AFM纳米镊子激光测力系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了对纳观世界进行更加清楚的认识,充分发挥纳米技术在材料、生物、医学、信息等领域技术创新中的促进作用,纳米技术研究和纳米制造装备的研制成为各国科技竞争的焦点之一。而原子力显微镜(Atomic Force Microscopy, AFM)是目前用于纳米研究最重要的工具之一。其基本原理是通过检测针尖与纳观世界的力交互作用,实现纳米尺度的形貌检测、纳米材料特性表征,以及纳米操作的精确控制。本文在国家自然科学基金计划项目“纳米结构与器件跨尺度三维操纵与互连的基础研究”的支持下,自主开发了基于AFM原理的双探针纳米镊子激光测力系统,并完成其精密标定。
     本文针对AFM纳米镊子在三维纳米操作过程中力检测与控制的需要,基于光学偏转法力检测的工作原理,设计了双探针纳米镊子的激光测力系统结构。设计充分考虑了激光测力系统各部分之间的相互干涉以及各部件对光路产生干涉,使其具有紧凑的空间结构,较好的检测精度和良好的操作性,并建立了该纳米镊子激光测力的实验系统。
     另外,本文设计了一种新型的用于AFM激光测力系统标定装置,采用该标定装置,可同时实现纳米镊子激光测力系统的法向和侧向灵敏度标定。并采用了非线性标定方法,补偿光电位置检测器非线性误差,有效的拓宽了力检测的线性范围,可实现AFM纳米镊子在三维纳米操作过程中精确的力检测与控制。
     最后,应用该纳米镊子激光测力系统开展了样品表面形貌扫描、探针与基底间的pull-off力和摩擦力检测的实验研究。实验结果表明,该测力系统能够精确测量实验操作过程中探针与操作对象间的交互作用力,可实现几十皮牛级精度的微小力检测。
     AFM纳米镊子激光测力系统的研究对精确可控的三维纳米操作与装配方法和技术的进一步发展具有一定的推动作用,对纳米科学技术的研究具有一定的实用价值。
In order to better understand the nano-world and thereby promote applications of the nanotechnology in fields of material, biology, medicine, information, etc., the research of nanotechnology and the development of the nano-fabrication equipments have became a focus of technological competition among countries. AFM (Atomic Force Microscopy) is one of the most important tools used in the nanotechnology. By detecting interaction forces between the AFM tip and the nano-world, AFM can be used for the nanoscale imaging of surface morphology, nano-material properties characterization, and accurate control of nano-manipulation. This thesis is suppoted by the National Natural Science Foundation of China through the project“the basic research on multi-scale manipulation and connction of three-dimensional nano-structures and devices”, aiming to develop a laser force-measuring system for a home-built dual-probe AFM nanotweezer, and complete its accurate calibration.
     For the force detection during the three-dimensional operation and control, a laser force measuring system, based on the principle of optical deflection method, was designed for the AFM nanotweezer. Interferences among system components and laser paths are fully considered and the designed system has high detection precision, compact structure and favorable operability. Moreover the AFM nanotweezer laser force measuring experimental system was established.
     In addition, a new calibration device was developed for sensitivity calibration of the AFM laser force measuring system. Both the normal and lateral sensitivity of the laser force measuring system can be obtained with this calibration device. A nonlinear calibration method has been used to compensate the nonlinearity of PSD (photoelectric position detector), so as to effectively broaden the linear range of the force measurement, thereby providing precise force detection and control in the three-dimensional manipulation through the AFM nanotweezer.
     Finally, a series of experiments were completed by using the laser force-measurement system, such as sample surface morphology scanning, probe-substrate pull-off force and friction measurement. Experimental results show that the force-measurement system can provides accurate forces description between tip and objects in the process of nanomanipulation, and be capable of very high force detection with a precision of dozens of pico-Newton.
     The research of AFM nanotweezer laser force-measurement system promote the development of precisely controllable three-dimensional nanomanipulation and nanoassembly methods, and has certain practical value for the study of nano technology.
