纯钛种植体粗化表面的构建及形貌分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     钛种植体表面粗化后可改善骨结合从而提高种植成功率。本研究采用喷砂、喷砂酸蚀、喷砂双重酸蚀法构建粗化种植体表面,通过扫描电子显微镜(scanning electron microscopy, SEM)观察、分析不同的喷砂材料、酸蚀液浓度和酸蚀时间处理后的种植体粗化表面的形貌变化,同时应用X射线能谱分析仪(energy dispersive X-ray analysis,EDXA)观察种植体的表面元素。探讨不同粗化方法处理后的纯钛种植体粗化表面的差别。
     材料和方法
     选用HBIC柱状螺旋种植体24颗,按处理方法的不同分为5大组,12小组。对照组(A组)、不同颗粒喷砂的单纯喷砂组(B组)、不同酸蚀时间的AL2O3喷砂+HCL/H2SO4酸蚀组(C组)、AL2O3颗粒喷砂+ HF/HNO3与HCL/H2SO4双重酸蚀组(D组)、TiO2颗粒喷砂+ HCL/H2SO4酸蚀组(E组)。A组种植体丙酮、乙醇、蒸馏水超声清洗、干燥;B组分别用AL2O3砂、TiO2砂进行喷砂处理后丙酮、乙醇、蒸馏水超声清洗、干燥;C组AL2O3喷砂处理,丙酮、乙醇、蒸馏水超声清洗、干燥后,再HCL/H2SO4混合液分别酸蚀35min、40min、45min、50min、55min,蒸馏水清洗、干燥;D组AL2O3喷砂处理,丙酮、乙醇、蒸馏水超声清洗、干燥后,先于HF/HNO3混合液酸蚀1min,再HCL/H2SO4混合液酸蚀40min,蒸馏水清洗、干燥;E组经TiO2颗粒喷砂后,再于HCL/H2SO4混合液酸蚀40min,蒸馏水清洗、干燥。应用SEM对种植体表面形貌进行观察,EDXA对种植体表面元素进行观察分析。
     结果
     1种植体表面SEM形貌观察
     A组:HBIC种植体在低倍镜下表面平整光滑。高倍镜下可以看到大量方向一致的规则浅沟纹状的划痕,偶见点状凹陷。
     B组:TiO2颗粒喷砂处理的种植体表面在低倍镜下几乎未见喷砂颗粒残留,形成了较平整的、非凹凸状的粗糙面。高倍镜下可见大量凹陷及裂隙,直径1~10μm,形态不规则,大小不等。AL2O3颗粒喷砂种植体表面在低倍镜下粗糙,有大量喷砂颗粒残留。高倍镜下,可以看到表面有很多窝洞组成的凹凸状粗糙面,形状不规则,窝洞边缘锐利,表面还可见一定几何形状的块状物,有的位于表层,有的则位置较深,嵌入钛材内部。
     C组:酸蚀35min的种植体低倍镜下表面微粗糙。高倍镜下为含有大量喷砂颗粒的不规则的凹凸不平状结构,有很多尖锐棱角的突起,在种植体表面还可以看到大量大小不一的窝洞,直径为1~10μm,形状不规则。酸蚀40min、45min的种植体低倍镜下见表面微粗糙,未见明显喷砂颗粒及杂质。在高倍镜下,未见任何杂质,表面形成有大量微孔的网状凹凸不平的粗糙结构,表面可以看到大量的一级窝洞(直径10~30μm)和二级窝洞(直径为1~5μm),形态不规则,深浅不一,窝洞边缘较圆钝。酸蚀50min、55min的种植体低倍镜下表面粗糙,未见杂质。在高倍镜下,种植体表面仍呈现为大窝洞内套有小窝洞及微孔隙的凹凸不平的粗糙表面结构,但是表面一级窝洞和二级窝洞的数量较酸蚀40min、45min的种植体减少,窝洞变浅,边缘较锐利,其中酸蚀55min的种植体部分表面未见有明显的一级窝洞,只见底较平的浅凹形窝洞。
     D组:低倍镜下表面微粗糙。在高倍镜下,表面未见任何杂质,为不规则的波浪状凹凸不平的结构。在凹凸不平的钛表面可以看到大量大小不一的窝洞,直径为500nm~3μm,形状不规则,大小、深浅不一,洞底为半圆形,边缘较锐利。
     E组:低倍镜下表面微粗糙。在高倍镜下,未见到明显的凹凸不平状结构,在相对平整的种植体表面看到有大量的大小不一的窝洞、凹陷及裂隙,直径从5~30μm不等。在一级窝洞内还可以看到大量形状不规则的二级窝洞,直径为500nm~5μm,大小、深浅不一,洞底为半圆形,边缘圆钝。
     2种植体表面能谱元素分析
     A组种植体表面为Ti元素,Ti元素的含量大于99.50%。B组经纯钛颗粒喷砂处理后种植体表面含有大量的Ti元素;经AL2O3颗粒喷砂处理后种植体表面含有大量的Al元素,其中Al元素的含量为83.84%。C组中酸蚀35min后表面成分为Ti元素和Al元素,其中Al元素的含量为33.90%;酸蚀40min后表面成分主要为Ti元素,其中Al元素的含量约为3‰;酸蚀45min、50min、55min后表面成分为Ti元素,Ti元素的含量大于99.50%,未见Al元素存在。D组表面成分为Ti元素,Ti元素的含量大于99.50%,未见Al元素存在。E组表面成分仅为Ti元素,Ti元素的含量大于99.50%,未见Al元素存在。
     结论
     1 TiO2颗粒喷砂粗化种植体表面,对种植体表面无污染,可达到粗化要求,是一种理想的纯钛种植体粗化的喷砂材料。
     2种植体经TiO2颗粒喷砂、HCL/H2SO4混合液酸蚀处理40min后,可以得到较理想的粗化表面。形成从纳米级到微米级不同直径的孔洞。
