重油残渣定向转化新型碳功能材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳材料是与人类文明进步息息相关的重要材料之一,各种不同形态的碳单质以及碳化合物在人类发展中做出了巨大的贡献。气相生长碳纤维(VGCFs)、碳微球(CMBs)、碳纳米管(CNTs)、纳米洋葱状富勒烯(NOLFs)和碳包覆金属等新型碳功能材料以其优异的特性,使它们在众多领域获得了广泛的应用。
     重油残渣(即脱油沥青)是重油加工过程中的副产物、一种富碳的复杂混合物,热解可产生CH_4、CO、H_2、N_2、H_2S等气体和低烃类化合物。依赖这些热解气体的综合作用,可以进行气相生长碳材料的合成研究,其裂解后的残余焦经过高温处理、电弧放电等技术也可以转化为石墨类产品。因此,可以说重油残渣是大规模工业化生产碳功能材料的来源之一。从重油残渣中获得高附加值产品,可为扩展传统石油加工过程的产品链并实现资源的综合利用提供新的途径。
     本论文提出以重油残渣为原料,采用化学气相沉积(CVD)、共炭化、微波等离子体法定向制备VGCFs、CMBs、CNTs、内包铁NOLFs、内包碳化铁碳微粒以及定向碳纳米薄膜等各种高附加值碳功能材料,对产物结构及反应机理进行了系统的分析,研究了各种反应条件下碳功能材料的形成规律,重点讨论了VGCFs的生长过程,提出了其可能的生长机理。并对提纯前后VGCFs的热稳定性和储氢性能进行了初步探讨。基于重油残渣和煤焦油沥青性质的异同点,在本文中也以煤焦油沥青为原料,借助于重油残渣制备气相生长碳材料的方法,采用CVD法合成了VGCFs、CMBs、CNTs及内包金属碳纳米颗粒等碳功能材料,并对二者制备的气相生长碳材料进行了比较。
     研究的主要内容和结果如下:
     1、以重油残渣为原料、二茂铁为催化剂前驱体,采用CVD法制备出VGCFs;考察了二茂铁含量、反应温度、反应时间及氩气流量对产物产量和结构的影响。通过场发射扫描电子显微术(FESEM)、高分辨透射电子显微术(HRTEM)、X-射线衍射(XRD)和拉曼(Raman)光谱等技术对产物的形貌和微观结构进行了细致的观察和分析,探讨了VGCFs的生长机理,并对提纯前后VGCFs的热稳定性和储氢性能进行了初步探讨。结果表明:利用重油残渣热解气体的综合作用,按照“颗粒-管-纤维”的过程形成,即直径很小的催化剂颗粒重组成大直径的催化剂颗粒,同时,气体碳源在金属颗粒上吸附、分解、扩散和析出形成细而短的CNTs,再通过CNTs的自催化效应形成VGCFs。通过改变不同的工艺参数制得可控的高质量VGCFs,直径主要分布在100nm~1.2μm之间;其断口呈树木年轮状,具有中空结构,壁是由两种不同结构的碳组成:内层是结晶比较好的石墨片层形成的多壁CNTs结构,外层是沉积在其上的热解碳层;当没有催化剂参与反应时,形成了纯度高的CMBs;定向生长碳纤维、碳树和二次生长碳纤维在其适合的工艺参数时也可形成。并解释了一些特殊结构的VGCFs的形成机理(分叉结构、竹节状和核-壳结构VGCFs)。
     与传统沥青基碳纤维相比,直接由重油残渣分解所得VGCFs的制备工艺简单、成本低廉,且生产出的碳纤维结构不同于沥青基碳纤维,各种性能也优越,为碳纤维的大量应用和碳纤维工业的进一步发展创造了有利条件。
     2、以重油残渣为碳源、二茂铁为催化剂前驱体、氩气和氢气的混合气氛为载气,利用CVD法,综合考察了反应温度和氢气流量对CNTs生长的影响,采用FESEM、HRTEM、EDS、XRD和Raman光谱等技术表征和分析产物的形貌和微观结构,提出适合CNTs生长的条件。结果表明:选用催化剂含量为10wt.%的二茂铁,在氩气流量为150ml/min、氢气流量为150ml/min的混合气氛中,当反应温度为1000℃、反应时间为30min时,制备出直径约35nm、弯曲缠绕且纯度高的CNTs,CNTs晶化程度较高但其表面有缺陷存在;CNTs的生长也是取决于重油残渣热解气体的综合协调作用,符合气-液-固的生长机制,其顶部有金属颗粒,属于顶部生长方式。
     3、以重油残渣为原料,采用CVD法制备了高纯的CMBs,且详细分析了反应温度、氩气流量和反应区域对CMBs的产量和结构的影响,通过改变工艺参数制备了直径可控的高纯CMBs。采用FESEM、EDS、HRTEM、XRD和Raman光谱对CMBs的形态和超微观结构进行了表征和分析;基于实验结果,探讨了其生长机理。结果表明:所制备的可控CMBs直径主要分布在100nm~1μm之间,为规则的球状颗粒,直径分布均匀,纯度很高,但碳球石墨化程度较低。
     4、以重油残渣为原料、二茂铁为催化剂,在反应温度900℃、反应时间30min、氩气气流150ml/min时,采用CVD法制备出内包铁NOLFs。通过FESEM、HRTEM、EDS、XRD和Raman光谱等技术对产物的形貌和微观结构进行了表征和分析,结果表明:出气口的产物为内包纯铁的洋葱状富勒烯,且颗粒大小比较均匀(直径约3~5nm),洋葱状富勒烯石墨化程度不高。内包铁NOLFs的生长本质上仍遵循气-液-固生长机制,碳层是由碳化铁中碳原子的析出而形成的。
     5、以重油残渣为碳源、二茂铁为催化剂前驱体,通过热解共炭化反应合成纳米金属颗粒分散的碳基复合材料,然后再经高温热处理合成了内包碳化铁碳微米颗粒,并对其进行了HRTEM和XRD表征分析,结果表明:重油残渣/二茂铁首先经450℃、3h的脱氢缩聚反应合成了直径大约为3nm的金属颗粒分散在无定形碳中的铁/碳复合材料;然后再经2000℃、2h高温热处理,形成了石墨化程度高的内包碳化铁的碳微米颗粒,其外径约300nm,粒径约260nm的金属颗粒被20nm的碳层包覆着,碳层的石墨化程度高,层间距约0.34nm,内包金属为Fe_3C;同时,产物中也发现有未充满的、中空的碳微米颗粒和中空碳纤维生成。
     6、以重油残渣为原料,采用微波等离子体法制备了一种新颖结构的定向纳米碳薄膜材料,对其进行了FESEM和HRTEM表征和分析。生成的这种定向排列的纳米碳薄膜材料纯度高,无其它形貌的纳米碳材料伴随生成,外观呈条状麦穗形,各条状物平行排列形成定向阵列,最大宽度约为65nm,长度则达到900nm左右;麦穗的主干表层和穗片晶化程度比较好,层与层之间清晰可见,而其中心部位则为非晶态,可能是产物经历了由外向内的生长过程,在目前的反应时间内还未使其内部完全晶化,重油残渣中的重金属Ni、Fe等对其生长起了一定的催化作用。
     7、以煤焦油沥青为原料,采用CVD法来直接合成VGCFs、CMBs、CNTs及内包金属碳纳米颗粒等碳功能材料;详细分析了催化剂二茂铁含量、反应温度、反应时间、氩气流量、载气种类和产物的生长区域对气相生长碳材料的产量和结构的影响。通过FESEM、HRTEM、XRD和Raman光谱等技术对产物的形貌和微观结构进行了表征和分析,结果表明:当无催化剂参与反应时,合成了高纯的、直径平均为560nm的均匀CMBs;当催化剂二茂铁参与反应时,在高温区依据不同的工艺参数可以制备出直径分别大约为100nm、115nm、320nm和890nm的高质量VGCFs;在载气为氢气(150ml/min)和氩气(150ml/min)的混合气氛时,由于适量氢气的加入,形成了平均直径40nm且弯曲缠绕的CNTs,这与重油残渣生成CNTs的结果和机理是一致的;同样的工艺条件下,在低温区形成了碳内包金属纳米颗粒,与重油残渣在低温区生成的产物相似。并指出,由于重油残渣和煤焦油沥青的元素组成和性质的差别,工艺参数对重油残渣和煤焦油沥青基气相生长碳材料的影响规律有所不同。
     总之,重油残渣和煤焦油沥青是具有应用前景的新型碳功能材料前驱体,通过采用不同的合成方法调整工艺参数,可以选择性地合成不同形貌和结构的新型碳功能材料。本研究有助于促进石油化工、煤化工和新型碳功能材料的有机融合,不仅为扩展传统石油加工和煤化工过程的产品链、实现资源的综合利用开辟了新的路线,而且也为碳功能材料的研究开辟了新的途径,丰富和发展了碳材料科学。
Carbon materials, which have a close relationship with advancement of human civilization, have been one of the most important materials. The various carbon and their compounds have done a great contribution during human progress. Advanced carbon functional materials, such as vapor grown carbon fibers (VGCFs), carbon microbeads (CMBs), carbon nanotubes (CNTs), carbon nano onion-like fullerenes (NOLFs) and metal-encapsulating carbon particles, have achieved extensive application in many areas because of their excellent properties.
     Deoiled asphalt (DOA) is a carbon-rich by-product of petroleum industry. Vapor grown carbon materials can be synthesized from synergic effects of gaseous species, including CH_4, CO, H_2, N_2, H_2S and low molecular hydrocarbons, which are released during by the pyrolysis of DOA. Furthermore, the residue coke from DOA can be converted into graphitie-like products by heat-treatment or arc-discharge method. Therefore, it is suggested that DOA is a favorable option as a carbon source for large-scale synthetic process of advanced carbon materials. Utilization of DOA of such kind can provide a new approach for expansion of product chains of petroleum processing and comprehensive utilization of petroleum resource.
     In this paper, the preparation of carbon materials with high added value was achieved from DOA by chemical vapor deposition (CVD), co-carbonization and microwave plasma methods, including VGCFs, CMBs, CNTs, Fe-encapsulating NOLFs, Fe_3C-containing carbon microparticles and aligned carbon film. The structures and growth mechanisms of the products were investigated systematically with special emphasis on growth model of VGCFs. The thermal stability and H_2 storage performance of VGCFs were also explored. Based on similarities and differences between DOA and coal tar pitch (CTP), carbon materials, such as VGCFs, CMBs, CNTs and metal-encapsulating carbon nanoparticles, were also prepared from CTP by CVD.
     The main contents and conclusions are as follows:
