纳米TiO_2/CNT膜电极和手性氨基酸修饰复合膜电极的制备、表征及电催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文主要内容分以下三个部分:
    第一部分纳米TiO_2膜电极的交流阻抗谱及控电位暂态电化学研究
    用电化学阻抗谱(EIS)、循环伏安法和循环方波伏安法研究了纳米TiO_2 膜电极在两种不同溶液中的电化学行为,给出了相应的等效电路和动力学参数。结果表明,纳米TiO_2 膜中存在TiO_2/Ti_2O_3 和TiO_2/Ti(OH)_3 两对氧化还原可逆电极过程; 外加电位和电解液的性质对纳米TiO_2 膜的界面结构和表面电化学反应速度有显著影响, 在膜反应电位区间电极阻抗主要由膜电阻Rf﹑电化学极化电阻Rct 和Warburg 阻抗Zw 组成,在1 mol/ L H_2SO_4 溶液和含有乙醇的0.5 mol/L HAc-NaAc 缓冲溶液中的Rf 分别为125Ω·cm~2 和7.45×10~3Ω·cm~2, 同时由于纳米TiO_2膜表面粗糙度和不均一性的影响, 存在弥散效应。
    第二部分纳米TiO_2/碳纳米管(nano-TiO_2/CNT)复合膜修饰电极的电化学性能研究
    采用电合成前驱体直接水解法制备nano-TiO_2 膜修饰电极,利用掺杂碳纳米管对纳米TiO_2膜进行改性, 通过交流阻抗谱(EIS)、循环伏安、阻抗-电位、计时库仑法以及透射电子显微镜(TEM)等方法,研究了nano-TiO_2/CNT 复合膜修饰电极的电化学性能,由于大量碳纳米管的存在,阻碍了nano-TiO_2成膜时的团聚作用,使nano-TiO_2尽可能地
The paper is composed of the following three parts:
    First, Electrochemical impedance spectra 、cyclic osteryoung square wave voltammogram and cyclic voltammogram of nano-TiO_2 Electrode.
    The electrochemical behavior of Ti/nano-TiO_2 film electrode was investigated by Electrochemical Impedance Spectra(EIS)、Cyclic Voltammogram(CV)and Cyclic Square Wave Voltammogram(CSWV) in two different solutions, and relevant equivalent circuit and electrochemical kinetic parameters were presented. The results indicate that there are two pairs of well-defined redox peaks for Ti/nano-TiO_2 film in correspondence with TiO_2/Ti_2O_3 and TiO_2/Ti(OH)_3 two heterogeneous redox reversible electrode process; and applied electric potential and the quality of electrolyte have prominent influence on the interface structure and superficial electrochemical reaction speeds, electrode impedance consisted of film resistance Rf、electrochemical polarization impedance Rct and Warburg impedance Zw in the potential range of film reaction, The Rf are 125Ω·cm~2 and 7.45×10~3Ω·cm~2 respectively in 1 mol/L H_2SO_4 and 0.5mol/L HAc-NaAc buffer electrolyte included ethanol, and there were dispersion effect due to the roughness and inhomogeneity of nano-TiO_2 film surface.
    Second, Electrochemical performance on nano-TiO_2/CNT composite film modified electrode.
    In terms of Electrochemical Impedance Spectra(EIS)、Cyclic Voltammetry、Chronocoulometry、Impedance-potential and TEM, We researched and compared the electrochemical characteristic difference between composite nano-TiO_2/C-nanotube (nano-TiO_2/CNT) modified electrode and pure nano-TiO_2 modified electrode, a great deal of carbon nanotubes are in existence, which can block the reunite effect of nano-TiO_2 particle. The unique atomic structure of carbon nanotube can accelerate electron transfer in electrochemical reaction and bring proper catalytical response. Compare to pure nano-TiO_2 modified electrode, the current values of the second redox peaks of nano-TiO_2/CNT modified electrode are about twice higher than pure nano-TiO_2 modified electrode’s, and quantity of electric charge increases greatly at the same time. and it is further proved by the heterogeneous electrocatalytic reduction of maleic acid etc.