     3 AL2O3颗粒喷砂粗化种植体表面,可达到粗化要求,但酸蚀、清洗不当可造成种植体表面污染。
     4种植体经AL2O3颗粒喷砂、HCL/H2SO4混合液酸蚀处理45min后。可以去除AL2O3颗粒污染,形成了微米级直径的孔洞。
     5种植体经AL2O3颗粒喷砂后经HF/HNO3、HCL/H2SO4混合液双重酸蚀处理。可以完全去除喷砂颗粒,得到较理想的粗化表面,还可以得到从纳米级到微米级不同直径的孔洞。
Objective: The roughness treatment of titanium implant surface could improve bone bonding and increase the success rate of implantation. In this study, sand blasting, sand blasting and acid etching, and sand blasting combined with double acid etching were used to coarse the surface of implants. And the implant surface were treated with different sand blasting materials, different concentration of etching solution and different etching time, and then the morphological changes of their surface were observed by scanning electron microscopy and analyzed by energy dispersive X-ray analysis.
     Material and methods: Twenty-four HBIC prismatical spiral-shafted implants were divided into five jumpbogroups including twelve subgroups: Group A HBIC pure titanium implants (control group); Group B merely sandblasting of different particles; Group C sandblasting of AL2O3 particles with HCL/H2SO4 solution etching for different times; Group D sandblasting of AL2O3 particles with HF/HNO3 and HCL/H2SO4 solution etching; Group E sandblasting of pure titanium particles with HCL/H2SO4 solution etching. Group A were cleaned ultrasonically with acetone, alcohol, and distilled water, then arescented. Group B were sandblasted with AL2O3 particles or TiO2 particles and then treated as Group A. Group C were sandblasted with AL2O3 particles, and then treated as Group B , and then etched with HCL/H2SO4 solution for 35, 40, 45, 50 and 55minutes respectively, then cleaned by distilled water and finally arescented. Group D were treated as Group B, and then etched with HF/HNO3 solution for 1 minute and with HCL/H2SO4 solution for 45 minutes, then cleaned by distilled water and finally arescented. Group E were sandblasted with pure titanium particles and then etched by HCL/H2SO4 solution for 45 minutes, then cleaned by distilled water and finally arescented. The morphological changes of the implants were observed with scanning electron microscope and the facial elements were analyzed by energy dispersive X-ray analysis.
