接触导线用Al_2O_3/Cu复合材料电滑动磨损性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高速电气化铁路的不断发展,要求铜合金接触导线不仅具有较高的导电性和机械性能,而且还应具有优良的耐磨性能和较高的抗软化性能。Al_2O_3/Cu复合材料因具有优良的高强度高导电性能以及抗高温软化性能而成为备受瞩目的一种工程材料。本文以内氧化法制备Al_2O_3/Cu复合材料为研究对象,采用内氧化工艺制备了不同Al_2O_3含量的Al_2O_3/Cu复合材料。并根据高速铁路对接触导线材料提出的性能要求和Al_2O_3/Cu复合材料的强化机理,设计了三种Al_2O_3/Cu复合材料(Al_2O_3含量分别为0.24wt%、0.40wt%和0.60wt%)。对不同Al_2O_3含量的Al_2O_3/Cu复合材料的导电率、硬度及抗拉强度进行测试,并将制备的Al_2O_3/Cu复合材料及Cu-0.36Cr-0.06Zr合金在自制的磨损试验机上进行电滑动摩擦磨损试验,研究了有无载流条件下电流、速度和接触压力对接触导线磨损率的影响。利用扫描电子显微镜(SEM)和能谱仪(EDS)对接触导线磨损表面及纵剖面进行微观组织分析并探讨其磨损机理,为Al_2O_3/Cu复合材料在电滑动领域的工程应用提供理论依据。
     主要得到以下结论:
     采用内氧化法制备的0.24Al_2O_3/Cu、0.40Al_2O_3/Cu和0.60Al_2O_3/Cu三种复合材料的导电率分别为:93%IACS、89%IACS和85%IACS;抗拉强度分别为:530MPa、585MPa和607MPa;硬度分别为:152HV、165HV和178HV。其综合性能优良,能够满足高速电气化铁路用接触导线的基本性能要求。
     电滑动摩擦磨损试验结果表明:相同试验条件下,Al_2O_3/Cu复合材料的抗摩擦磨损性能明显优于Cu-0.36Cr-0.06Zr合金,且0.40Al_2O_3/Cu和0.60Al_2O_3/Cu的耐磨性更加优越。在试验范围内,四种接触导线材料的磨损率均随着电流、滑动时间的增加而增加。电流对0.40Al_2O_3/Cu和0.60Al_2O_3/Cu的影响不明显,对0.24Al_2O_3/Cu和Cu-0.36Cr-0.06Zr磨损率的影响较显著。0.24Al_2O_3/Cu和Cu-0.36Cr-0.06Zr合金的磨损率随电流强度的增长率均较0.40Al_2O_3/Cu和0.60Al_2O_3/Cu的大;在电滑动摩擦磨损试验过程中,随着时间的延长,0.40Al_2O_3/Cu和0.60Al_2O_3/Cu的磨损寿命较Cu-0.36Cr-0.06Zr合金的磨损寿命将呈现出越来越明显的优越性。在试验范围内相同参数条件下,随着Al2O3含量的增加,复合材料的磨损率逐渐降低,材料的抗磨损性逐渐增强,即0.40Al2O3/Cu和0.60Al2O3/Cu明显优于0.24Al2O3/Cu的耐磨性能。在有电流存在时,0.60Al2O3/Cu的抗耐磨性更加明显。
     Al2O3/Cu复合材料在无加载电流条件下磨损机制主要为粘着磨损和磨粒磨损;在载流条件下磨损机制主要为粘着磨损、磨粒磨损、氧化磨损和电烧蚀磨损,且随加载电流的不断增加,粘着磨损程度加重,Al2O3/Cu复合材料表面的粘着物主要来自于铜基粉末冶金滑块。Cu-0.36Cr-0.06Zr合金在无载流时磨损机制主要为粘着磨损、磨粒磨损和氧化磨损;有载流时磨损机制主要为粘着磨损、磨粒磨损、氧化磨损和电烧蚀磨损,且随加载电流的不断增加,氧化磨损和电烧蚀磨损呈加剧之势。
     基于本试验研究,Al2O3/Cu复合材料可满足电气化铁路接触导线的要求。在试验范围内,建议接触导线用A12O3/Cu复合材料中的Al2O3含量在0.40~0.60wt%之间。
With the continuing development of high-speed electrified railway, the contact wire demands the copper alloy to have high electrical conductivity and mechanical properties, but also have excellent wear-resisting and high anti-softened properties. Al_2O_3/Cu composite has recently made their debut as potentially viable and attractive engineering materials for industrial applications that require high strength, high thermal- and electrical-conductivity, and high resistance to softening at elevated temperatures. Internal oxidation has been regarded as the most suitable method for Al_2O_3/Cu composite. This paper researches Al_2O_3/Cu composite with different A12O3-content prepared by internal oxidation. Based on the performance requirements by the high-speed railway on the contact wire material and strengthening mechanism of Al_2O_3/Cu composite, three materials containing 0.24wt%Al_2O_3, 0.40wt%Al_2O_3 and 0.60wt%Al_2O_3 separately prepared by internal oxidation were designed, and the electrical conductivity, hardness and tensile strength properties of the composite were tested. The tribological properties with and without current of Al_2O_3/Cu composite were investigated on self-made electrical sliding-wear tester. The influence of current, velocity and load on the wear rate of the composite were studyed by compareing with Cu-0.36Cr-0.06Zr. The morphologies of friction surface and vertical section of the composite were also examined with scanning electron microscopy (SEM) and energy dispersive X-ray spectrum (EDS), and its abrasion mechanisms were discussed. The research is to explore the engineering applications on electric sliding field for providing theoretical basis about Al_2O_3/Cu composite.
