley, Degration of polymeric insulation due to photoemission caused by high electric fields. TEEE Tras. Elect. Insul., 1989, 24(1), 91-98.
    [36] D.J.Dimaria, M.V.Fishetti and E.tiemey, Direct Observation of the Threshold for Electron Heating in Silicon Dioxide. Phys. Rev. Lett., 1986, 56, 1284-1286.
    [37] M.V.Fishetti, Monte Carlo Solution to the Problem of High-Field Electron Heating in SiO_2. Phys. Rev. Lett., 1984, 53, 1755-1758.
    [38] D.M. Tu, W.B. Liu, G.P. Zhuang, Z. Y. Liu, K. C. Kao, Electric breakdown under quasi-uniform field conditions and effect of emission shields in polyethylene, IEEE Trans. on EI, 1989, 24, 581-590.
    [39] Y. Zhang, J. Lewiner, N. Hanpton, Evidence of strong correlation between space-charge buildup and breakdown in cable insulation, IEEE Trans. Electr. Insul. 1996, 31, 778-783.
    [40] G. Blaise, W. J. Sarjeant, Space charge in dielectrics. Energy storage and transfer dynamics from atomistic to macroscopic scale. IEEE Trans. Electr. Insul., 1998, 5, 779-783.
    [41] G. Blaise, L. C. Gressus, Charge trapping/ detrapping processes and related breakdown phenomena in HV vacuum insulation, New York: Academic Press, 1995, 330-368.
    [42] 李吉晓,张冶文,夏钟福,秦晓,彭宗仁,空间电荷在聚合老化和击穿过程中的作用,科学通报,2000,45 (23) 2469-2475.
    [43] 陈季丹,刘子玉,电介质物理学,北京,机械工业出版社,1982.
    [44] 雷清泉编著.工程电介质最新进展.科学出版社.北京,1999.
    [45] Lin F N, Fleming R J, Naybour R D, Space Charge Accumulation in power Cable XLPE Insulation. [J] IEEE Trans. On DEI, 1999, 6(3):273-281.
    [46] Chen G, Banfrd HM, Davies A E. Space Charge Formation in Irradiated low Density Polyethylene [J] IEEE Trans. On DEI, 1998, 5(1):51-57.
    [47] Damamme G., Gressus C Le. Space Charge Characterization for the 21st century [J]. IEEE Trans. On DEI, 1997, 4(5), 558-584.
    [48] 尹毅,肖登明,屠德民,空间电荷在评估绝缘聚合物电老化程度中的应用研究,中国电机工程学报,2002,22(1),43-48.
    [49] 刘付德,杨百屯,屠德民,刘耀南,固体电介质的电老化与击穿新理论和实验,物理学报,1992,41(2),333-341.
    [50] B. B. Mandelbrot, Fractal Geometry of Nature, Freeman, San Francisco, 1982.
    [51] T. A. Witten, L. M. Sander, Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon. Phys. Rev. Lett., 1981, 47, 1400-1403.
    [52] P. Meakin, Formation of Fractal Clusters and Networks by Irreversible Diffusion-Limited Aggregation. Phys. Rev. Lett. 1983, 51, 1119-1122.
    [53] 褚武扬,宿彦京,高克玮,何健英,李金许,乔利杰,材料科学中的分形,化学工业出版社,北京,2004.