     1. VGCFs were synthesized by CVD in argon atmosphere, using deoiled asphalt as carbon source and ferrocene as catalyst precursor. The influences of different experimental parameters, such as ferrocene content, reaction temperature, reaction time and argon flow rate, were investigated, with respect to the morphology and product yield of VGCFs. The morphologies and structures of products were characterized by field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and Raman spectroscopy. The formation mechanism of VGCFs was discussed in detail. The thermal stability and H_2 storage performance of VGCFs were also explored. The results revealed as follows:
     The synthesis of VGCFs was found to be dependent on the synergic effects of gaseous species from thermal cracking of DOA and following a growth mechanism of particle-tube-fiber: catalyst nanoparticles first agglomerate and assemble into larger nanoparticles, onto which gasous carbon species are absorbed and converted into CNTs through diffusion and precipitation of gaseous carbon species, and CNTs finally develop into VGCFs by a self-catalysis behavior. An effective mass production of controllable and pure VGCFs, with diameters ranging from 100nm to 1.2μm, was achieved under optimized preparation parameters. The VGCFs exhibited a tree annual ring type of structure and had a hollow core. Their walls can be divided into two different kinds of structures, that is, the high-graphitized inner layer shells and low-graphitized outer layer shells. CMBs were produced in the absence of catalyst. Oriented VGCFs, carbon trees and secondary VGCFs were obtained under appropriate conditions. The VGCFs with special structures (branched, bamboo-shaped and core-shell structure) were also discussed.
     VGCFs from direct pyrolysis of DOA are distinctively different from traditional pitch-derived carbon fibers in their simple and low-cost fabrication, unique structure and excellent properties. This new approach to VGCFs should be of potential in the production of carbon fibers in large scale.
     2. CNTs were prepared by CVD using DOA as carbon source and ferrocene as catalyst precursor in an atmosphere of hydrogen and argon. The influences of reaction temperature and hydrogen flow rate on CNTs growth were investigated. The optimum technological parameters for the preparation of CNTs were determined through CNTs characterization by FESEM, HRTEM, EDS, XRD and Raman spectroscopy. The result revealed that high purity and uniform CNTs, with diameter of about 35nm, were grown from DOA by CVD using ferrocene content of 10wt.% at 1000℃for 30min in an atmosphere of hydrogen (150ml/min) and argon (150ml/min). The as-synthesized CNTs were randomly oriented and tangled with each other and had good crystallinity with some defects on their surface layers. The formation of CNTs depended on the joining effects of pyrolysis gases from DOA and followed vapor-liquid-solid growth model. The metal particles observed on tube tips suggested that the main growth mode followed a tip-growth mechanism.
     3. A series of size-controllable CMBs were grown from DOA by CVD, with the emphasis on the influences of experimental parameters, including reaction temperature, argon flow rate and reaction zone. The products were characterized by FESEM, HRTEM, EDS, XRD and Raman spectroscopy. The formation mechanism of CMBs was discussed based on experimental results. The results showed an effective mass production of size-controllable CMBs, with diameters ranging from 100nm to 1μm, was achieved. The obtained high purity CMBs were spherical with uniform size and amorphous structure.
     4. Fe-encapsulating NOLFs were obtained by CVD using DOA as carbon source and ferrocene as catalyst precursor in an argon flow of 150ml/min at 900℃for 30min. FESEM, HRTEM, EDS, XRD and Raman spectroscopy were used to characterize morphologies and microstructures of the products. The results showed that Fe-encapsulated NOLFs in the outlet of quartz tube had core/shell structures with sizes ranging from 3 to 5nm and their outer shells were composed of poorly crystallized graphitic layers. Their growth mode followed vapor-liquid-solid growth mechanism and all atoms in the graphite sheets arose from carbon atoms in the Fe-carbide particles.
     5. DOA as carbon source and ferrocene as catalyst precursor were chosen to synthesize an Fe/C composite, in which iron nanoparticles were dispersed uniformly in carbon via co-carbonization. The resulting samples were heat treated to synthesize Fe_3C-containing carbon microparticles by high-temperature heat treatment in vacuum. All products were examined by HRTEM and XRD. The results showed that large numbers of metal particles with~3nm in size were dispersed in carbon by co-carbonization products at the temperature of about 450℃for 3h and the degree of graphitization of the products was greatly improved after high-temperature heat treatment at 2000℃for 2h. An Fe_3C microparticle with~260nm in diameter was completely coated with 20 perfect graphitic carbon layers and the spacing of the lattice fringers was about 0.34nm. Besides, partially-filled and hollow carbon microparticles and hollow carbon fibers were obtained by this method.
     6. Aligned carbon film with novel structure was synthesised from DOA by microwave plasma method, the high pure products were formed orientedly in the shape of strip-like wheat head. Their out-layers possessed a higher degree of graphization, the maximum width was about 65nm and the length was about 900nm, but their center parts were amorphous. It was suggested that the products experienced an outer to inner growth. In addition, some metals in DOA, such as Ni and Fe, which might play the roles of catalyst for the growth of the aligned carbon film, were in favor of the formation of carbon nanomaterials.