     The following points are considered as the main conclusions:
     The Al_2O_3/Cu composites containing 0.24wt%Al_2O_3, 0.40wt%Al_2O_3 and 0.60wt%Al_2O_3 separately prepared by internal oxidation can obtain good integrated properties to meet the performance requirements of the contact wire, and the electrical conductivity reach 93%IACS, 89%IACS and 85%IACS, the tensile strength are 530MPa, 585MPa and 607MPa, and the micro-hardness are 152HV, 165HV and 178HV.
     The wear resistance of Al_2O_3/Cu composite is superior to that of Cu-0.36Cr-0.06Zr alloy under the same conditions, especially, 0.40Al_2O_3/Cu and 0.60Al_2O_3/Cu. The wear rate of all the materials under investigation increases with the increasing of current and sliding time under certain load. And the influence of current on wear rate is not obvious for 0.40Al_2O_3/Cu and 0.60Al_2O_3/Cu, while it is very notable for 0.24Al_2O_3/Cu and Cu-0.36Cr-0.06Zr. Moreover, the growth rate of wear rate of both 0.24Al_2O_3/Cu and Cu-0.36Cr-0.06Zr are higher than that of 0.40Al_2O_3/Cu and 0.60Al_2O_3/Cu. Besides, the service life of wear of 0.40Al_2O_3/Cu and 0.60Al_2O_3/Cu will appear in more and more superiority than the Cu-0.36Cr-0.06Zr alloy with the extending time during the electrical sliding wear processes. The wear rate of Al_2O_3/Cu composite decreases with the increasing of Al_2O_3-content under the same testing. Compared with 0.24Al_2O_3/Cu, 0.40Al_2O_3/Cu and 0.60Al_2O_3/Cu have higher wear resistance under the same conditions.
     The wear mechanism of Al_2O_3/Cu composite were adhesive wear and abrasive wear without current, while adhesive wear, abrasive wear, oxidation and electrical erosion would be the dominate mechanism under currents. The trend of adhesive wear would be serious with the increasing of current. The adhesions of Al_2O_3/Cu composite come from the copper-based powder metallurgy strip. By comparison, for Cu-0.36Cr-0.06Zr, the wear mechanism were the adhesive wear, abrasive wear and oxidation wear without current, while changed into adhesive wear, abrasive wear, oxidation and electrical erosion with current. Moreover, oxidation and electrical erosion were become more and more severe with the increasing of current.
     Based on the experimental study, Al_2O_3/Cu composite prepared by internal oxidation meets the performance requirements of the contact wire, and the Al_2O_3-content of Al_2O_3/Cu composite contact wire is 0.40~0.60wt%.
引文
[1] Horstmann D,王渤洪.电气化铁路传动技术 100 年的发展(一)[J].变流技术与电力牵引,2004,(1):1-6.
    [2] 冯金柱.世界电气化铁路的发展[J].电气化铁道,2001,(4):1-7.
    [3] 冯金柱.电气化铁路技术装备的发展[J].电气时代,2001,(11):11-13.
    [4] 秦家铭.我国电气化铁路的发展及展望—纪念全国电气化铁路突破一万公里[J].铁道工程学报,1998,(3):1-6.
