恶性骨肿瘤瘤缘:MRI与病理对照实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的通过磁共振成像(MRI)观察兔VX2恶性骨肿瘤在骨髓内的浸润范围(瘤缘),并与病理检查结果进行对照,探讨MRI在判断恶性骨肿瘤髓内瘤缘准确性方面的诊断价值。材料和方法选取兔龄、体重相近的新西兰大白兔共25只,于右侧胫骨平台下20mm处植入VX2肉瘤组织块制备成模型兔。待肿瘤破坏骨皮质在周围软组织内形成肿块时行MRI检查,基本成像序列包括SE T1WI、Fat-Sat FSE T2WI、STIR, Fat-Sat SE TIWI+C序列,扫描方位选取矢状位。检查完成后即刻处死模型兔,取标本行病理检查。测量MRI不同序列图像髓内肿瘤纵径远离关节面的最远点到胫骨平台的垂直距离,以此作为肿瘤髓内的瘤缘,并与病理标本进行比较。数据分析采用SPSS17.0统计软件,MRI不同序列图像之间髓内瘤缘测量值的比较采用单因素方差分析,MR不同序列图像髓内瘤缘测量值和病理标本测量值的差值比较分别采用单样本t检验。结果(1)MRI各序列图像在显示肿瘤髓内瘤缘方面,SE TIWI、Fat-Sat FSE T2WI、STIR、Fat-Sat SE TIWI+C序列图像髓内瘤缘的测量值分别为(44.5±10.8)mm、(41.0±9.7)m、(40.7±9.4)mm、(40.3±9.5)mm,四种序列之间的差异无统计学意义(F=0.802,P=0.497>0.05)。(2) SE TIWI、Fat-Sat FSE T2WI、STIR、Fat-Sat SE TIWI+C序列图像髓内瘤缘的测量值和病理标本测量值的差值比较均有统计学意义(t值分别为7.05、6.34、6.45、8.15,P值均<0.05)。(3) SE TIWI、Fat-Sat FSE T2WI、STIR、Fat-Sat SE TlWI+C序列图像髓内瘤缘测量值与病理标本测量值的差值平均值分别为5.2mm、1.7mm、1.5mm、1.0mm。(4)MRI不同序列中,Fat-Sat SE TIWI+C序列图像显示髓内瘤缘的敏感性和特异性分别为88.9%、100%,SE T1WI序列图像显示髓内瘤缘的敏感性和特异性分别为58.3%、44.4%。结论(1)MRI检查在显示恶性肿瘤髓内瘤缘方面具有较高的准确性。(2)MRI不同序列中,Fat-Sat SET1WI+C序列图像显示髓内瘤缘的敏感性和特异性均最高。(3)Fat-Sat SE TIWI+C序列可作为观察肿瘤髓内瘤缘的最佳MR序列。
Objective To observe the medullary extent of rabbit VX2malignant bone tumor by the modalities of magnetic resonance imaging (MRI) and pathology so as to investigate the role of MRI in displaying the margin of malignant bone tumor. Materials and methods Twenty-five rabbits were used to erect experimental phantom. The tumor was implanted into the proximate metaphysis of right tibia. Radiological examinations were taken after four to five weeks. The sweep sequences included SE T1WI、Fat-Sat FSE T2WI、STIR、 Fat-Sat SE T1WI+C. After the examination, experimental rabbits would be put to death immediately and taken pathological examination. The medullary margin of tumor was measured from the most distal site to the tibial plateau. Statistical study was processed with statistical software SPSS17.0. Result (1) No statistical significance was found among all series of MRI (F=0.802, P=0.497>0.05). The average of tumor margin in marrow cavity with group SE T1WI、Fat-Sat FSE T2WI、 STIR、Fat-Sat SE T1WI+C were (44.5±10.8)mm、(41.0±9.7)mm、(40.7±9.4)mm、(40.3±9.5)mm, respectively.(2) Statistical significance were found between the difference of tumor margin in group SE T1WI、Fat-Sat FSE T2WI、STIR、Fat-Sat SE T1WI+C and pathological sample(t=7.05、 6.34、6.45、8.15, P<0.05).(3) The sensitivity of group SE T1WI and group Fat-Sat SE T1WI+C was58.3%、88.9%, respectively. The specificity of group SE T1WI and group Fat-Sat SE T1WI+C was44.4%、100%, respectively.(4) The average difference of tumor margin between group SE T1WI and group pathology、group Fat-Sat FSE T2WI and group pathology、 group STIR and group pathology、group Fat-Sat SE T1WI+C and group pathology was5.2mm、1.7mm、1.5mm、1.0mm, respectively. Conclusion (1) The accuracy of MRI in displaying the tumor margin in marrow savity of malignant bone tumor was rational.(2) Both sensitivity and specificity of Fat-Sat SE T1WI+C were highest among all the sequences of MRI.(3) Fat-Sat SE T1WI+C was the optical scanning sequence in displaying the tumor margin of malignant bone tumor.