     7. The direct synthesis of carbon materials, including VGCFs, CMBs, CNTs and metal-encapsulating carbon nanoparticles, was achieved by the pyrolysis of CTP by CVD. The influences of the process parameters, including catalyst content and species, reaction temperature and time, species and flow rate of carrier gas, the growth zone of the products, were studied in detail. The morphologies and structures of the products were characterized and analyzed by FESEM, HRTEM, XRD and Raman spectroscopy. The experimental results demonstrated that pure CMBs with about 560nm in diameter were obtained in the absence of catalyst, and VGCFs, with the diameters of about 100nm, 115nm, 320nm and 890nm, respectively, were obtained, the curl and tangled CNTs with diameter of about 40nm were produced in mixed atmosphere of argon and hydrogen, metal-encapsulating carbon nanoparticles were obtained in the outlet of quartz tube, similar to DOA-based carbon materials. However, the different elemental composition and quality between DOA and CTP resulted in the different rules of influences on vapor grown carbon materials.
     In brief, DOA and CTP are good precursors for preparing advanced carbon functional materials with great prospect for wide application. Appropriate selection of processing conditions can realize the controllable conversion of DOA and CTP to various advanced carbon functional materials. This research can promote the combination of chemical industry of petroleum and coal with advanced carbon functional material so as to expand product chains in process of petroleum, realize comprehensive utilization of resource, provide a new route for research of carbon nanomaterials, and contribute to the science of carbon materials.
引文
[1] 沈曾民主编,新型碳材料,北京化学工业出版社,2004,1-309.
    [2] Kratschmer W, lanb LD, Fostiropoulos K, et al, Solid C_(60): A new form of carbon, Nature, 1990, 347, 354-357.
    [3] Henning T, Salama F, Carbon in the universe, Science, 1998, 282, 2204-2210.
    [4] Krishnan A, Dujardin E, Treacy MMJ, et al, Graphitic Cones and the Nucleation of Curved carbon Surfaces, Nature, 1997, 388, 451-454.
    [5] SFA Pacific Inc., "Upgrading Heavy Oils and Residues to Transportation Fuels: Technology, Economics, and Outlook: Phase 6", Feb 1999.
    [6] 鲍斐,李锐,吴秀章等,大型炼油厂零渣油加工方案的选择,石油炼制与化工,2001,30,17-20.
    [7] Yang GH, Wang RA, The supercritical fluid extractive fraction and characterization of heavy oils and petroleum residua, J Petro Sci Eng, 1999, 22, 47-52.
    [8] Shi TP, Xu ZM, Cheng M, et al, Characterization index for vacuum residua and their sub-fractions, Energ Fuel, 1999, 13, 871-876.
    [9] Zhao SQ, Xu ZM, Xu CM, et al, Feedstock characteristic index and critical properties of heavy crudes and petroleum residua, J Petro Sci Eng, 2004, 41, 233-242.
    [10] Endo M, Kim YA, Hayashi T, et al, Vapor-grown carbon fibers (VGCFs)—Basic properties and their battery applications, Carbon, 2001, 39, 1287-1297.
    [11] Yang SM, Chen XQ, Motojima SJ, et al, Morphology and microstructure of spring-like carbon micro-coils/nano-coils prepared by catalytic pyrolysis of acetylene using Fe-containing alloy catalysts, Carbon, 2005, 43, 827-834.
    [12] Ting JM, Huang NZ, Thickening of chemical capor deposited carbon fiber, Carbon, 2001, 39, 835-839.
    [13] Wei BQ, Vajtai R, Ajayan PM, Sequence growth of carbon fibers and nanotube networks by CVD process, Carbon, 2003, 41, 179-198.
    [14] Bai S, Li F, Yang QH, et al, Influence of ferrocene/benzene mole ratio on the synthesis of carbon nanostructures, Chem Phys Lett, 2003, 376, 83-79.
    [15] Li YY, Bae SD, Sakoda A, et al, Formation of vapor grown carbon fibers with sulfuric catalyst precursors and nitrogen as carrier gas, Carbon, 2001, 39, 91-100.
    [16] Li YJ, Lau SP, Tay BK, et al, Oriented carbon microfibers grown by catalytic decomposition of acetylene and their field emission properties, Diam Relat Mater, 2001, 10, 878-882.
    [17] Mukai SR, Masuda T, Hashimoto K, et al, Physical properties of rapidly grown vapor-grown carbon fibers, Carbon, 2000, 38, 475-494.
    [18] Kroto HW, Heath JR, O'Brien SC, et al, Buckyminister-fullerenes, Nature, 1985, 318, 162-163.
    [19] Iijima S, Helical microtubules of graphitic carbon, Nature, 1991, 354, 56-58.
    [20] Ugarte D, Curling and closure of graphitic networks under electron-beam irradiation, Nature, 1992, 359, 707-709.
    [21] Ruoff RS, Lorents DC, Chan B, et al, Single-crystal metals encapsulated in carbon nanoparticles, Science, 1993, 259, 346-348.
    [22] 贺福编著,碳纤维及其应用技术,北京,化学工业出版社,2004,189-201.
    [23] 成会明编著,碳纳米管制备、结构、物性及应用,北京,化学工业出版社,2002.
    [24] Willems I, Konya Z, Colomer JF, et al, Control of the outer diameter of thin carbon nanotubes synthesized by catalytic decomposition of hydrocarbons, Chem Phys Lett, 2000, 317, 71-76.
    [25] Lee CJ, Park J, Kim JM, et al, Low-temperature growth of carbon nanotubes by thermal chemical vapor deposition using Pd, Cr, and Pt as co-catalyst, Chem Phys Lett, 2000, 327, 277-283.
    [26] Tibbetts GG, Gorkiewicz DW, A new reactor for growing carbon fibers from liquid- and vapor-phase hydrocarbons, Carbon, 1993, 31, 809-814.
    [27] Tibbetts GG, Doll GL, Gorkiewicz DW, et al, Physical properties of vapor-grown carbon fibers, Carbon, 1993, 31, 1039-1047.
    [28] Fan YY, Cheng HM, Wei YL, et al, Tailoring the diameters of vapor-grown carbon nanofibers, Carbon, 2000, 3, 921-927.
    
