基于微探针加工技术的分子自组装过程实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米科技作为引领新一代技术革命的技术,近年来在信息、材料、生物、微电子等方面显示出重要的应用前景。有序纳米微结构材料是纳米技术的核心和基础材料之一,如何方便、可控地制备预定结构的纳米微结构材料,是当今纳米制造的热点问题。最新发展起来的嵌段共聚物自组装技术,能够自下而上的制备出纳米微结构,如何调控嵌段共聚物自组装过程对制备出高度有序的纳米微结构有重要的意义。
     本课题主要研究基底图案对嵌段共聚物自组装过程的调控作用。首先实现了AFM纳米加工系统的Z向闭环加工方式,运用研制的加法器电路实现开环加工方式与闭环加工方式的切换。对比了两种加工方式的特点,最终选择了对深度控制更加精确的闭环加工方式作为基底图案的加工方式。
     运用AFM纳米加工系统在铝合金及硅材料表面加工出了一系列二维、三维微结构。研究了进给量、垂直载荷对加工深度、表面粗糙度以及图案形状精度的影响规律,分析了采用灰度图方式能够加工得到高精度的三维微结构的原因。
     在加工好的基底上浇铸SEBS嵌段共聚物分子,研究了基底图案对自组装过程的调控作用。分析了不同的加工深度、表面粗糙度以及图案形状精度对自组装纳米微结构的影响。并同光刻技术加工的基底图案调控出的自组装纳米微结构做了对比,得到了应用AFM加工技术加工基底图案的优缺点。
Nanotechnology as a leading technology in the new generation of technology revolution shows important applications in the field of materials, biotechnology, microelectronics, etc. in the recent years. Well ordered nanostructure is one of the key technology and basic material in the nanotechnology. How to fabricate nonmaterial conveniently and freely is the focus of the nanotechnology. The new bottom-up block copolymer self-assembly technology can fabricate periodic nanostructures over macroscopic length scales, so this technology has very important meaning in fabricating high ordered nanostructures.
     This paper studied the process of the block copolymer on the surface of the substrates with graphics. First of all, a Z direction closed-loop control approach had been achieved in the AFM nano-machining system by using the adder circuit, through which the closed-loop control method and the open-loop control method can be switched. Comparing the characteristics of the close-loop control methods and open-loop control method, the first was better for controlling Z direction therefore was chosen to machine the graphics on the surface of substrates.
     Second, a series of two-dimensional, three-dimensional microstructures was machined on the surface of the silica and the aluminum substrates using the AFM nano-machining system. The effects of the feed, the normal load on machining depth, surface quality and graphic precision were analyzed. The reason for getting the high precision picture by using the grayscale for its model was revealed.
     Finally, the SEBS was cast on the substrates with graphics to study the effects of graphoepitaxy on the block copolymer self-assembly. The effects of the machining depth, surface quality and the graphic precision on the process of the self-assembly were studied.