引文
[1]田孝军,王越超,董再励等.基于AFM的机器人化纳米操作系统综述[J].机械工程学报. 2009, 6, 45(6): 14–23.
    [2]王乐峰,荣伟彬,孙立宁.微纳操作系统的研究现状与关键技术[J].纳米器件与技术. 2006, 8, 3(4):26–30.
    [3] Guthold M., Falvo M. R., Matthews W. G., et al. Controlled manipulation of molecular samples with the nanomanipulator[J]. IEEE/ASME Transactions on Mechatronics. 2000, 5(2):189-198.
    [4] Li G., Xi N., Yu M., et al. Development of Augment Reality System for AFM-Based Nanomanipulation[J]. IEEE/ASME Transactions on Mechatronics. 2004, 6, 9(2):358-365.
    [5] Chen H., Xi N., Li G.. CAD-guided automated nanoassembly using atomic force microscopy-based nonrobotics[J]. IEEE Transactions on Automation science and Engineering. 2006, 7, 3(3): 208-217.
    [6] L. Liu, Y. Luo, N. Xi, et al. Sensor referenced real-time videolization of atomic force microscopy for nanomanipulations[J]. IEEE/ASME Transactions on Mechatronics. 2008, 13(1):76–85.
    [7] Fukuda T., Arai F., Dong L.. Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations[C]. Proceedings of the IEEE. 2003, 91(11): 1803–1818.
    [8] Fatikow S., Wich T., Hulsen H., et al. Microrobot system for automatic nanohandling inside a scanning electron microscope[J]. IEEE/ASME Transactions on Mechatronics. 2007, 12(3):244–252.
    [9] Kuzumaki T., Sawada H., Ichinose H, et al. Selective processing of individual carbon nanotubes using dual-nanomanipulator installed in transmission electron microscope[J]. Applied Physics Letters. 2001, 79(27):4580–4582.
    [10] Cumings J., Zettl A.. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes[J]. Science. 2000, 289:602–604.
    [11]李银妹.光镊原理、技术和应用[M].合肥:中国科学技术大学出版社,1996: 3.
    [12] Arai Y., Yasuda R., Akashi K., et a1. Tying a molecular knot with optical tweezers[J]. Nature. 1999, 399:446–448.
    [13] Xu S. H., Li Y. M., Lou L. R., et al. Steady patterns of microparticles formed by optical tweezer[J]. Japanese Journal of Applied Physics. 2002, 41(1):166–168
    [14] Williams P. A., Papadakis S. J., Falvo M. R., et al. Controlled placement of an individual carbon nanotubes onto a microelectromechanical structure[J]. Applied Physics Letters. 2002, 80(14): 2574–2576.
    [15] Nakajima M., Arai F., Dong L. X., et al. Hybrid nanorobotic manipulation system inside scanning electron microscope and transmission electron microscope[C]. Proceedings of the IEEE/RSJ. Sendai, Japan, 2004: 589–594.
    [16] Sitti M., Aruk B., Shintani K., et al. Development of a scaled teleoperation systems for nanoscale interaction and manipulation. Proceedings of the IEEE. Korea, 2001: 860-867.
    [17] Wang X. F., Vincent L., Yu M. F., et al. Architecture of a three-probe MEMS nanomanipulator with nanoscale end-effectors[C]. Proceedings of the IEEE/ASME. Kobe, Japan, 2003: 891–896.
    [18] Andersen N. K., Petersen D. H., Carlson K., et al. Multimodal Electrothermal Silicon Microgrippers for Nanotube Manipulation[J]. IEEE Transactions on Nanotechnology. 2009, 8(1): 76–85.
    [19] Kim P., Lieber C.. Nanotube nanotweezers[J]. Science, 1999, 286: 2148–2150.
    [20]张振宇,李鸿琦,周红秀.基于AFM的纳米测试技术在机械领域中的应用[J].机床与液压. 2005, 6: 110–112.