    [29] Ci LJ, Li YH, Wei BQ, et al, Preparation of carbon nanofibers by the floating catalyst method, Carbon, 2000, 38, 1933-1937.
    
    [30] Ci LJ, Wei JQ, Wei BQ, et al, Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method, Carbon, 2002, 39, 329-335.
    
    [31] Yamada Y, Imamura T, Honda H, et al, Characteristics of mesocarbon microbeads separated from pitch, Carbon, 1974, 12, 307-319.
    
    [32] Kodama M, Fujiura T, Ikawa E, et al, Characterization of mesocarbon microbeads prepared by emulsion method, Carbon, 1991, 29, 43-49.
    
    [33] Kodama M, Fujirua T, Esumi K, et al, Preparation of mesocarbon microbeads with a narrow size distribution, Carbon, 1988, 26, 595-598.
    
    [34] Lu YG, Ling LC, Oh S, et al, Preparation of carbon microbeads from pitch and resin by suspension, New Carbon Materials, 2001,16,1-5.
    
    [35] Qiu JS, Li YF, Wang YP, et al, A novel form of carbon micro-balls from coal, Carbon, 2003,41,767-772.
    
    [36] Mi YZ, Liu YL, Yuan DS, et al, Synthesis of carbon micro-beads by an alcohol-thermal reduction route, Chem Lett, 2005, 34, 846-847.
    
    [37] Qian HS, Han FM, Zhang B, et al, Non-catalytic CVD preparation of carbon spheres with a specific size, Carbon, 2004, 42, 761-766.
    
    [38] Miao JY, Hwang Dennis W, Narasimhulu Kuppala V, et al, Synthesis and properties of carbon nanospheres grown by CVD using Kaolin supported transition metal catalysts, Carbon, 2004,42, 813-722.
    
    [39] Yan XB, Xu T, Xu S, et al, Fabrication of carbon spheres on a-C:H films by heat- treatment of a polymer precursor, Carbon, 2004, 42, 2735-2777.
    