引文
1 方挺松,许乙凯,等.兔VX2骨肿瘤模型及综合影像评价.临床放射学杂志,2004,23:812—815
    2 Ccrino LE, King BJ, et al. Growth of VX2 carcinoma in bone. Mayo Clin Proc,1963,38:484-489
    3 Enneking WF, Flynn L. Effects of VX2 carcinoma implanted in bone in rabbits. Cancer Res,1968,28:1007-1013
    4 孙诚,柳霞,等.兔VX2肿瘤模型的建立及其在影像研究捉拿嘎的应用.中国医学影像学杂志,2003,11:212-214
    5 Amundson E, Pradilla G, et al. A novel intravertebral tumor model in rabbits. Neurosurgery,2005,57:341-346
    6 孟悛非,陈应明,骨肉瘤x的CT征象.中华放射学杂志,1999,33(3):193
    7 殷汉民,夏和顺.骨肉瘤X线表现及其病理学基础的研究.中华放射学杂志,1994,28(2):107
    8 Destouet JM. Gilula LA, Murphy WA. Computed tomography of long bone osteosarcoma. Radiology,1979,131 (2):439
    9 Ayerza MA, Muscolo DL, Aponte-Tinao L. Articular surface sparing procedures in the treatment of bone sarcomas. Curr Opin Orthop, 2005,16:501-507
    10 Saueressig U, Uhl M, van Buiren M, et al. Osteosarcoma:preliminary results of in vivo assessment of tumor necrosis after chemotherapy with diffusion-and perfusion-weighted magnetic resonance imaging. Invest Radiol,2006, 41:618-623
    11 Hoffer FA, Nikanorov AY, Reddick WE, et al. Accuracy Of MRI imaging for detecting epiphyseal extension Of osteosarcoma. Pediatr Radiol,2000, 30:289-298
    12 O'Flanagan SJ, Stack JP, McGee HM, et al. Imaging of intramedullary tumor spread in osteosarcoma. A comparison of techniques, Bone Joint Surg, 1991,73:998-1001
    13 McGuire MH, Sundaram M, Herbold DR, et al. Magnetic resonance imaging in planning limb-salvage surgery for primary malignant tumors or bone. Bone Joint Surg(Am),1986,68:809-819
    14 Marlfhni M, Ruggieri P, Gillespy T 3rd, el al. Staging of intra-osseous extent of osteo-sarcoma:correlation of preoperative CT and MRI imaging with pathologic macroslides. Radiology,1988,167:765-767
    15 Spanier SS, Meyer MS, Moser M, et al. Evaluating marrow margins for resection Of osteosarcoma. A modem approach. Clin Orthop Relat Res,1999,(363):170-175
    16.李建民,杨强,杨志平,等.骨肉瘤髓腔内侵袭范围MRI测量与确定合理截骨平面的相关研究.中国矫形外科杂志,2005,13:1792-1794
    17杨世勋,吴春根,尚克中,等.骨肉瘤局部侵犯范围的术前MRI评价.中国计算机成像杂志,1996,2:183-186
    18 蔡宣松,梅炯,杨振燕,等.肢体骨肉瘤髓内侵袭范围的术前判断.癌症,2001,20:76-79
    19 Saifuddin A. The accuracy of imaging in the local staging Of appendicular osteosarcoma. Skeletal Radio,2002,31:191-201
    20 Murphey MD, Jelinek JS, Temple HT, et al. Imaging of periosteal osteosarcoma:radiologicc-pathologic comparison. Radiology, 2004,233:129-138
    21 Fletcher BD, Onikul E, Parham DM, et al. Accuracy of MRI imaging or estimating intraosseous extent of osteosarcoma. AJR,1996,167:1211-1215
    22 Baddeley H, Golfieri R, Pringle JS, et al. MRI in primary bone tumors: therapeutic implications. Eur J Radiol,1991,12:201-207
    1 Yoneda T, Williams PJ, Myoi A, et al. G. Cellular and molecular mechanisms of development of skeletal metatases. Tumor bone diseases and osteoporosis in cancer patients,1999:41-69.
    2 Cher ML. Mechanisms governing bone metastasis in prostate cancer. Curr Opin Urol,2001,11:483-488.
    3 Nemeth JA, Harb JF, Barroso UJr, et al. Severe combined immunodeficient model of human prostate cancer metastasis to human bone. Cancer Res,1999,59:1987-1993.
    4 Schneider A, Taboas JM, Krebsbach PH, et al. An ectopic tissue engineered bone model to study hormonal responses in vivo [abstract]. Presented at the Third North American Symposium on Skeletal Complications of Malignancy, Bethesda, MD, April 25-27,2002.