    [21]张冬仙.原子力显微术的新方法研究及新型原子力显微镜系统研制[D].杭州:浙江大学, 2004: 27-29.
    [22]周凯波.一种组合式AFM系统的设计与实现[D].天津:天津大学, 2009: 6-8.
    [23]李小军,孙洁琳,何品刚等.振动模式扫描极化力显微镜及其应用[J].电子显微镜报. 2003, 22(4): 344–351.
    [24]苏琪.轻敲模式下AFM快速扫描技术的研究[D].天津:天津大学, 2008: 2-3.
    [25]胡振江.基于AFM探针刻划可控三维微结构加工技术研究[D].哈尔滨:哈尔滨工业大学, 2007: 21.
    [26] Clévy C., Hubert ., Agnus J., et al. Amicromanipulation cell including a tool changer[J]. Journal of Micromechanics and Microengineering. 2005, 15: S292–S301.
    [27] Menciassi A., Eisinberg A., Izzo I., et al. From‘macro’to‘micro’manipulation: models and experiments[J]. IEEE/ASME Transaction on Mechatronics. 2004, 9(2): 311–320.
    [28] Sitti M.. Microscale and nanoscale robotic systems-characteristics, state of the art, and grand challenges. Robotics & Automation Magazine[J], IEEE. 2007, 14(1): 53–60.
    [29]冯龙龄,邓仁亮.四象限光电跟踪技术中若干问题的探讨[J].红外与激光工程. 1996, 25(1): 16–21.
    [30] Saltuk B. Aksu, Joseph A.. Turner. Calibration of atomic force microscope cantilever using piezolevers[J]. Rev. Sci. Instrum. 2007, 78: 043704.
    [31] Ogletree D. F., Carpick R. W., Salmeron M.. Calibration of frictional forces in atomic force microscopy[J]. Rev. Sci. Instrum. 1996, 67: 3298.
    [32] Varenberg M., Etsion I., Halperin G.. An improved wedge calibration method for lateral force in atomic force microscopy[J]. Rev. Sci. Instrum. 2003, 74, 3362.
    [33] Asay D. B., Kim S. H.. Direct force balance method for atomic force microscopy lateral force calibration[J]. Rev. Sci. Instrum. 2006, 77: 043903.
    [34] Liu E., Blanpain B., Celis J. P.. Calibration procedures for frictional measurements with a lateral force microscope[J]. Wear. 1996, 192(1–2): 141–150.
    [35] Bogdanovic G., Meurk A., Rutland M. W.. Tip friction– torsional spring constant determination[J]. Colloids Surf., B. 2000, 19(4): 397–405.
    [36] Cannara R. J., Eglin M., and Carpick R. W.. Lateral force calibration in atomic force microscopy: A new lateral force calibration method and general guidelines for optimization[J]. Rev. Sci. Instrum. 2006, 77(5): 053701.
    [37] Xie H., Vitard J., Haliyo S., et al. Optical lever calibration in atomic force microscope with a mechanicallever[J]. Rev. Sci. Instrum. 2008, 79: 096101.
    [38]齐利民.基于大行程柔性铰链的精密并联机器人研究[D].哈尔滨:哈尔滨工业大学, 2009.
    [39]杨冬,张丽,胡元中等.中间层液体表面能对粘着行为中Pull-off力影响的实验研究[J].润滑与密封. 2006, (09): 27–29.
    [40]李志军,冷永胜,邹鲲等.表面力仪及固体表面微观接触机理的实验研究[J].摩擦学学报. 2000, 20(5): 336–339.
    [41] Komvopoulos K.. Adhension and friction forces in microelectromechanical systems mechanisms, measurement, surface modification techniques, and adhesion theory[J]. Adhesion. Sci. Technol., 2003, 17(4): 477–517.
    [42]鲍海飞,李昕欣,王跃林.原子力显微镜中微悬臂梁/探针横向力的标定[J].测试技术学报. 2005, 19(1): 4–10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700