    [1] 陈正国,朱申敏,程时远.分子模拟方法及在高聚物中的应用.材料导报,1997,11(6):49~51
    [2] D. Hofmann, L. Fritz, J. Ulbrich and D. Paul. Molecular Simulation of Small Molecule Diffusion and Solution in Dense Amorphous Polysiloxanes and Polyimides. Computational and Theoretical Polymer Science, 2002, (10): 419~436
    [3] D. Hofman, L. Fritz, J. Uibrich and D. Paul. Molecular Modeling of-Amorphous Membrane Polymers. Polymer, 1997, 38(5): 6145~6155
    [4] D. Hofman, J. Ulbrich, D. Fritsch and D. Paul. Molecular Modeling Simulation of Gas Transport in Amorphous Polyimide and Poly(amide imide) Membrane Materials. Polymer, 1996, 37(21): 4773~4785
    [5] V. A. Bershtein, L. M. Egorova and P. N. Yakushev. Molecular Dynamics in Nanostructured Polyimide-Silica Hybrid Materials and Their Thermal Stability. Journal of Polymer Science: Part B: Polymer Physics, 2002, 40(1): 1056~1069
    [6] Mei-Hui Tsai, Wha-Tzone Whang. Dynamic Mechanical Properties of Polyimide/Poly(Silsesquioxane)-Like Hybrid Films. Journal of Applied Polymer Science, 2001, 81(5): 2500~2516
    [7] Matthias Heuchel, Dieter Hofmann. Molecular Modeling of Polyimide Membranes for Gas Separation. Desalination 2002, 144(10): 67~72
    [8] 刘欣,顾宜.高分子科学中的计算机模拟.高分子材料学与工程,2000,16(6):30-34
    [9] 潘睿,顾宜.分子模拟方法在聚酰亚胺结构与性能关系研究中的应用.高分子材料科学与工程,2005,21(1):18~19
    [10] 文玉华,朱如曾,周富信.分子动力学模拟的主要技术.力学进展,2003,33(1):18~19
    [11] 张立红,张军.分子动力学模拟方法及其误差分析.青岛大学学报,2003,16(2):24~28
    [12] 朱中敏,孙辉,程时远.高性能聚合物聚氨酯酰亚胺的结构和性能的分子模拟.高分子材料科学与工程,2001,17(4):23~26
    [13] 程时远,陈正国,朱申敏等.聚氨酯酰亚胺的分子模拟.湖北大学学报,1998,20(1):51~54
    [14] 刘欣,石碧,陆忠兵,分子模拟软件CERIUS~2及其在材料科学中的应用,高分子材料科学与工程,2002,18(4):16~-20
    [15] 廖沐真,吴国是,刘洪霖.量子化学从头计算方法.清华大学出版社,1981:121~123
    [16] 王志中,李向东.半经验分子轨道理论与实践.科学出版社,1981:248-252
    1 杨小震.分子模拟与高分子材料.科技出版社,2002:1~10
    2 潘睿,顾宜.分子模拟方法在聚酰亚胺结构与性能关系研究中的应用.高分子材料科学与工程,2005,21(1):15~19
    3 Jin Woo Kang, Kyoungsei Choi, Won Ho Jo and Shaw Ling Hsu. Structure-Property Relationships of Polyimids: A Molecular Simulation Approch. Polymer, 1998,39(26): 7079~7087
    4 M. Zou, T. Takeichi, A. Matsumoto, K. Tsutsumi. Surface Characterization of Polyimide Films. Colloid. Polym. Sci, 1998, 2(76): 555~564
    5 Y. Nakayama, P. Baltzer, B. Wannberg and U. Gelius. Valence-band Structure of PMDA-ODA Polyimide Studied by X-ray Photoelectron Spectroscopy and Theoretical Calculations. J. Vac. Sci. Technol. A, 1994, 12(3): 772~782
    6 J. L. Bredas, T. C. Clarke. Electronic Structure of Polyimide. J. Chem. Phys, 1987, 88(1): 253~257
    7 D. Hofmann, L. Fritz, J. Ulbrich and D. Paul. Molecular Simulation of Small Molecule Diffusion and Solution in Dense Amorphous Polysiloxanes and Polyimides. Computational and Theoretical Polymer Science, 2002, (10): 419~436
    8 D. Hofman, L. Fritz, J. Uibrich and D. Paul. Molecular Modeling of Amorphous Membrane Polymers. Polymer, 1997, 38(5): 6145~6155
    9 D. Hofman, J. Ulbrich, D. Fritsch and D. Paul. Molecular Modeling Simulation of Gas Transport in Amorphous Polyimide and Poly(amide imide) Membrane Materials. Polymer, 1996, 37(21): 4773~4785
    10 D. Hofmann, L. Fritz, J. Ulbrich, D. Paul. Molecular Simulation of Small Molecule Diffusion and Solution in Dense Amorphous Polysiloxanes and Polyimides. Computational and Theoretical Polymer Science, 2002, (10): 419~436
    11 朱申敏,孙辉,程时远.高性能聚合物聚氨脂酰亚胺的结构和性能的分子模拟.高分子材料科学与工程,2001,17(4):31~34
    12 程时远,陈正国,朱申敏等.聚氨酯酰亚胺的分子模拟.湖北大学学报,1998,20(1):51~54
    [1] S Yano, K Iwata, K Kurita, Physical properties and structure of organic-inorganic hybrid materials produced by sol-gel process [J], Materials Science and Engineering C 1998, 6(2-3), 75-90.