    5 LeRoy BE, Bahnson RR, Rosol TJ. Canine prostate induces new bone formation in mouse calvaria:a model of osteoinduction by prostate tissue. Prostate.,2002,50:104-111.
    6 Lelekakis M, Moseley JM, Martin TJ, et al. A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis,1999,17:163-170.
    7 Tennant TR, Kim H, Sokoloff M, et al. The Dunning model. Prostate,2000,43:295-302.
    8 Blomme EAG, Dougherty KM, Pienta KJ, et al. Skeletal metastasis of prostate adenocarcinoma in rats:morphometric analysis and role of parathyroid hormone-related protein. Prostate,1999,39:187-197.
    9 Koutsilieris M. PA-Ⅲ rat prostate adenocarcinoma cells. In Vivo, 1992,6:199-203.
    10 Galasko CS. Mechanisms of lytic and blastic metastatic disease cf bone. Clin Orthop,1982,169:20-27.
    11 Ip C. Mammary tumorigenesis and chemoprevention studies in carcinogen-treated rats. J Mammary Gland Bio Neoplasia,1996,1:37-47.
    12 Stoica G, Koestner A, Capen CC. Characterization of Nethyl-N-nitrosourea-induced mammary tumors in the rat. Am J Pathol,1983,110:161-169.
    13 Stoica G, Koestner A, Capen CC. Neoplasms induced with high single doses of N-ethyl-N-nitrosourea in 30-day-old Sprague-Dawley rats, with special emphasis on mammary neoplasia. Anticancer Res,1984,4:5-12.
    14 Pollard M, Wolter WR, Sun L. Pro state-seminal vesicle cancers induced in noble rats. Prostate,2000,43:71-74.
    15 Huss WJ, Maddison LA, Greenberg NM. Autochthonous mouse models for prostate cancer:past, present and future. Semin Cancer Biol,2001,11:245-260.
    16 Cardiff RD, Anver MRI, Gusterson BA, et al. The mammary pathology of genetically engineered mice:the consensus repot and recommendations from the Annapolis meeting. Oncogene.2000,19:968-988.
    17 Yoneda T. Cellular and molecular basis of preferential metastasis of breast cancer to bone. J Orthop Sci,2000,5:75-81.
    18 Paget S. The distribution of secondary growths in cancer of the breast. Lancet,1889,1:571-573.
    19 Yoneda T, Michigami T, Yi B, et al. Use of bisphosphonates for the treatment of bone metastasis in experimental animal models. Cancer Treat Rev,1999,25:293-299.
    20 Zhang J, Dai J, Qi Y, et al. Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest,2001,107:1235-1244.
    21 Yoneda T. Arterial microvascularization and breast cancer colonization in bone. Histol Histopathol,1997,12:1145-1149.
    22 Hoffman RM. Orthotopic metastatic mouse models for anticancer drug discovery and evaluation:a bridge to the clinic. Invest New Drugs,1999,17:343-359.
    23 Zhau HE, Li CL, Chung LW. Establishment of human prostate carcinoma skeletal metastasis models. Cancer,2000,88:2995-3001.
    24 Howard RB, Mullen JB, Pagura ME, et al. Characterization of a highly metastatic, orthotopic lung cancer model in the nude rat. Clin Exp Metastasis,1999,17:157-162.
    25 Corey E, Quinn JE, Bladou F, et al. Establishment and characterization of osseous prostate cancer models:intratibial injection of human prostate cancer cells. Prostate,2002,52:20-33.
    26 Yi B, Williams PJ, Niewolna M, et al. Tumor-derived platelet-derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer. Cancer Res,2002,62:917-923.
    27 Mohammad KS, Yin JJ, Grubbs BG, et al. Endothelin-1 (ET-1) mediates pathological but not normal bone remodeling. J Bone Miner Res,2001,16:S453.
    28 Chirgwin JM, Guise TA. Molecular mechanisms of tumor bone interactions in osteolytic metastases. Crit Rev Eukaryot Gene Expr,2000,10:159-178.
    29 Wetterwald A, van der PG, Que I, et al. Optical imaging of cancer metastasis to bone marrow:a mouse model of minimal residual disease. Am J Pathol, 2002,160:1143-1153.
    30 Sweeney TJ, Mailander V, Tucker AA, et al. Visualizing the kinetics of tumor-cell clearance in living animals. Proc Natl Acad Sci USA, 1999,96:12044-12049.
    31 Edinger M, Sweeney TJ, Tucker AA, et al. Noninvasive assessment of tumor cell proliferation in animal models. Neoplasia,1999,1:303-310.
    32 Yang M, Baranov E, Moossa AR, et al. Visualizing gene expression by whole body fluorescence imaging. Proc Natl Acad Sci USA,2000,97:12278-12282.