    Third, Studies on amino acid chiral modified electrode.
    L-Cysteine-nano-TiO_2/CNT(L-Cys-nano-TiO_2/CNT) chiral modified electrode was prepared by self assemble and several methods such as FTIR spectrum, Scanning Electron Microscopy, Impedance,Cyclic Voltammogram were used to investigate the electrochemical properties on the surface,and we electrodeposited Ag on the
    nano-TiO_2/CNT surface with electrochemical scan, and got L-Cys-Ag–nano-TiO_2/CNT chiral modified electrode by self assemble. There were a pair of redox peaks of Ag-nano-TiO_2/CNT electrode in 1mol/L H_2SO_4, L-Cys-Ag–nano -TiO_2/CNT chiral electrode had proper electrocatalytic activity to hypnone reduction,and it was rather stability.
引文
1 Anastas P T, Williamson T C. Green Chemistry, ACS Press,1995, 1~35.
    2 Anastas P T, Barlett L B, Kirchh of M M. The Role of Catalysis in the Design, Development and Implementation of Green Chemistry. Catalysis Today,2000,55:11~22.
    3 白春礼.中国化学的发展与展望.大学化学,2000,(2):1~104.
    4 黄陪强,高景星.绿色合成:一个逐步形成的科学前沿.化学进展,1998,(3):265~272.
    5 陈敏元.有机化学将成为21 世纪的热门化学.化学时刊,1999,13(5):40~43.
    6 乌居滋(日)著,陈敏元译.近代有机化学的动向和未来(三).昆明:云南工学院出版社,1985.1~4.
    7 陈敏元.L-半胱氨酸盐酸盐水合物电解还原合成的研究.化学试剂,1983,5(3):52~56.
    8 廖松,杨辉荣.电化学合成乙醛酸研究.精细化工,2000,17(3):145~148.
    9 Marioli Juan M, Kuwana Theodore. Electrochemical Characterization of Carbonhydrate Oxidation at Copper Electrodes.Electrochim Acta,1992,37(7):1187~1197.
    10 Besson Michele, Lahmer Faousy. Gatalytic Oxidation of Glucoseon Bismuth Palladium-Catalysts, J Catal, 1995,152(1):116~121.
    11 Wenkin M, Renard C, Ruiz P, et al. Promoting Effects of Bismuth in Carbon Supported Bimetallic Bismuth Palladium Catalysts for the Selection Oxidation of Glucose to Gluconic Acid. Stud Surf Sci Catal,1997,110:517~526.
    12 Becerilkl, Kadirgan F. Electrocatalytic Properties of Platinum Particle Incorporated With Polyrole Films in D-glucose Oxidation in phosphate Media. J Electronal Chem,1997,436(1~2) :189~193.
    13 Demetrios K K. Basic of Electro. Organic Synthesis,New York:1981,85~98.
    14 唐培堃.精细有机合成化学及工艺学.天津:天津大学出版社,1997.176~185.
    15 蔡树芝,牟季美,张立德等,纳米非晶氮化硅键态结构的X 射线径向分布函数研究,物理学报,1992, 41(10): 1620-1625.
    16 王大志,功能材料,纳米材料结构特征,1993, 24(4): 303-308.
    17 祝庸,李晓娥.超微TiO_2 合成技术进展[J],河北化工,1995, 2: 31-35
    18 高荣杰,史可信,王之昌.纳米TiO_2 粉末的制备[J],金属学报,1996, 32(10): 1097-1101.