    [2] Xiong Mingna, You Bo, Zhou Shuxue, Wu Limin Study on acrylic resin/titania organic-inorganic hybrid materials prepared by the sol-gel process. [J] Polymer, 2004, 45(9), 2967-2976.
    [3] L.Mascial, A.Kioul, polyimide-silica hybrid materials by sol-gel processing [J], Journal of Materials Science Letters, 1994, 13,641-643.
    [4] G.H.Hsiue, W.J.Kuo, Y.P.Huang, R.J.Jeng, Microstructural and morphological characteristics of PS-SiO_2 nanocomposites. Polymer, 2000, 41, 2813-2825.
    [5] S.Jiang, D.Yu, X.Ji, L.An, B.Jiang. Confined crystallization behavior of PEO in silica networks, Polymer, 2000, 41, 2041-2046.
    [6] 李戈扬,吴亮,张流强,施晓春,李鹏兴,Ag-SiO_2纳米复合薄膜微结构研究,微细加工技术,1997,4,30-36.
    [7] 张泽南,x射线衍射在纳米材料物理性能测试中的应用,[J],浙江工业大学学报,2002,30(1),31-35.
    [8] 冯端,师昌绪,刘治国材料科学导论.融贯的论述[M],北京,化学工业出版社,2002年,143.
    [9] 张晋远,郑毅,朱瑞珍,纳米体系粒度分布的X射线小角散射表征,现代科学仪器,2003,2,3-8.
    [10] 孟昭富.小角X射线散射理论及应用[M].长春:吉林科学技术出版社,1996 30-32.
    [11] Z.F.Meng, Background Correction of the SAXS Intensities Scattered by Semicrystalline Materials. J.Appl.Cryst.. 1992, 25, 646-647.
    [12] 赵辉,郭梅芳,董宝中,小角X射线散射结晶聚合物过渡层厚度的测定,物理学报,2004,53(4),1247-1250.
    [1] G.Blaise and C.L.Gressus. Charging and flashover induced by surface polarization relaxation process. [J]. J. Appl. Phys., 1991, 69: 6334-6339.
    [2] 张明艳,王芳,金镇镐,袁敬和,曾恕金,范勇,雷清泉。无机组分对聚酰亚胺杂化薄膜电性能的影响.[J] 材料科学与工艺,2004,12(6):576-578
    [3] C.L.Gressus, and G.Blaise. Breakdown phenomena related to trapping/detrapping processes in wide band gap insulators. [J]. IEEE Trans. Elec. Insul., 1992, 27: 472-481.
    [4] G.Teyssedre, C.Laurent, G.C.Montanari, F.Palmierer, A. See, L.A.Dissado and J.C.Fothergilli. Charge distribution and electroluminescence in cross-linked polyethylene under dc field [J]. J. Phys. D: Appl. Phys., 2001, 34: 2830-2845.
    [5] G.A.Kimmel and T.M.Orlando. Observation of Negative Ion Resonances in Amorphous Ice via Low-Energy (5-40 eV) Electron-Stimulated Production of Molecular Hydrogen. [J]. Phys. Rev. Lett., 1996, 77: 3983-3986.
    [6] J.L.Auge, C.Laurent, D.Fabiani and G. C.Montanari. Investigating dc polyethylene threshold by space charge. Current and electroluminescence measurements. [J]. IEEE Trans. DEI., 2000, 7(6): 797-803.
    [7] H.Cui, RA.Burke. Time-dependent dielectric breakdown of hydrogenated silicon carbon nitride thin films under the influence of copper ions. [J]. Appl. Phys. Lett., 2004, 84(14): 2629-2631.