    [5] 侯唯一.我国电气化铁路的建设历程[J].电气化铁道,2001,(3):1-3.
    [6] 冯金柱.我国电气化铁路建设展望[J].铁道知识,2003,(5):14-15.
    [7] 李世斌.我国电气化铁路发展的历程和前景[J].铁道交通纵横,2006,(10):26-27.
    [8] 李之乐.世界电气化铁道发展概况[J].电气化铁道,2004,(3):37-39.
    [9] 黄崇祺.轮轨高速电气化铁路接触网用接触线的研究[J].中国铁道科学,2001,22(1):1-5.
    [10] 黄崇祺.轮轨高速电气化铁路接触网用接触线的生产现状和发展趋势[J].电线电缆,1999,(6):2-6.
    [11] 张强.中、高速电气化铁路接触线的选择[J].铁道机车车辆,1997,(4):21-27.
    [12] 丁雨田,李来军,许广济,等.接触线材料的现状及研究热点[J].电线电缆,2004,(2):3-9.
    [13] 张强.我国高速电气化铁路接触线与承力索的研制[J].电气化铁路,1997,(2):9-14.
    [14] 雷静果,刘平,赵冬梅,等.新一代国产化高速铁路接触线的研究与开发[J].功能材料,2004,增刊 35:1057-1060.
    [15] 刘嘉珊,强宪林.新型铜合金电车线的工艺开发探讨[C].中国电气化铁路一万公里学术会议论文集,北京,1997:357-359.
    [16] 张强.高速用铜镁合金接触线的研究[J].铁道机车车辆,1999,(6):15-17.
    [17] Kuhlmam-Wilsdorf D. What role for contact spots and dislocations in fiction and wear[J]. Wear, 1996(200): 8-15.
    [18] 王会清,张书久.铝包钢丝的生产及使用前景[J].金属制品,1999,25(1):5-8.
    [19] 运新兵.电气化铁路用铜包钢接触导线制造技术[J].有色金属,2002,54(3):22-23.
    [20] 彭立明,毛协民,丁文江.自生复合 Cu-Cr 合金综合性能的热稳定性[J].中国有色金属学报,2002,12(2):309-314.
    [21] 张家涛.高性能 Cu-Cr(-Zr-Mg)自生复合材料研究及其应用[D].昆明:昆明理工大学,2001.
    [22] 张家涛,陈敬超,甘国友.Cu-Cr 自生复合材料研究进展[J].昆明理工大学学报,2002,27(3):130-133.
    [23] Huang F X, Ma J S, Ning H L. Analysis of phases in a Cu-Cr-Zr alloy[J]. Scripta Materialia, 2003, 48(1): 97-102.
    [24] Batra I S, Dey G K, Kulkarni U D, et al. Precipitation in a Cu-Cr-Zr alloy[J]. Materials Science and Engineering A, 2003, 356(1): 32-36.
    [25] Zhao D M, Dong Q M, Liu P, et al. Structure and strength of the age hardened Cu-Ni-Si alloy[J]. Materials Chemistry and Physics, 2003, 79(1): 81-86.
    [26] Song K X, Xing J D, Dong Q M, et al. Internal oxidation of dilute Cu-Al alloy powders with oxidant of Cu2O[J]. Materials Science and Engineering A, 2004, 380: 117-122.
    [27] Cheng J Y, Wang M P, Li Z, et al. Fabrication and properties of low oxygen grade Al2O3 dispersion strengthened copper alloy[J]. Transactions of Nonferrous Metals Society of China, 2004, 14(1): 121-126.
    [28] Srivatsan T S, Narendra N, Troxell J D. Tensile deformation and fracture behavior of an oxide dispersion strengthened copper alloy[J]. Materials and Design, 2000, 21: 191-198.
    [29] Naser J, Riehemann W, Ferkel H. Dispersion hardening of metals by nanoscaled ceramic powders[J]. Materials Science and Engineering A, 1997, 467: 234-236.
    [30] Liang S H, Fan Z K, Fang L. Effect of powder characteristic on Al internal oxidation to prepare Al2O3-Cu composite[J]. Journal of Composite Materials, 2004, 38(1):31-39.
    [31] Song K X, Liu P, Tian B H, et al. Stabilization of nano-Al2O3p/Cu composite after high temperature annealing treatment[J]. Materials Science Forum, 2005, 475-479: 993-996.
    [32] 李士凯,宋克兴.弥散铜热变形流动应力的预测[J].电工材料,2004,2:29-32.