     Results:
     1 The morphology of implant surface with scanning electron microscope
     Group A: Smooth under low power; many scratched regular grooves with the same direction under high power, with dotted hollow occasionally.
     Group B: The surface sandblasted with titanium particles: fairly regular with no titanium particles left under low power; many irregular and different-sized hollows and fissures with the diameter 1~10μm under high power. The surface sandblasted with AL2O3 particles: rough with many particles left under low power; many irregular holes, pits and geometry lump particles either in the surface or deep layer under high power.
     Group C: The implants etched with HCL/H2SO4 solution for 35 minutes: slightly rough under low power; there were many particles, and many irregular different-sized hollows and pits with the diameter 1~10μm under high power. The implants etched for 40 and 45 minutes: slightly rough with no obvious particles and foreign materials left under low power; many wavy and shaggy micro bores with many irregular, different-sized, and edge-blunted first class (10~30μm) holes and second class( 1~5μm) holes on the rough surface under high power. The implants etched for 50 and 55 minutes: rough with no particles and foreign materials left under low power; micro bores, large cavities with small ones within, but less first class and second order holes than those in the ones etched for 40 and 45 minutes, shallower cavity and sharp edge under high power, many shallow cavity with no first class holes in the 55 minute group.
     Group D: Slightly rough under low power; irregular hollows with no foreign materials left under high power, irregular, different-sized, different-depth cavity with the diameter 500nm~3μm, arch-like and sharp edge.
     Group E: Slightly rough under low power; no obvious irregular hollows, with many cavities, hollows and fissures on the fairly smooth surface under high power, many irregular, arch-like and edge-blunted second class holes with the diameter 500nm~5μm, with different size and depth around the first class ones.
     2 Energy-dispersive X-ray analysis
     Titanium more than 99.50% on group A, and on group B sandblasted with pure titanium particles, Al on group B sandblasted with AL2O3 particles, with 83.84%. Al on group C etched for 35 minutes, with 33.90%; mainly titanium on group C etched for 40 minutes, with 3‰Al; titanium on the ones etched for 45, 50 and 55 minutes with more than 99.50% titanium; group E was the same as group D with more than 99.50% titanium.
     Conclusion:
     1 TiO2 sandblasted and coarsened on implant surface was an ideal material which had no pollution to implant and could reach roughness requirement.
     2 Different diametical aperture holes from micron to nanometer grade could be obtained through TiO2 sandblasting and HCL/H2SO4 mixed solution acid etching for 40 minutes.
     3 Implant surface sandblasted and coarsened with AL2O3 could reach roughness requirement, but could cause pollution of implant surface if inadequate acid etching and cleaning.
     4 Micron-aperture holes could be obtained through AL2O3 sandblasting and HCL/H2SO4 mixed solution acid etching for 45 minutes.
     5 All particles could be removed through AL2O3 sandblasting and acid etching with HF/HNO3 and HCL/H2SO4 mixed solutions, moreover, fairly ideal coursing surface and different diametical aperture holes from micron to nanometer grade could be obtained by this double acid etching treatment.