    [40] Zou GF, Yu DB, Lu J, et al, A self-generated template route to hollow carbon nano- spheres in a short time, Solid State Commun, 2004, 131, 749-752.
    [41] Xu LQ, Zhang WQ, Yang Q, et al, A novel route to hollow and solid carbon spheres, Carbon, 2005, 43, 1084-1114.
    [42] Jin YZ, Gao C, Wen KH, et al, Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons, Carbon, 2005, 43, 1944-1953.
    [43] 李杞秀,化学气相沉积法由煤气制备炭纳米材料的研究,硕士学位论文,大连,大连理工大学,2006.
    [44] Wang ZL, Kang ZC, Pairing of pentagonal and heptagonal carbon rings in the growth of nanosize carbon spheres synthesized by a mixed valent oxide catalytic carbonization proess, J Phys Chem, 1996, 100, 17725-17731.
    [45] Ajayan PM, Ichihashi T, Iijima S, Distribution of pentagons and shapes in carbon nanotubes and nanoparticles, Chem Phys Lett, 1993, 202, 384-388.
    [46] Iijima S, Ichihashi T, Single-shell carbon nanotubes of 1-nm diameter, Nature, 1993, 363, 605-607.
    [47] Wang N, Tang ZK, Chen JS, et al, Materials science-single-walled 4 angstrom carbon nanotube arrays, Nature, 2000, 408, 50-51.
    [48] Qin LC, Zhao XL, Hirahara K, et al, Materials science—The smallest carbon nanotube, Nature, 2000, 408, 50.
    [49] Paradise M, Goswami T, Carbon nanotubes—Production and industrial applications, Mater Design, 2007, 28, 1477-1489.
    [50] Liu C, Cong HT, Li F, et al, Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method, Carbon, 1999, 37, 1865-1868.
    [51] Sun LF, Xie SS, Liu W, et al, Materials—Creating the narrowest carbon nanotubes, Nature, 2000, 403, 384.
    [52] Guo T, Nikolaev P, Thess A, et al, Catalytic growth of single-walled nanotubes by laser vaporization, Chem Phys Lett, 1995, 243, 49-54.
    [53] Thess A, Lee R, Nikolaev P, et al, Crystalline ropes of metallic carbon nanotubes, Science, 1996, 273, 483-487.
    [54] Yudasaka M, Komatsu T, Ichihashi T, et al, Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal, Chem Phys Lett, 1997, 278, 102-106.
    [55] Zhang Y, Iijima S, Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature, Appl Phys Lett, 1999, 75, 3087-3089.
    [56] Wang Y, Wei F, Luo GH, et al, The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor, Chem Phys Lett, 2002, 364, 568-572.
    [57] Li WZ, Xie SS, Qian LX, et al, Large-scale synthesis of aligned carbon nanotubes, Science, 1996, 274, 1701-1703.
    [58] Pan ZW, Xie SS, Chang BH, et al, Very long carbon nanotubes, Nature, 1998, 394, 631-632.
    [59] Liu C, Cheng HM, Cong HT, et al, Synthesis of macroscopically long ropes of well-aligned single-walled carbon nanotubes, Adv Mater, 2000, 12, 1190-1192.
    [60] Ericson LM, Fan H, Peng HQ, et al, Macroscopic, neat, single-walled carbon nanotube fibers, Science, 2004, 305, 1447-1450.
    [61] Kim W, Choi He, Shim M, et al, Synthesis of ultralong and high percentage of semiconducting single-walled carbon nanotubes, Nano Lett, 2002, 2, 703-608.
    [62] Huang LM, Cui XD, White B, et al, Long and oriented single-walled carbon nanotubes grown by ethanol chemical vapor deposition, J Phys Chem B, 2004, 108, 16451-16456.
    [63] Zheng LX, O'Connell MJ, Doorn SK, et al, Ultralong single-wall carbon nanotubes, Nature Mater, 2004, 3, 673-676.
    [64] 刘宝春,康水花,高利珍等,利用沸腾床反应器制备碳纳米管,催化学报,2001,2,54-56.
    [65] Cheng HM, Li F, Sun X, et al, Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons, Chem Phys Lett, 1998, 289, 602-610.
    [66] Zhu HW, Xu CL, Wu DH, et al, Direct synthesis of long single-walled carbon nanotube strands, Science, 2002, 296, 884-886.
    [67] Li YL, Kinloch IA, Windle AH, Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis, Science, 2004, 304, 276-278.
    [68] Yuan ZH, Huang H, Fan SS, et al, Field emission property of highly ordered monodispersed carbon nanotube arrays, Appl Phys Lett, 2001, 78, 3127-3129.
    [69] Yuan ZH, Huang H, Liu L, et al, Controlled growth of carbon nanotubes in diameter and shape using template-synthesis method, Chem Phys Lett, 2001, 345, 39-43.
    [70] Tibbetts GG, Balogh MP, Increase in yield of carbon fibres grown above the iron/carbon eutectic, Carbon, 1999, 37, 241-247.
    [71] Rao CNR, Satishkumar BC, Govindara A, et al, Nanotubes, Chem Phys Chem, 2001, 2, 78-105.
    [72] Dupuis AC, The catalyst in the CCVD of carbon nanotubes—a review, Prog Mater Sci, 2005, 50, 929-961.
    [73] Du GX, Feng SA, Zhao JH, et al, Particle-wire-tube mechanism for carbon nanotube evolution, J Am Chem Soc, 2006, 128, 15405-15414.
    [74] Zhu ZP, Lu Y, Qiao DH, et al, Self-catalytic behavior of carbon nanotubes, J Am Chem Soc, 127, 15698-15699.
    [75] Xu BS, Tanaka SI, Multiple-nulei onion-like fullerenes cultivated by electron beam irradiation, Proc Int Conf ICSE, Cambridge, 1997, 355-360.
    [76] 郭俊杰,王晓敏,李天保等,水下电弧放电法制备洋葱状富勒烯,新型炭材料,2006,21,171-175.
    [77] 李天保,刘光焕,刘旭光等,内包铁洋葱状富勒烯的合成和表征,材料热处理学报,2005,26,28-30
    [78] 霍俊平,宋怀河,陈晓红等,碳包覆纳米金属颗粒的形成及应用,炭素技术,2006,25,22-27.
    [79] Seraphin S, Zhou D, Jiao J, Filling the carbon nanocages, J Appl phys, 1996, 80, 2097-2104.
    [80] Saito Y, Nanoparticles and filled nanocapsules, Carbon, 1995, 33, 979-988.
    [81] Majetich SA, Artman JO, McHenry ME, et al, Preparation and properties of carboncoated magnetic nanocrstallites, Phys Rev B, 1993, 48, 16845-16849.
    [82] McHenry ME, Majetich SA, Artman JO, et al, Superparamagnetism in carbon-coated Co particles produced by the Kratschmer carbon arc process, Phys Rev B, 1994, 49, 11358-11363.
    [83] Scott JH, Majetich SA, Morphology, structure, and growth of nanoparticles produced in a carbon arc, Phys Rev B, 1995, 52, 12564-12571.
    [84] 王海英,王晓敏,章海霞等,电弧放电制备内包金属纳米洋葱状富勒烯的研究,材料热处理学报,2003,23,41-43.
    [85] Xu BS, Guo JJ, Wang XM, et al, Synthesis of carbon nanocapsules containing Fe, Ni or Co by arc discharge in aqueous solution, Carbon, 2006, 44, 2631-2634.
    [86] Qiu JS, Li YF, Wang YP, et al, Preparation of carbon-coated magnetic iron nanoparticles from composite rods made from coal and iron powders, Fuel Process Technol, 2004, 86, 267-274.
    [87] Nolan PE, Lynch DC, Cutler AH, Graphite encapsulation of catalytic metal nanoparticles, Carbon, 1996, 34, 817-819.
    [88] Liu BH, Ding J, Zhong ZY, et al, Large-scale preparation of carbon-encapsulated cobalt nanoparticles by the catalytic method, Chem Phys Lett, 2002, 358, 96-102.
    [89] Zhong ZY, Chen HY, Tang SB, Catalytic growth of carbon nanoballs with and without cobalt encapsulation, Chem Phys Lett, 2000, 330, 41-47.
    [90] Sano N, Akazawa H, Kikuchi T, et al, Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen, Carbon, 2003, 41, 2159-2162.
    [91] Wang XM, Xu BS, Liu XG, et al, Synthesis of Fe included Onion-like Fullerenes by chemical vapor deposition, Diam Relat Mater, 2006, 15, 147-150.
    [92] Xu BS, Li TB, Han PD, et al, Several features of the iron-included onion-like fullerenes, Mater Lett, 2006, 60, 2042-2045.
    [93] Teunissen W, De Groot FMF, Geus J, The structure of carbon encapsulated NiFe nano-particles, J Catal, 2001, 204, 169-174.
    [94] Tsai SH, Lee CL, Chao CW, A novel technique for the formation of carbon-encapsulated metal nanoparticles on silicon, Carbon, 2000, 38, 781-785.
    [95] 符冬菊,等离子条件下纳米洋葱状富勒烯的合成研究,硕士学位论文,太原,太原理工大学,2006.
    [96] 陈学刚,宋怀河,陈晓红等,萘和二茂铁共炭化制纳米Fe/C材料的研究,新型炭材料,2000,15,5-8.
    [97] 陈学刚,宋怀河,陈晓红等,纳米Fe/C复合材料的原位合成,材料研究学报,2002,16,146-150.
    [98] Song HH, Chen XH, Large-scale synthesis of carbon-encapsulated iron carbide nanoparticles by co-carbonization of durene with ferrocene, Chem Phys Lett, 2003, 374, 400-404.
    [99] Song HH, Chen XH, Chen XG, et al, Influence of ferrocene addition on the morphology and structure of carbon from petroleum residue, Carbon, 2003, 41, 3037-3046.
    [100] 霍俊平,宋怀河,陈晓红,碳包覆纳米金属颗粒的合成研究进展,化学通报,2005,1,23-29.
    [101] Wu WZ, Zhu ZP, Liu ZY, A study of the explosion of Fe-C hybrid xerogels and the solid products, Carbon, 2003, 41, 309-315.
    [102] Wu WZ, Zhu ZP, Liu ZY, et al, Preparation of carbon-encapsulated iron carbide nano-particles by an explosion method, Carbon, 2003, 41, 317-321.
    [103] Lu Y, Zhu ZP, Liu ZY, Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene, Carbon, 2005, 43, 369-374.
    [104] Harris PJF, Tsang SC, A simple technique for the synthesis of filled carbon nano-particles, Chem Phys Lett, 1998, 293, 53-58.
    [105] Harris PJF, Tsang SC, Encapsulating uranium in carbon nanoparticles using a new technique, Carbon, 1998, 36,1859-1861.
    [106] Young JY, Hong KB, Catalytic growth mechanism of carbon nanofibers through chemical vapor deposition, Diam Relat Mater, 2001, 10, 1214-1217.
    [107] Nolan PE, Lynch DC, Cutler AH, Graphite encapsulation of catalytic metal nano- particles, Carbon, 1996, 34, 817-819.
    [108] Ding F, Rosen A, Campbell Eleanor EB, et al, Graphitic encapsulation of catalyst particles in carbon nanotube production, J Phys Chem B, 2006, 110, 7666-7670.
    [109] Beruhauer M, Braun M, Huttinger KJ, Kinetics of mesophase formation in a stirred tank reactor and properties of the products — V. Catalysis by ferrocene, Carbon, 1994, 32, 1073-985.
    