    [33] Song K X, Xing J D, Tian B H, et al. Influence of annealing treatment on the properties and microstructures of alumina dispersion strengthened copper alloy[J]. Transactions of Nonferrous Metals Society of China, 2005, 15(1): 139-143.
    [34] Song K X, Xing J D, Dong Q M, et al. Optimization of the processing parameters during internal oxidation of Cu–Al alloy powders using an artificial neural network[J]. Materials and Design, 2005, 26: 337-341.
    [35] 梁淑华.Cu/Al2O3(Cr2O3)复合材料的原位合成及其机理[D].西安:西安交通大学,2004.
    [36] 国秀花,宋克兴,郜建新,等.Cu-Al 合金直接氧化法制备弥散铜氧源的新工艺[J].特种铸造及有色合金 2006 年年会专刊,2006:146-147.
    [37] 尹志民,张生龙.高强高导铜合金研究热点及发展趋势[J].矿冶工程,2002,22(2):1-5.
    [38] 宋克兴.内氧化法制备 Al2O3/Cu 复合材料机理及其特性[D].西安:西安交通大学,2005,1-48.
    [39] Birks N, Meier G H. Introduction to high temperature oxidation of metals[M]. London:Edward Arnold, 1983: 91-130.
    [40] 国秀花,宋克兴,郜建新,等.内氧化法制备 Al2O3/Cu 复合材料的研究进展及存在问题[J].特种铸造及有色合金,2006,(10):678-680.
    [41] Chatterjee K L, Waddell W. Electrode wear during spot welding of coated steel[J]. Welding & Metal Fabrication, 1996, (3): 110-114.
    [42] 王孟君,娄燕,张辉,等.弥散强化铜电阻焊电极材料的研制[J].矿冶工程,2002,20(2):54-56.
    [43] Provenzano V, Holtz R L. Nanocomposites for high temperature applications[J]. Materials Science and Engineering A, 1995, 204: 125-134.
    [44] Guo M X, Wang M P, Cao L F, et al. Work softening characterization of alumina dispersion strengthened copper alloys [J]. Materials Characterization, 2007, 58: 928-935.
    [45] Liang S H, Fan Z K, Xu L, et al. Kinetic analysis on Al2O3/Cu composite prepared by mechanical activation and internal oxidation[J]. Composites Part A, 2004, 35(12): 1441-1446.
    [46] 周国洪.高强高导电 Al2O3/Cu 复合材料的研究[D].西安:西北工业大学,2001,1-35.
    [47] 青木久纯.析出强化铜合金(PHC)在接触导线上的应用[J].国外机车车辆工艺,2000,(7):9-12.
    [48] 张家涛.高性能 Cu-Cr(Zr-Mg)自生复合材料研究及其应用[D].昆明:昆明理工大学,2001,1-20.
    [49] 刘平,田保红,赵冬梅.铜合金功能材料[M].北京:科学出版社,242-245.
    [50] 蔡继红,董治中,董向红.Al2O3 弥散强化铜的制备与性能影响因素[J].热固性树脂,1999,4:80-83.
    [51] 申玉田,崔春翔,孟凡斌,等.Cu-Al 合金内氧化及 Cu 氧化行为的热力学分析[J].粉末冶金技术,2001,19(1):28-32.
    [52] 申玉田,崔春翔,申玉发,等.Cu-Al 合金内氧化的热力学分析— Ⅰ [J].稀有金属材料与工程,2004,33(6):576-579.
    [53] 申玉田,崔春翔,徐艳姬,等.Cu-Al 合金内氧化的热力学分析— Ⅱ [J].稀有金属材料与工程,2004,33(7):692-695.
    [54] 申玉田,崔春翔,吴人洁,等.Cu-Al 合金内氧化及动力学的研究[J].稀有金属材料与工程,2001,30(1):44-49.
    [55] 李红霞,田保红,林阳明,等.基于氧在固态铜中进行非稳态扩散的动力学研究[J].金属热处理,2005,30(增):223-227.
    [56] 于艳梅,李华伦,张先锋,等.内氧化法制备 Al2O3-Cu 复合材料的反应动力学分析[J].西北工业大学学报,2000,18(4):661-663.
    [57] Srivatsan T S, Narendra N, Troxell J D. Tensile deformation and fracture behavior of an oxide dispersion strengthened copper alloy[J]. Materials and Design, 2000, 21: 191-198.