引文
1 巢永烈, 梁星, 主编. 种植义齿学. 北京医科大学中国协和医科大学联合出版社, 1999, 12:950~985
    2 Weingart D, Steinemann S, Schilli W, et al. Titanium deposition in regional lymph nodes after insertion of titanium screw implants in maxillofacial region. Inter J Oral Maxillofac Surg, 1994, 23:450
    3 Salvi GE, Lang NP. Changing paradigms in implant dentistry. Crit Rev Oral Biol Med, 2001, 12(3):262
    4 Sergo V, Sbaizero D, David RC. Mechanical and chemical cones-quences of the residual stresses in plasma spraged hydroxyaptite coatings. Biomaterials, 1997, 18:477
    5 韩科, 主编. 种植义齿. 第一版. 北京: 人民军医出版社, 2007:67
    6 Jianguo L, Haihong liao, Bahaman Fartash. Surface dimpled commercially pure titanium implant and bone ingrowth. Biomaterials, 1997, 18: 691
    7 史学义, 张钦宪, 丁一, 主编. 人体组织学, 第一版. 郑州: 郑州大学出版社, 2002, 02:88~89
    8 Marinucci L, Balloni S, Becchetti E. Effect of titanium surface roughness on human osteoblast proliferation and gene expression in vitro. Int J Oral Maxillofac Implants, 2006, 09~10, 21(5):719~725
    9 Brunette. The effects of implant surface topography on the behavior of cells. Int J Oral Maxillofac Implants, 1998, 03:231~246
    10 Wennerberg A, Ektessabi A, Albrektsson, et al. A 1-year follow-up of Implants of differing surface roughness placed in rabbit bone. Int J Oral Maxillofac Implants, 1997, 12: 486~494
    11 Cooper LF. A role for surface topography in creating and main-taining bone at titanium endosseous implants. J Prosthet Dent, 2000, 84:522~534
    12 林野. 当代口腔种植学的进展及其临床意义. 口腔颌面外科杂志, 2006, 12(16-4):285~290
    13 Misch C E. Contemporary Implant Dentistry. Second Edition, 1999:341
    14 董强, 丁仲鹃, 梁星, 等. 两种钛种植体骨界面 SEM 观察和电子探针元素分析. 口腔颌面修复学杂志, 2005, 8 ,6 (3):176~178
    15 Weingart D, Steinemann S, Schilli W, et al. Titanium deposition in regional lymph nodes after insertion of titanium screw implants in maxillofacial region. Inter J Oral Maxillofac Surg, 1994, 23:450
    16 王兴. 现代口腔种植学的发展趋势. 中华口腔医学杂志, 2003, 7(38-4):241~243
    17 魏伟, 鲜苏琴, 朱智敏, 等. 不同形态种植体与颌骨结合强度的研究. 中国口腔种植学杂志, 2004, 6(9-2):61~63
    18 岑远坤, 毛祥彦, 何佳凝, 等. 全下颌牙种植义齿及支持组织应力的三维有限元分析: 种植体类型覆盖种植义齿应力分布的影响. 华西口腔医学杂志, 1997, 15(1):64~66
    19 韩玉生, 朱瑞芝. 用于钛合金磨削、铣削的新型切削液的研制.《钛合金与工程》, 北京原子能出版社, 1986: 306~311
    20 Lazzara RJ, Testor T, Trisi P, et al. A human histologic analysis of osseotite and machined surface using implants with Iopposing surfaces. Int J Periodontics Restorative Dent, 1999, 19:117~129
    21 Buser D, Schenk RK, Steinemann S, et al. Influence of surface characteristics on bone integration of titanium implants, A histomorphometric study in miniature pigs. J Biomed Mater Res, 1991, 25:889~902
    22 周磊, 主编. 口腔种植学临床实践. 第一版. 西安: 世界图书出版社西安公司, 2003:98
    23 Wennerberg A, Hallgren C, Johansson C, et al. A histomorplometric evaluation of screw-shaped implants each prepared with two surface rouglness. Clin Oral Implants Res, 1998, 9:11~19
    24 Abron A, Hopfensperger M, Thompson J, et al. Evaluation of a predictive model for implant surface topography effects on early osseointegration in the rat tibia model. J Prosthet Dent, 2001, 85:40~46