引文
1王中林.从纳米技术到纳米制造.纳米科技. 2006, 3(1): 5~10
    2 Y. Xia, G. M. Whitesides. Soft Lithography. Annual Review of Materials Science. 1998,(28):153~184
    3 S.B. Darling. Directing the self-assembly of block copolymer. Prog. Polym. Sci. 2007, 32(10): 1152~1204G.
    4 D.M. Eigler, E.K. Schweizer. Positioning Single Atoms with a Scanning Tunneling Microscope. Nature. 1990, 344: 524~526
    5 S.Hosoki, S. Hosaka, T. Hasegawa. Surface Modification of MoS2 Using a STM. Applied Surface Science. 1992, 60~61: 643~647
    6 H.J. Mamin, S.Chiang, H. Birk, et al. Gold Deposition from a Scanning Tunneling Microscope Tip. Journal of Vacuum Science & Technology. 1991,9: 1398~1402
    7 F. K. Perkins, E. A. Dobisz, S. L. Brandow, T. S. Koloski, J. M. Calvert, K. W. Rhee, J. E. Kosakowski, C. R. K. Marrian. Proximal Probe Study of Self-Assembled Monolayer Resist Materials. Vac. Sci. Technol. 1994, 12(6): 3725~3730
    8白春礼.扫描隧道显微术最新进展与原子搬迁.物理. 1995, 24(6): 321~324
    9史强,朱清时.用扫描隧道纤维术进行单原子操纵的机理研究.物理学进展. 1998, 18(2): 177~186
    10雷晓军,陈海峰,刘忠范.用STM针尖诱导热致气化模式的纳米级信息存储.中国科学(B辑). 2001, 31(1) : 67~71
    11 X. Lin, W.N. Unertl. Submicrometer Modification of Polymer Surfaces with a Surface Microscope. Appl. Phys. Lett., 1992,61(6): 657~659
    12 J. Garnaes, T. Bjornholm, J.A.N. Zasadzinski. Nanoscale Lithography on Langmuir-Blodgett Films of Behinic Acid. J. Vac. Sci. Technol. 1994, 12(3): 1839~1842
    13 S. Tegen, B. Kracke, B. Damaschke. Surface Modifications with a Scanning Force Microscope. Rev. Sci. Instrum.1997, 68(3): 1458~1460
    14 R. Magno, B. R. Bennett. Nanostructure Patterns Written in III-V Semiconductors by an Atomic Force Microscope. Appl.Phys.Lett. 1997, 70(14): 1855~1857
    15 J. Q. Song, Z. F. Liu, C. Z. Li, et al. SPM-Based Nanofabrication Using a Synchronization Technique. Appl. Phys A.1998, 66(S715): 1247~1251
    16 T. F. Fang, C.I. Weng, J.G. Chang. Machining Characterization of the Nano-Lithography Process Using Atomic Force Microscopy. Nanotechnology. 2000, 11: 181~187
    17 Y.D. Yan, S. Dong, T. Sun. 3D Force Components Measurement in AFM Scratching Tests. Ultramicroscopy. 2005, 105: 62~71
    18 Y.D. Yan, T. Sun, S. Dong. Study on Effects of Tip Geometry on AFM Nanoscratching Test. Wear. 2007, 262: 477~483
    19闫永达,孙涛,董申,梁迎春,程凯.基于SPM的纳米加工技术研究进展.机械工程学报. 2003, 39(9): 38~43
    20 T. Sun, Y.D. Yan, J.F. Xia, et al. Research on Micro Machining Using AFM Diamond Tip. Key Engineering Materials. 2004, 259: 577~581
    21赵健伟,阚蓉蓉,郭彦,章岩,陈洪渊.扫描探针显微术在巯醇自组装单分子膜纳米刻蚀中的应用.物理化学学报. 2006, 22(1): 124~130
    22 G.Y. Liu, S. Xu, Y. Qian. Nanofabrication of Self-Assembled Monolayers Using Scanning Probe Lithography. Acc. Chem. Res.. 2000, 33(7): 457~466
    23 S. Xu, G.Y. Liu. Nanometer-Scale Fabrication by Simultaneous Nanoshaving and Molecular Self-Assembly. Langmuir. 1997, 13(2):127~129
    24 S. Xu, S. Miller, E. L. Paul, G.Y. Liu. Fabrication of Nanometer Scale Patterns within Self-Assembled Monolayers by Nanografting. Langmuir. 1999, 15(21):7244~7251
    25 F.S. Chien, Y.C. Chou. Nano-Oxidantion of Silicon Nitride Films with an Atomic Force Microscope : Chemical Mapping, Kinetics, Applications. Journal of Applied Physics. 2001, 89(4): 2465~2472
    26 S.H. Hong, C. A. Mirkin. A Nanoplotter with Both Parallel and Serial Writing Capabilities. Science. 2000, 288(5472): 1808~1811
    27 E. Helfand, Z. R. Wasserman. Block Copolymer Theory for Narrow Interphase Approximation, Macromolecules. 1976,(9): 879~888
    28 M. Campbell, D. A. Sharp, M. T. Hawison, et al. Fabrication of Photonic Crystals for the Visible Spectrum by Holographic Lithography. Nature. 2000(404): 53~56