    [8] J.Horvath, R.Birringer and H.Gleiter. Diffusion in nanocrystalline material. [J]. J. Solid State Commun., 1987, 62: 319-322.
    [9] K.L.Jensen. Exchange-correlation, dipole, and image charge potentials for electron sources: Temperature and field variation of the barrier height. J. Appl. Phys., 1999, 85, 2667-2680
    [10] W.Richard, Z.B.Van, On field emission from a semiconductor substrate Appl. Phys. Lett., 1999,75: 2410-2412
    [11] C.Adessi, M.Devel, Theoretical study of field emission by single-wall carbon nanotubes, Phys. Rev. B, 2000, 62(20): R13314- R13317.,
    [12] A.A.G.Driskill-Smith, D.G.Hasko, H.Ahmed, The "nanotriode:" A nanoscale field-emission tube. Appl. Phys. Lett., 1999, 75: 2845-2847.
    [13] S.Han, J.Ihm, Role of the localized states in field emission of carbon nanotubes, Phys. Rev. B, 2000,61:9986-9989.
    [14] B.Lippmann, L.Schwinger Variational Principles for Scattering Processes. J., Phys.Rev., 1950, 79: 469-480.
    [15] C.Adessi, M.Devel, Theoretical study of field emission by a four atoms nanotip: implications for carbon nanotubes observation, Ultramicroscopy, 2000, 85: 215-223.
    [16] 王如志,王波,严辉,场电子发射研究现状及理论概述,物理,2002,31(2),84-87.
    [17] Chen R., Kirsh Y., Analysis of Thermally Stimulated Process [M], Oxford: Pergamon Press, 1981: 306-307.
    [18] 张维国,高压力下无机纳米杂化聚酰亚胺薄膜的热激电流谱特性,哈尔滨理工大学硕士学位论文,2004年1月,42-43.
    [19] 林家齐,电致发光测量装置的研制及几种典型聚合物电致发光谱特性,哈尔滨理工大学博士学位论文,2006年6月,59-78.
    [20] M.Ieda, M.Nagao, M.Hikita. High-field conduction and breakdown in insulating polymers, Present situation and future prospects. IEEE Trans. on DEI, 1994, 1(5):934-945.
    [21] J.Kyu, Effect of grain size of Pb(Zr_(0.4)Ti_(0.6))O_3 sol-gel derived thin films on the ferroelectric properties, Applied Surface Science, 2001, 169-170, 544-548.
    [22] V.G. Litovchenko, Y.V.Kryuchenko, Field Emission from Structure with Quantum wells, J.Vac. Sci.Technol, 1993, B11 (2), 362-365.
    [23] 黄庆安,童勤义.SiO_2钝化膜对硅/玻璃静电键合的影响.半导体学报.1995,16(5),391-394.
    [24] K.L.Jensen, A.K.Ganguly, Numerical Simulation of Field Emission from silicon J.Vac. Sci. Technol., 1993, B11(2), 371-378.
    [25] M.Hikita, I.Ishino, G.Sawa and M.Ieda. Electrical Breakdown of Linear Low-Density Polyethylene. [J]. Japan. J. Appl. Phys., 1986, 25: 500-501,
    [26] T.Mizutani, I.Kanno, M.Hikita and M.Ieda. Pre-breakdown currents due to filamentary thermal breakdown in polyimide films. [J]. IEEE Trans. EI.,1987, 22: 473-477.
    [27] 刘志林,李志林,刘伟东,著.界面电子结构与界面性能[M].北京:科学出版社,2002
    [28] K.R. Lee, K.Y. Eun, S.Lee, D.R. Jeon. Field emission behavior of (Nitrogen incorporated)diamond-like carbon films. Thin Solid Films. 1996, 290-291, 171-175.
    [29] 李运钧,姚宁,何金田,庄志明,张兵临,龚知本,非晶碳.聚酰亚胺复合薄膜的场致电子发射预击穿现象研究,光电子激光,1997,8(5),358-361.
    [30] R. G. Forbes. Refining the application of Fowler-Nordheim theory. Ultramicroscopy. 1999, 79, 11-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700