    25 Gu′ehennec L Le. Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials, 2006, 06:25
    26 Albrektsson T, Wennerberg A. Oral implant surfaces Part 1-review focusing on topographic and chemical properties ofdifferent surfaces and in vivo responses to then. Int J Prosthodont, 2004, 17(5):536~543
    27 文学军, 王小祥. 金属生物材料的微粗糙表面及其生物学效应(I)-金属生物材料的微粗糙表面. 生物医学工程学杂志, 1997, 14(1):77~80
    1 林野. 当代口腔种植学的进展及其临床意义. 口腔颌面外科杂志, 2006, 12(16-4):285~290
    2 涂 文, 袁强华. 不同表面种植体对骨整合的影响. 实用临床医学, 2005, 6(4):138~139
    3 L. Le Gu′ehennec. Surface treatments of titanium dental implants for rapid osseointegration, Dental Materials, 2006, 06:25
    4 文学军, 王小祥. 金属生物材料的微粗糙表面及其生物学效应(I)-金属生物材料的微粗糙表面. 生物医学工程学杂志, 1997, 14(1):77~80
    5 Javier Gil F, Josep A Planell, Alejandro Padros, et al. The effect of shot blasting and heat treatment on the fatigue behavior of titanium for dental implant applications. Dental materials Elsevier Ltd, 2007, (23):486~491
    6 Sally R Frenkel, William L Jaffe, Fred Dimaano, et al,Bone Response to a Novel Highly Porous Surface in a Canine Implantable Chamber. J Biomed Mater Res Part B: Appl Biomater, 2004, 71B:387~391
    7 胡航, 李四群. 种植体表面粗糙度及其对种植体骨界面生物学特性影响的研究进展, 国外医学口腔分册, 2004, 5, 31(3):204~206
    8 Yuelian Liua, Lukas Enggista, Alexander F Kuffera, The influence of BMP-2 and its mode of delivery on the osteoconductivity of implant surfaces during the early phaseof osseointegration. Biomaterials of Elsevier Ltd 2007, (28): 2677~2686
    9 曹红丹, 杨小东, 吴大怡. 种植体表面粗化处理的生物学研究进展. 中国口腔种植学杂志, 2004, 12(9-4):192~194
    10 Bar?s Simseka, Erkan Erkmena, Dervis Yilmaz a, et al. Effects of different inter-implant distances on the stress distribution around endosseous implants in posterior mandible: A 3D finite element analysis. Medical Engineering & Physics, 2006, (28):199~213
    11 魏伟, 鲜苏琴, 朱智敏, 等. 不同形态种植体与颌骨结合强度的研究. 中国口腔种植学杂志, 2004, 6(9-2):61~63
    12 钱捷, 杨策尧, 盛迅, 等. 钛种植体表面微形态对成骨细胞生长影响的体外研究. 临床口腔医学杂志, 2005, 6(21-6):348~350
    13 卢保全, 王德顺, 徐锦程. 柱状喷砂面钛种植体临床应用10 例. 蚌埠医学院学报, 1997, 22(1):37~38
    14 Franchi M, Bacchelli B, Martini D, et al. Early detachment of titanium particles from various different surfaces of endosseous dental implants. Biomaterials, 2004(25): 2239~2246
    15 Trisi P, Lazzara R, Rebaudi A, et al. Bone-implant contact on machined and dual acid-etched surfaces after 2 months of healing in the human maxilla. J Periodontol, 2003, 74: 945~56
    16 Paulo S Vanzillottaa, Marcia S Sadera, Ivan N Bastosb, et al. Improvement of in vitro titanium bioactivity by threedifferent surface treatments. Dental Materials, 2006, 22: 275~282
    17 蒋滔, 程祥荣, 王贻宁, 等. 不同表面处理方法对纯钛表面形貌及成分的影响. 生物医学工程学杂志, 2006, 23(4): 814~817
    18 郑美华, 阮毅, 侯劲松, 等. 酸蚀面种植体的细胞毒性实验研究. 广东牙病防治, 2003, 11(1):22~24
    19 郑美华, 温映萍, 陈伟良, 等. 酸蚀面螺纹状牙种植体的临床研究. 实用医学杂志, 2003, 1(6):612~613
    20 王兴. 现代口腔种植学的发展趋势. 中华口腔医学杂志, 2003, 7(38-4):241~243
    21 张国权. 牙种植体表面粗化与骨整合. 临床口腔医学杂志, 2005, 8(21-8):505~506
    22 Szmukler-Moncler S, Perrin D, Ahossi V. Biological Properties of Acid Etched Titanium Implants: Effect of Sandblasting on Bone Anchorage. J Biomed Mater Res Part B: Appl Biomater, 2004, 68B:149~159