    [110] Blanco C, Santamaria R, Bermejo J, et al, Pitch-based composites with granular reinforcements for frictional applications, Carbon, 2000, 38,1043-951.
    [111] Zander M, On the composition of pitches, Fuel, 1987, 66, 1536-1538.
    [112] Tateshi D, Esumi K, Honda H, Formation of carbonaceous gel, Carbon, 1991, 29, 1296-1298.
    [113] Wu WZ, Zhu ZP, Liu ZY, Amorphous carbon nano-particles prepared by explosion of nitrated pitch, Carbon, 2002, 40, 2034-2037.
    [114] Hosomura T, Okamoto H, Effects of pressure carbonization in the C-C composite process, Mat Sci Eng A, 1991, 143, 223-229.
    [115] Kisamori S, Kuroda K, Kavano S, et Al, Oxidative removal of SO_2 and recovery of H_2SO_4 over poly-based activated carbon fibers, Energ Fuel, 1994, 8, 1337.
    [116] Murakami Y, Esumi K, Honda H, Preparation and characterization of an electrocatalytic electrode using amphiphilic carbonaceous material containing metal compound, Carbon, 1996,34,463-470.
    [117] Lee CJ, Hsu ST, Preparation of spherical encapsulation of activated carbons and their adsorption capacity of typical uremic toxins, J Biomed Mater Res, 1990, 24, 243-258.
    [118] Esumi K, Sugii H, Taeishi D, et al, Preparation of carbon microbeads containing fine platinum from aqua-mesophase, Carbon, 1992, 30, 121-122.
    [119] Preise H, Berger L, Szulzewsk K, Thermal treatment of binary carbonaceous zirconia gels and formation of Zr(C, O, N) solid solutions, Carbon, 1996, 34, 109-119.
    [120] Preiss H, Kant WA, A rheological and thermal characterization of carbonaceous hydrogel produced from pitch, Carbon, 1994, 32, 351-353.
    [121] 李轩科,刘朗,沈士德,由炭质溶胶-凝胶制备超细炭的研究,新型炭材料,1999,14,49-52.
    [122] 马青兰,李敏敏,许并社,活性炭净化废水处理研究,新型炭材料,2002,17,59-61.
    [123] 薛锐生,热缩聚工艺条件对中间相炭微球形成的影响,炭素,1999,3,8-13.
    [124] Wang YG, Egashira M, Ishida S, et al, Microstructure of mesocarbon microbeads prepared from synthetic isotropic naphthalene pitch in the presence of carbon black, Carbon, 1998, 37, 307-314.
    [125] Takakazu S, Hiroyuki U, Pitch-based carbon fiber microstructure and texture and compatibility with aluminum coated using chemical vapor deposition, Carbon, 1999, 37, 47-59.
    [126] 李轩科,溶胶-凝胶法制备纳米炭粉和纳米碳化物的研究,博士学位论文,太原,中国科学院山西煤炭化学研究所,2000.
    [127] 吴卫泽,朱珍平,刘振宇,水性中间相沥青的制备研究,新型炭材料,2001,16,8-13.
    [128] 吴卫泽,朱珍平,刘振宇,水相炭基溶胶-凝胶法制备纳米炭粉的研究,新型炭材料,2001,16,12-16.
    [129] 吴卫泽,朱珍平,刘振宇,由沥青制备炭基凝胶的研究,新型炭材料,2001,16,7-11.
    [130] 吴卫泽,朱珍平,刘振宇,Fe/C复合纳米材料的制备研究,新型炭材料,2002,17,4-9.
    [131] Wu WZ, Zhu ZP, Liu ZY, Metal-carbon nano-materials prepared directly from pitch, Carbon, 2002, 40, 787-803.
    [132] 吴卫泽,炭纳米粉和金属/炭复合纳米粉的制备研究,博士学位论文,太原,中国科学院山西煤炭化学研究所,2002.
    [133] 儿玉昌也,江角邦男,本田英昌,同本第20回炭素材料学会年会要旨集1A,1993,13.
    [134] 吴卫泽,朱珍平,刘振宇,热处理对爆炸法制备的碳包裹碳化铁纳米颗粒的影响,新型炭材料,2002,17,7-11.
    [135] 王海英,爆炸-真空热处理条件下纳米洋葱状富勒烯的形成,硕士学位论文,太原,太原理工大学,2004.
    [136] Oh IS, Kim JI, Kim JK, et al, Effects of pressure on the pore formation of carbon/carbon composites during carbonization, J Mater Sci, 1999, 34, 4585-4595.
    [137] 梁文杰主编,石油化学,北京,石油大学出版社,2004,7,62-65.
    [138] Camacho-Bragado GA, Santiago P, Marin-Almazo M, et al, Fullerenic structures derived from oil asphaltenes, Carbon, 2002, 40, 2761-2766.
    [1] Rostrup JP, Equilibrium of decomposition reactions of carbon monoxide and methane over nickel catalyst, J Catal, 1972, 27, 343-356.
    [2] Holstein WL, The role of ordinary and soret diffusion in the metal-catalyzed formation of filamentous carbon, J Catal, 1995, 152, 42-51.
    [3] Tibbetts GG, Gorkiewicz DW, A new reactor for growing carbon fibers from liquid- and vapor-phase hydrocarbons, Carbon, 1993, 31, 809-814.
    [4] Fan YY, Cheng HM, Wei YL, et al, The influence of preparation parameters on the mass production of vapor-grown carbon nanofibers, Carbon, 2000, 38, 789-795.
    [5] Sano N, Akazawa H, Kikuchi T, et al, Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen, Carbon, 2003, 41, 2159-2162.
    [6] 葛爱英,纳米洋葱状富勒烯的制各及其电磁特性的研究,硕士学位论文,太原,太原理工大学,2006.
    [7] 陈学刚,纳米铁颗粒/炭材料的制各和性能研究,博士学位论文,北京,北京化工大学,2001.
    [8] Song HH, Chen XH, Large-scale synthesis of carbon-encapsulated iron carbide nano-particles by co-carbonization of durene with ferrocene, Chem Phys Lett, 2003, 374, 400-404.
    [9] Oya A, Otani S, Effects of particles size of calcium and calcium compounds on catalytic graphitization of phenolic resin carbon, Carbon, 1979, 17, 125-129.
    [10] Oya A, Mochizuki M, Otani S, et al, An electron microscopic study on the turbostratic carbon formed in phenolic rein carbon by catalytic action of finely dispersed nickel, Carbon, 1979, 17, 71-76.
    [11] Oya A, Otani S, Catalytic graphitization of carbons by various metals, Carbon, 1979, 17, 131-137.
    [12] 吴卫泽,朱珍平,刘振字,热处理对爆炸法制备的碳包裹碳化铁纳米颗粒的影响,新型炭材料,2002,17,7-12.
    [13] 张艳,赵兴国,陆路等,纳米洋葱状富勒烯的制备方法及生长机理,太原理工大学学报,2003,34,383-386.
    [14] Bower C, Zhu W, Jin SH, et al, Plasma-induced alignment of carbon nanotubes, Appl Phys Lett, 2000, 77, 830-832.
    [15] 陈新,胡征,王喜章等,微波等离子体辅助化学气相沉积法低温合成定向碳纳米管阵列,高等化学学报,2001,5,731-733.
    [16] 赵华侨,等离子化学与工艺,北京,中国科学技术出版社,1993.
    [1] Ting JM, Huang NZ, Thickening of chemical vapor deposited carbon fiber, Carbon, 2001, 39, 835-839.
    
    [2] Fan YY, Cheng HM, Wei YL, et al, The influence of preparation parameters on the mass production of vapor-grown carbon nanofibers, Carbon, 2000, 38, 789-795.
    [3] Endo M, Kim YA, Hayashi T, et al, Vapor-grown carbon fibers (VGCFs) — Basic properties and their battery applications, Carbon, 2001, 39,1287-1297.
    [4] Yang SM, Chen XQ, Motojima SJ, et al, Morphology and microstructure of spring-like carbon micro-coils/nano-coils prepared by catalytic pyrolysis of acetylene using Fe- containing alloy catalysts, Carbon, 2005, 43, 827-834.
    [5] Chen XQ, Yang SM, Motojima SJ, et al, Morphology and microstructure of twisting nano- ribbons prepared using sputter-coated Fe-base alloy catalysts on glass substrates, Mater Lett, 2005, 59, 854-858.
    [6] Wei BQ, Vajtai R, Ajayan PM, Sequence growth of carbon fibers and nanotube networks by CVD process, Carbon, 2003,41,179-198.
    [7] Xie JN, Sharma PK, Varadan VV, et al, Thermal, Raman and surface area studies of microcoiled carbon fiber synthesized by CVD microwave system, Mater Chem Phys, 2002,76,217-223.
    [8] Li YY, Bae SD, Sakoda A, et al, Formation of vapor grown carbon fibers with sulfuric catalyst precursors and nitrogen as carrier gas, Carbon, 2001, 39, 91-100.
    [9] Li YJ, Lau SP, Tay BK, et al, Oriented carbon microfibers grown by catalytic de composition of acetylene and their field emission properties, Diam Relat Mater, 2001, 10, 878-882.
    