    [58] Da H H, Rafael M, Harry S. A sliding wear tester for overhead wires and current collectors in light rail systems[J]. Wear, 2000, 239: 10-20.
    [59] Jia S G, Liu P, Ren F Z, et al. Sliding wear behavior of copper alloy contact wire against copper-based strip for high-speed electrified railways[J]. Wear, 2007, 262: 772-777.
    [60] 徐春园,张思成,陈卫华.电车线材料的干滑动摩擦磨损研究现状[J].甘肃科技, 2005,5(21):98-104.
    [61] Shunichi K, Koji K. Effect of arc discharge on wear rate of Cu-impregnated carbon strip in lubricated sliding against Cu trolley under electric current[J]. Wear, 1998, 216: 172-178.
    [62] He D H, Manory R R, Grady N. Wear of railway contact wires against current collector materials[J]. Wear, 1998, 215: 146-155.
    [63] 李鹏,张永振,孙乐民.受电摩擦磨损的研究现状[J].河南科技大学学报,2002,23(4):34-37.
    [64] Nagasawa H, Koji K. Wear mechanism of copper alloy wire sliding against iron-base strip under electric current [J]. Wear, 1998, 216: 179-183.
    [65] 常秋英,孟永钢,温诗铸.电势电极对氮化硅/黄铜滑动摩擦副摩擦磨损性能的影响研究[J].摩擦学学报,2002,22(5):373-376.
    [66] Zhao H, Barber G C, Liu J. Friction and wear in high speed sliding with and without electrical current[J]. Wear, 2001, 249(5-6): 409-414.
    [67] 刘瑞华,宋克兴,贾淑果,等.Al2O3/Cu 复合材料的载流摩擦磨损性能[J].特种铸造及有色合金,2007,27(12):960-962.
    [68] 刘瑞华,宋克兴,郜建新,等.电流对黄铜/Al2O3 弥散强化铜合金摩擦副摩擦磨损性能的影响[J].润滑与密封,2007,32(7):69-71.
    [69] 蔡泽高,刘以宽,王承忠,等.金属磨损与断裂[M].上海:上海交通大学出版社,1985,199-200.
    [70] 孙家枢.金属的磨损[M].北京:冶金工业出版社,1992,199-200.
    [71] 徐晓峰,宋克兴,刘瑞华,等.内氧化制备 Al2O3/Cu 复合材料电滑动磨损性能的研究[J].摩擦学学报,2008,28(1):83-87.
    [72] Kuhlmam-Wilsdorf D. What role for contact spots and dislocations in fiction and wear[J]. Wear, 1996, (200): 8-15.
    [73] 齐卫笑,涂江平,杨友志,等.时效处理对低溶质 Cu-Cr-Zr 合金力学性能和电滑动磨损性能的影响[J].摩擦学学报,2001,21(6):405-409.
    [74] 宁丽萍,王齐华.锡青铜梯度自润滑复合材料的摩擦性能[J].摩擦学学报,2004,24(1):74-78.
    [75] Paulmier D, Bouchoucha A, Zaidi H. Influence of the electrical current on wear in a sliding contact with copper/chrome steel[J]. Vacuum, 1990, (41): 2213-2216.
    [76] Rajkovic V, Bozic D, Jovanovic M T. Characterization of prealloyed copper powders treated in high energy ball mill[J]. Materials Characterization, 2006, 57(2): 94-99.
    [77] Bouchoucha A, Zaidi H. Influence of electrical filed on the tribological behaviour of electro dynamical copper/steel contacts[J]. Wear, 1997, (203-204): 434-441.
    [78] 贾淑果,郑茂盛,刘平,等.在加载电流作用下 Cr 对 Cu-Ag 合金磨损性能的影[J].摩擦学学报,2005,25(5):484-488.
    [79] 刘平,赵冬梅,田保红.高性能铜合金及其加工技术[M].北京:冶金工业出版社,2004:250-252.
    [80] 国秀花,宋克兴,郜建新,等.内氧化法制备 Al2O3/Cu 复合材料的电蚀特性[J].特种铸造及有色合金,2007,27(11):876-879.
    [81] 郜建新,宋克兴,田保红,等.内氧化法制备 Al2O3/Cu 点焊电极的装机试验[J].特种铸造及有色合金,2006,26(8):509-511.
    [82] 郜建新,徐晓峰,国秀花,等.内氧化法制备 Al2O3/Cu 复合材料的载流摩擦磨损特性[J].特种铸造及有色合金,2006,26(7):462-464.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700