    23 李德华, 刘宝林, 邹敬才, 等. 改良喷砂表面处理对钛牙种植体骨结合的组织学作用. 实用口腔医学杂志, 1999, 11, l5(6):431~433
    24 李德华, 刘宝林, 邹敬才, 等. 改良喷砂表面处理提高钛牙种植体骨结合的界面生物力学研究. 实用口腔医学杂志, 2001, 11, 17(6):486~488
    25 李德华, 刘宝林, 徐可为, 等. 改良喷砂表面处理对钛表面理化性能的影响. 解放军医学杂志, 2001, 1, 26(1): 21~23
    26 李德华, 刘宝林, 吴军正, 等. 改良喷砂表面影响牙种植体骨结合形式的体外实验研究. 现代口腔医学杂志, 2002, 9, 16(5):391~392
    27 李德华, 刘宝林, 宋应亮, 等. 改良喷砂钛种植体表面加快骨愈合的细胞学研究. 中华口腔医学杂志, 2003, 7, 38(4):254~256
    28 魏建华, 刘宝林, 付涛, 等. 粗化改性种植体表面的构建及形貌分析. 实用口腔医学杂志, 2003, 19(1):34~36
    29 何福明, 赵姗姗,刘丽, 等. 纯钛种植体表面多孔结构的制备与分析. 上海口腔医学, 2005, 12, 14(6):639~644
    30 Confortoa E, Aronssonb A, Salitoc C. Rough surfaces of titanium and titanium alloys for implants and prostheses. Materials Science and Engineering, 2004 (24):611~ 618
    31 Bathomarco R V, Solorzano G, Elias C N. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces. Applied Surface Science Elsevier B V, 2004, (233):29~34
    32 刘同军, 钛金属种植体表面生物化学改性. 国外医学口腔医学分册, 2006, 5(33-3):210~212
    33 Hirofumi Kato, Takashi Nakamura, Shigeru Nishiguchi, et al. Bonding of Alkali- and Heat-Treated Tantalum Implants to Bone. Inc J Biomed Mater Res (Appl Biomater), 2000, 53: 28~35
    34 Olivier Blinda, Lorena H Kleinb, Bruno Daileya, et al. Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6AL-4v substrates.Dental Materials, 2005, 21:1017~1024
    35 Xiao-Xiang Wanga, Satoshi Hayakawab, Kanji Tsurub. Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomaterials, 2002(23):1353~1357
    36 王家伟, 程祥荣, 王革, 等. 纯钛阳极氧化伴水热处理后羟基磷灰石薄涂层种植体的实验研究. 中华口腔医学杂志, 2001, 9(36-5):351~353
    37 杨成, 孟丽娥, 丁涛, 等. 磷酸钙溶胶涂层对多孔型种植体表面骨内向生长的影响. 中国口腔颌面外科杂志, 2006, 3, 4(2):136~139
    38 Ong J L, Bessho K, Cavin R, Bone response to radio frequency sputtered calcium phosphate implants and titanium implants in vivo. Wiley & Sons Inc, 2001, 06:184~190
    39 Misch C E. Contemporary Implant Dentistry. Second Edition, 1999:341
    40 Wong J J, Claes L, Steinemann S. Effect of surface topology on the osseointegration of implant materials in trabecular bone. Journal of Biomedical Material Research, 1995, 29:1567~1575
    41 Piattelli A, Paolantonio M, Corigliano M, et al. Immediate loading of titanium plasma screw-shaped implants in man: a clinical and histological report of two cases. Journal of Periodontology, 1997, 68(6):591~597
    42 Ledermann P D, Schenk R, Buser D. Long-lasting osseointegration of immediately loaded, bar-connected TPSscrews after 12 years of function: a histologic case report of a 95-year old patient. International Journal of Periodontics and Restorative Dentistry, 1998, 18(6):552~563
    43 王航, 梁星. 正畸支抗种植体骨整合与稳定性的试验研究. 中华口腔医学杂志, 2000, 35(2):99~101.
    44 董强, 丁仲鹃, 梁星, 等. 两种钛种植体骨界面 SEM 观察和电子探针元素分析. 口腔颌面修复学杂志, 2005, 8 ,6 (3):176~178
    45 Weingart D, Steinemann S, Schilli W, et al. Titanium deposition in regional lymph nodes after insertion of titanium screw implants in maxillofacial region. Inter J Oral Maxillofac Surg, 1994, 23:450

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700