    [10] Mukai SR, Masuda T, Hashimoto K, et al, Physical properties of rapidly grown vapor- grown carbon fibers, Carbon, 2000, 38,475-494.
    
    [11] Cassell AM, Raymakers JA, Kong J, et al, Large scale CVD synthesis of single-walled carbon nanotubes, J Phys Chem B, 1999, 103, 6484-6492.
    [12] Tang CC, Ding XX, Gan ZW, et al, Synthesis of carbon nanotubes using supported catalysts modified by lanthanum species, Carbon, 2002, 40, 2497-2502.
    [13] Bai S, Li F, Yang QH, ey al, Influence of ferrocene/benzene mole ratio on the synthesis of carbon nanostructures, Chem Phys Lett, 2003, 376, 83-79.
    [14] Lee CJ, Park J, Kang SY, et al, Growth of well-aligned carbon nanotubes on a large area of Co-Ni co-deposited silicon oxide substrate by thermal chemical vapor deposition, Chem Phys Lett, 2000, 323, 554-559.
    [15] Choi WS, Choi SH, Hong B, et al, Growth of carbon nanotubes on glass substrate by MPECVD, Mater Sci Eng C, 2006, 26, 1215-1218.
    [16] Nolan PE, Schabel MJ, Lynch DC, et al, Hydrogen control of carbon deposit morphology, Carbon, 1995, 33, 79-85.
    [17] Endo M, Takeuchi K, Hiraoka T, et al, Stacking nature of graphite layers in carbon nanotubes and nanofibers, J Phys Chem Solids, 1997, 58, 1707-1712.
    [18] 成会明编著,碳纳米管制备、结构、物性及应用,北京,化学工业出版社,2002.
    [19] Du GX, Feng SA, Zhao JH, et al, Particle-wire-tube mechanism for carbon nanotube evolution, J Am Chem Soc, 2006, 128, 15405-15414.
    [20] Zhu ZP, Lu Y, Qiao DH, et al, Self-catalytic behavior of carbon nanotubes, J Am Chem Soc, 127, 15698-15699.
    [21] Qiu JS, An YL, Zhao ZB, et al, Catalytic synthesis of single-walled carbon nanotubes from coal gas by chemical vapor deposition method, Fuel Process Technol, 2004, 85, 913-820.
    [22] Ding F, Rosen A, Campbell Eleanor EB, et al, Graphitic encapsulation of catalyst particles in carbon nanotube production, J Phys Chem B, 2006, 110, 7666-7670.
    [23] Ishioka M, Okada T, Matsubara K, Preparation of vapor-grown carbon fibers by floating catalyst method in Linz-Donawitz converter gas: Influence of catalyst size, Carbon, 1993, 31, 699-703.
    [24] Hu HQ, Metal solidification, Beijing, Metallurgy Industrial Publisher, 1985, 60.
    [25] Tibbetts GG, Balogh MP, Increase in yield of carbon fibres grown above the iron/carbon eutectic, Carbon, 1999, 37, 241-247.
    [26] 王晓敏,纳米洋葱状富勒烯的大量制备和性能研究,博士学位论文,太原,太原理工大学,2005.
    [27] Deepak FL, Govindaraj A, Rao CNR, Synthetic strategies for Y-junction carbon nanotubes, Chem Phys Letter, 2001, 345, 5-10.
    [28] Dupuis AC, The catalyst in the CCVD of carbon nanotubes—a review, Prog Mater Sci, 2005, 50, 929-961.
    [29] Araki H, Katayama T, Kamide K, et al, Structures of carbon nanotubes synthesized on quartz plate, Syn Met, 2003, 135-136, 759-760.
    [30] Ma XC, Wang E, Zhou WZ, et al, Polymerized carbon nanobells and their field-emission properties, Appl Phys Lett, 1999, 75, 3105-3107.
    [31] Lee CJ, Park J, Growth model of bamoo-shaped carbon nanotubes by thermal chemical vapor deposition, Appl Phys Lett, 2000, 77, 3397-3399.
    [32] 李杞秀,化学气相沉积法由煤气制备炭纳米材料的研究,硕士学位论文,大连,大连理工大学,2006.
    [33] Iijima S, Helical microtubules of graphitic carbon, Nature, 1991, 354, 56-58.
    [34] Ajayan PM, Nanotubes from Carbon, Chem Rev, 1999, 99, 1787-1799.
    [35] Gooding JJ, Nanostructuring electrodes with carbon nanotubes: A review on electro-chemistry and applications for sensing, Electrochim Acta, 2005, 50, 3049-3060.
    [36] Bonard JM, Carbon nanostructures by hot filament chemical vapor deposition: Growth, properties, applications, Thin Solid Films, 2006, 501, 8-14.
    [37] Popov VN, Carbon nanotubes: properties and application, Mat Sci Eng R, 2004, 43, 61-102.
    [38] Ci LJ, Wei JQ, Wei BQ, et al, Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method, Carbon, 2001, 39, 329-335.
    [39] Chung YH, Jou S, Carbon nanotubes from catalytic pyrolysis of polypropylene, Mater Chem Phys, 2005, 92, 256-259.
    [40] Maksimova NI, Kirvoruchko OP, Mestl G, et al, Catalytic synthesis of carbon nano-structures from polymer precursors. J Mol Catal A, 2000, 158, 301-307.
    [41] Nishino H, Nishida R, Matsui T, et al, Growth of amorphous carbon nanotube from poly(tetrafluoroethylene) and ferrous chloride, Carbon, 2003, 41, 2819-2823.
    [42] Jou S, Hsu CK, Preparation of carbon nanotubes from vacuum pyrolysis of polycarbosilane, Mater Sci Eng B, 2004, 106, 275-281.
    [43] Dikonimos MT, Giorgi L, Giorgi R, et al, CNT growth on alumina supported nickel catalyst by thermal CVD, Diam Relat Mater, 2005, 14, 815-819.
    [44] Dresselhaus MS, Dresselhaus G, Saito R, et al, Raman spectroscopy of carbon nanotubes, Phys Rep, 2005, 409, 47-99.
    [45] 慈立杰,浮动催化法碳纳米管的制备及其晶化行为的研究,博士学位论文,北京,清华大学,2000.
    [46] Baker RTK, Barber MA, Harris PS, et al, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene, J Catal, 1992, 26, 51-62.
    [1]沈曾民主编,新型碳材料,北京化学工业出版社,2004,252-275.
    [2] Yamada Y, Imamura T, Honda H, et al, Characteristics of mesocarbon microbeads separated from pitch, Carbon, 1974,12,307-319.
    [3] Kodama M, Fujiura T, Ikawa E, et al, Characterization of mesocarbon microbeads prepared by emulsion method, Carbon, 1991,29,43-49.
    [4] Lu YG, Ling LC, Oh S, et al, Preparation of carbon microbeads from pitch and resin by suspension, New Carbon Materials, 2001,16,1-5.
    [5] Qiu JS, Li YF, Wang YP, et al, A novel form of carbon micro-balls from coal, Carbon,2003,41,767-772.