    33 Rice BW, Cable MD, Nelson MB. In vivo imaging of light-emitting probes. J Biomed Opt,2001,6:432-440.
    34 Sundaram M, McGuire MH. Computed tomography or magnetic resonance for evaluating the solitary tumor or tumor-like lesion of bone. Skeletal Radio,1988,17:393-401.
    35 Mankin HJ, Lange T, Spanier S. The hazards of the biopsy in patients with malignant primary bone and soft tissue tumors. Bone Joint Surg,1982,64-A:1121-1127.
    36 Zimmer WD, Berquist TH, McLeod RA, et al. Bone tumors:magnetic resonance imaging versus computed tomography. Radiology,1985,15:709-781.
    37 Sundaram M, McGuire MH, Herbold DR, et al. Magnetic resonance imaging in planning limb-salvage surgery for primary malignant tumors of bone. Bone Joint Surg,1986,68-A.809-819.
    38 Bohndorf K, Reiser M, Lochner B, et al. Magnetic resonance imaging of primary tumors and tumor-like lesions of bone. Skeletal Radiol,1986,15:511-517.
    39 Pettersson H, Gillespy T, Hamlin DJ, et al. Primary musculoskeletal tumors: examination with MRI imaging compared with conventional modalities. Radiology,1987,164:237-241.
    40 Bloem JL, Taminian AH, Eulderink F, et al. Radiologic staging of primary bone sarcoma:MRI imaging, scintigraphy, angiography and CT correlated with pathologic examination. Radiology,1988,169:805-810.
    41 Sundaram M, McGuire MH, Herbold DR. Magnetic resonance imaging of osteosarcoma. Skeletal Radiol,1986,15:511-517.
    42 Sundaram M, Merenda G, McGuire MH. A skip lesion in association with Ewing sarcoma. Bone Joint Surg,1989,71-A(5):764-768.
    43 Erlemann A, Reisder MF, Peters PE, et al. Musculoskeletal neoplasms:static and dynamic Gd-DTPA-enhanced MRI imaging. Radiology,1989,171:767-773.
    44 Sundaram M, McDonald DJ. The solitary tumor or tumor-like lesion of bone. Top Magn Reson Imaging,1989,1(4):17-29.
    45 Sundaram M, McGuire MH, Herbold DA, et al. High signal intensity soft tissue masses on T1 weighted pulsing sequences. Skeletal Radiol,1987,16(1):30-36.
    46 Bush CH, Spanier SS, Gillespy T 111. Imaging of atypical lipomas of the extremities:report of three cases. Skeletal Radiol,1988,17:472-475.
    47 London J, Kim EE, Wallace S, et al. MRI imaging of liposarcomas:correlation of MRI features and histology. Comput Assist Tomogr,1988,13:832-835.
    48 Sundaram M, Baran G, Merenda G, et al. Myxoid liposarcoma:MRI appearances with clinical and histological correlation. Skeletal Radiol,1990,19:359-362.
    49 Yuh WTC, Kathol MH, Sein MA, et al. Hemangiomas of skeletal muscle:MA findings in five patients. AJR,1987,149:765-768.
    50 Cohen EK, Kressel HY, Perosio T, et al. MA imaging of soft-tissue hemangiomas: correlation with pathologic findings. AJR,1988,150:1079-1081.
    51 Kransdorf MJ, Jelinek JS, Moser RP, et al. Soft-tissue masses:diagnosis using MRI imaging. AJR,1989,153:541-547.
    52 Binkovitz LA, Berquist TH, McLeod RA. Masses of the hand and wrist: detection and characterization with MRI imaging. AJR,1990,154:323-326.
    53 Vanel D, Lacombe M, Couanet D, et al. Musculoskeletal tumors:follow-up with MRI imaging after treatment with surgery and radiation therapy.
    -Radiology,1987,164:243-245.
    54 Sundaram M, McGuire MH, Herbold DR. Magnetic resonance imaging of soft tissue masses:an evaluation of fifty-three histologically proven tumors. Magn Reson Imaging,1988,6:237-248.
    55 Redmond OM, Stack JP, Dervan PA, et al. Osteosarcoma:use of MRI imaging and MRI spectroscopy in clinical decision making. Radiology,1989,172:811-815.
    56 Sanchez RB, Quinn SF, Walling A, et al. Musculoskeletal neoplasms after intra-artenal chemotherapy:correlation of MRI images with pathologic specimens. Radiology,1990,174:237-240.
    57 Pan G, Raymond AK, Carrasco CH, et al. Osteosarcoma:MRI imaging after preoperative chemotherapy. Radiology,1990,174:517-526
    58 Holscher HC, Bloem JL, Nooy MA, et al. The value of MRI imaging in monitoring the effect of chemotherapy on bone sarcomas. AJR,1990,154:763-769.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700