    29 M. Ramanathan, E. Nettleton, S. B. Darling. Simple Orientational Control Over Cylindrical Organic-Inorganic Block Copolymer Domains for Etch Mask Applications. Thin Solid Films. 2009, 517(15): 4474~4478
    30 G. A. Ozin, K. Hou, B. V. Lotsch, et al. Nanofabrication by Self-Assembly. Materials Today. 2009, 12(5): 12~23
    31 M. Kimura, M. J. Misner, T. Xu, et al. Long-Range Ordering of Diblock Copolymers Induced by Droplet Pinning. Lang-Muir, 2003,19 (23): 9910~9913
    32 J. Peng, D. H. Kim, W. Knoll, et al. Morphologies in Solvent-Annealed ThinFilms of Symmetric Diblock Copolymer. Chem Phys, 2006,125: 064702
    33 J. J. Tang, Y. Wang, Z, Jiao, et al. Self-Assmbly Nanostructures of One Dimensional Antimony Oxide and Oxychloride. Material Letters. 2009, 63(17): 1481~1484
    34 K. Amundson, E. Helfand, D. D. Davis, et al. Effect of an Electric Field on Block Copolymer Microstructure. Macromolecles, 1991, 24(24): 6546~6548
    35 K. Amundson, E. Helfand, D. D. Davis, et al. Alignment of Lamellar Block Copolymer Microstructure in an Electric Field. Alignment Kinetics. Macromolecules, 1993, 26(11): 2698~2703
    36 K. Amundson, E. Helfand, D. D. Davis, et al. Alignment of Lamellar Block Copolymer Microstructure in an Electric field. Mechanisms of Alignment. Macromolecules, 1994, 27(22): 6559~6570
    37 T. L. Morkved, M. Lu, A. M. Urbas, et al. Local Control of Microdomain Orientation in Diblock Copolymer Thin Films with Electric Fields. Science, 1996, 273(5277): 931~933
    38 T. Albrecht, J. Schotter, G. A. Kastle, et al. Ultrahigh-Density Nanowire Arrays Grown in Self-Assenbled Diblock Copolymer Templates. Science, 2000, 290(5499): 2126~2129
    39 P. Mansky, P. Chaikin, E. L. Thomas. Monolayer Films of Diblock Copolymer Microdomains for Nanolithographic Application. J Mater Sci, 1995, 30(8): 1987~1992
    40 X. Han, J. Xu, H. Liu, et al. a New Approach toThick Films of a Block Copolymer with Ordered Surface Structures. Macro Rap Comm, 2005, 26(22): 1810~1813
    41 C. A. Rosa, C. Park, E. L. Thomas, et al. Microdomain Patters from Directional Eutectic Solidification and Epitaxy. Nature, 2000, 405 (6785): 433~437
    42 L. Rockford, Y. Liu, P. Mansky, et al. Polymers on Nanoperiodic, Heterogeneous Surfaces. Phys Rev Lett, 1999,82(12): 2602~2605
    43 R. A. Segalman, H. Yokoyama, E. J. Kramer. Graphoepitaxy of Spherical Domain Block Copolymer Films. Advanced Materials. 2001,13(5): 1152~1155
    44 S. Park, G. S. W. Craig, Y. La, et al. Square Arrays of Vertical Cylinders of PS-b-PMMA on Chemically Nanopatterned Surfaces. Macromolecules, 2007, 40(14): 5084~5094
    45 T. Hashimoto, J. Bodycomb, Y. Funaki, et al. Single-grain Lamellar Microdomain from a Dibock Copolymer, Macromolecules, 1999(32): 2075~2079
    46 M.D. Morariu, N.E. Voicu, E. Schaffer, et al. Hierarchical Structure Formation and Pattern Replication Induced by an Electric Field, Nat Mater. 2003(2):48~52
    47曹永智.嵌段共聚物薄膜自组装有序纳米微结构的研究.哈尔滨工业大学博士学位论文. 2006. 59~82
    48 K. Hokkirigawa, K. Kato. an Experimental and Theoretical Investigation of Ploughing, Cutting and Wedge Formation during Abrasive Wear. Tribology international.1998, 21(1): 51~57
    49 M. Scott. Fontana. UMI Microform 3180902 .2005,48~57
    50 R. Hosemann, S. N. Bagchi. Direct Analysis of Diffraction by Matter, Amsterdan: North-Holland Publ, 1962.R. S. Stein, J Polym. Sci., 1958, 31 : 327~343
    51闫永达.基于AFM的纳米加工机理及相关工艺技术研究.哈尔滨工业大学博士学位论文. 2007. 58-83
    52 J. Y. Cheng, C. A. Ross, E. L. Thmas. Fabrication of Nanostructures with Long-Range Using Block Copolymer Lithography. Appl. Phys. Lett.,.2002, 81(19) : 3657~3659

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700