    [6] Mi YZ, Liu YL, Yuan DS, et al, Synthesis of carbon micro-beads by an alcohol-thermal reduction route, Chem Lett, 2005,34, 846-847.
    [7] Jin YZ, Gao C, Wen KH, et al, Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons, Carbon, 2005,43,1944-1953.
    [8] 李杞秀,化学气相沉积法由煤气制备炭纳米材料的研究,硕士学位论文,大连,大连理工大学,2006
    [9] Fan YY, Cheng HM, Wei YL, et al, The influence of preparation parameters on the mass production of vapor-grown carbon nanofibers, Carbon, 2000,38,789-795.
    [10]安玉良,生物基碳纳米材料的制备与性质研究,博士学位论文,大连,大连理工大学, 2004.
    [11] Xu BS, Guo JJ, Jia HS, et al,Hard carbon spherules derived from deoiled asphalt as a catalyst support for direct methanol fuel cell, 19th Canadian Symposium on Catalysis,May 14-16,2006, Saskatoon, Saskatchewan, 31.
    [12] Ma AL, Wang XM, Li TB, et al, Characteristics of carbon microspheres and study on its adsorption Isotherms, Mater Sci Eng A, 2007,443,54-59.??Nature, 1990,347,354-357.
    [14] Seraphin S, Zhou D, Jiao J, Filling the carbon nanocages, J Appl Phys, 1996, 80,2097-2104.
    [15] 葛爱英, 许并社, 王晓敏等, 洋葱状富勒烯电磁特性的研究, 物理化学学报,2006,22,203-208.
    [16] Xu BS, Tanaka SI, Formation of giant onion-like Fullerenes under A1 nanoparticles by electron irradiation, Acta Mater, 1998,46, 5249-5257.
    [17] 王海英, 王晓敏, 章海霞等, 电弧放电制备内包金属纳米洋葱状富勒烯的研究,材料热处理学报, 2003,23,41-43.
    [18] Lu Y, Zhu ZP, Liu ZY, Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene, Carbon, 2005,43,369-374.
    [19] Xu BS, Li TB, Han PD, et al, Several features of the iron-included onion-like fullerenes,Mater Lett, 2006,60,2042-2045.
    [20] Sano N, Akazawa H, Kikuchi T, et al, Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen, Carbon, 2003,41,2159-2162.
    [21] Ding F, Rosen A, Campbell Eleanor EB, et al, Graphitic encapsulation of catalyst particles in carbon nanotube production, J Phys Chem B, 2006,110, 7666-7670.
    [1] Ruoff RS, Lorents DC, Chan B, et al, Single-crystal metals encapsulated in carbon nanoparticles, Science, 1993, 259, 346-348.
    [2] Subramoney S, Novel nanocarbons-structure, properties, and potential application, Adv Mater, 1998, 10, 1157-1171.
    [3] Hayashi T, Hirono S, Tomita M, et al, Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon, Nature, 1997, 381, 772-774.
    [4] Tomita S, Hikita M, Fujii M, et al, A new and simple method for thin graphitic coating of magnetic-metal nanoparticles, Chem Phys Lett, 2000, 316, 361-364.
    [5] Liu BH, Ding J, Zhong ZY, et al, Large-scale preparation of carbon-encapsulated cobalt nanoparticles by the catalytic method, Chem Phys Lett, 2002, 358, 96-102.
    [6] Wang ZH, Choi CJ, Kim BK, et al, Characterization and magnetic properties of carbon-coated cobalt nanocapsules synthesized by the chemical vapor-condensation process, Carbon, 2003, 41, 1751-1758.
    [7] Sano N, Akazawa H, Kikuchi T, et al, Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen, Carbon, 2003, 41, 2159-2162.
    [8] Wu WZ, Zhu ZP, Liu ZY, Metal-carbon nano-materials prepared directly from pitch, Carbon, 2002, 40, 800-803.
    [9] Song HH, Chen XH, Chen XG, et al, Influence of ferrocene addition on the morphology and structure of carbon from petroleum residue, Carbon, 2003, 41, 3037-3046.
    [10] Huo JP, Song HH, Chen XH, Preparation of carbon-encapsulated iron nanoparticles by co-carbonization of aromatic heavy oil and ferrocene, Carbon, 2004, 42, 3177-3182.
    [11] 陈学刚,纳米铁颗粒炭材料的制备和性能研究,硕士学位论文,北京,北京化工大学,2001,60-62.
    [12] 吴卫泽,朱珍平,刘振宇,热处理对爆炸法制备的碳包裹碳化铁纳米颗粒的影响. 新型炭材料,2002,17,7-12.
    [13] Harris PJF, Tsang SC, A simple technique for the synthesis of filled carbon nanoparticles, Chem Phys Lett, 1998, 293, 53-58.
    [14] Bower C, Zhu W, Jin SH, et al, Plasma-induced alignment of carbon nanotubes, Appl Phys Lett, 2000, 77, 830-832.
    [15] 陈新,胡征,王喜章等,微波等离子体辅助化学气相沉积法低温合成定向碳纳米管阵列,高等化学学报,2001,5,731-733.
    [16] 符冬菊,刘旭光,杜爱兵等,微波等离子体法合成洋葱状富勒烯的研究,无机材料学报,2006,21,576-582.
    [17] 刘旭光,蔺娴,符冬菊等,一种新颖结构的煤基定向碳薄膜的制备与表征,化工学报,2006,57,1992-1996.
    [18] Srivastava Sanjay K, Shukla AK, Vankar VD, et al, Growth, structure and field emission characteristics of petal like carbon nano-structured thin films, Thin Solid Films, 2005, 492, 124-130.
    [1] 沈曾民主编,新型碳材料,北京化学工业出版社,2004,98-133.
    [2] 贺福编著,碳纤维及其应用技术,北京,化学工业出版社,2004,117-137.
    [3] 薛锐生,热缩聚工艺条件对中间相炭微球形成的影响,炭素,1999,3,8-13.
    [4] Wang YG, Egashira M, Ishida S, et al, Microstructure of mesocarbon microbeads prepared from synthetic isotropic naphthalene pitch in the presence of carbon black, Carbon, 1998, 37, 307-314.
    [5] Kodama M, Fujiura T, Ikawa E, et al, Characterization of mesocarbon microbeads prepared by emulsion method, Carbon, 1991, 29, 43-49.
    [6] Kodama M, Fujirua T, Esumi K, et al, Preparation of mesocarbon microbeads with a narrow size distribution, Carbon, 1988, 26, 595-598.
    [7] Lu YG, Ling LC, Oh S, et al, Preparation of carbon microbeads from pitch and resin by suspension, New Carbon Materials, 2001, 16, 1-5.
    [8] 李轩科,溶胶-凝胶法制备纳米炭粉和纳米碳化物的研究,博士学位论文,太原,中国科学院山西煤炭化学研究所,2000.
    [9] 吴卫泽,朱珍平,刘振宇,水相炭基溶胶-凝胶法制备纳米炭粉的研究,新型炭材料,2001,16,12-16.
    [10] Wu WZ, Zhu ZP, Liu ZY, Metal-carbon nano-materials prepared directly from pitch, Carbon, 2002, 40, 787-803.
    [11] Wu WZ, Zhu ZP, Liu ZY, A study of the explosion of Fe-C hybrid xerogels and the solid products, Carbon, 2003, 41, 309-315.
    [12] Wu WZ, Zhu ZP, Liu ZY, et al, Preparation of carbon-encapsulated iron carbide nano-particles by an explosion method, Carbon, 2003, 41, 317-321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700