    19 Tulane University. Structure and properties of TiO_2, surfaces: a brief review[J], Appl. Phys.A, 2003,76:681-687.
    20 Hengbo Yin,Yuji Wada,Takayuki Kitamura. Novel synthesis of phase-pure nano-particulate anatase and rutile TiO_2 using TiCL_4 aqueous solutions[J], J. Mater.Chem.,2002,12:378-383
    21 P. Stefchev, V.Blaskov, M. Machkova. Synthesis and characterization of high dispersed TiO_2[J], International Journal of Inorganic Materials, 2001,3:531-536
    22 Jing Sun, Lian Gao.PH effect on titania-phase transformation of precipitates form titanium tetrachloride solutions[J], J. Am. Ceram. Soc.,2002,85(9):2382-2384.
    23 胡黎明,古宏晨,李春忠.化学工程的前沿一超细粉末制备「J」,化学进展,1996, 2: 1-8
    24 符春林,魏锡文.二氧化钛品型转变研究进展[J],涂料工业,1999, 2: 28-30
    25 施利毅,李春忠,陈爱平等.TiC14 高温气相氧化合成纳米二氧化钛颗粒的研究Ⅱ.颗粒晶型结构控制[J],功能材料,2000, 31 (6): 625-627
    26 刘泽,李永祥,吴冲若.水热法制备二氧化钛晶须〔J〕,硅酸盐学报,1998,26(3):392-394
    27 张青红,高镰,郑珊等.制备均一形貌的长二氧化钛纳米管〔J〕,化学学报,2002, 60(8): 1439-1444
    28 Choi W. Y.; Angew. Chem. [J], 1994, 33, 1091.
    29 Kavan, L.; Gratzel, M.; Rathousky, J. J. Electrochem. Soc. 1996, 143(2), 394.
    30 Kavan, L.; Stoto, T.; Gratzel, M.; Fitzemaurue, D.; Shklover, V. J. Phys. Chem.1993, 97, 9493.
    31 Nazeerudden, M. K. ;Kay, A.; Rodicio, I.; Baker, R. H.; Muller, E.; Liska, P.; Vlachpoulos, N.; Gratzel, M. J. Am. Chem. Soc. 1993, 115, 6382.
    32 Mbindyo, J. K. N.; Rusling, J. F. Langmuir 1998, 14, 7027.
    33 Bach U., Lupo D., Comte P., et al. Nature[J], 1998, 395: 583-585
    34 Fujishima A, Honda K. Electrochemical proteolysis of Water at a semiconductor electrode[J]. Nature,1972,238(5358):37-38..
    35 Regan B O’, Gratzel M. A low cost,high efficiency solar cell based on dye-sensitized Colloidal TiO_2[J].Nature, 1991,353:737-739.
    36 Regan B O’, Moser J, Anderson M,et al. Vectorlal,electro injection into transparent semiconductor membranes and electric Field effects on the dynamics of light-induced Charge Separation[J]. J Phys chem.,1990,94:8720-8726.
    37 Nazeeruddn N K,Kay A,Rodiciol,et al.Conversion of light to electricity by cis-X2 Bis (2,2’–bipyridyl -4,4’-Dicarboxy late) ruthenium(Ⅱ) Charge Transfer sensitizers (X=Cl-, Br-,I-, CN-,and SCN-) on nanocrystalline TiO_2 electrodes [J]. J .Am. Chem.Soc,1993,115:6382-6390.
    38 Kavan L,Gratzel M, Rathousky J,et al. Nanocrystalline TiO_2(antase) electrodes: surface morphology,adsorption,and electrochemical properities[J]. J Electrochem Soc, 1996, 143(2):394-400.
    39 Beck F,wear mecheanisms of anodes[J].Electrochem Acta,1989,34:811-822.
    40 Beck F,Schulz H .Heterogeneous redox catalysis with titanium/ chromicem(Ⅲ) oxide + titanium dioxide composite anodes[J] Electrochem Acta,1984,29(11):1569-579.
    41 Ravichandran C,Chellammal S,Anantharaman P N. electroreduction of nitrobenzene to P-aminoPhenol at a TiO_2 /Ti electrode[J].J Appl Electrochem,1989,19:465-466.
    42 Ravichandran C,Chellammal S,Anantharaman P N,et al. Indirect electroredution of o-aminophenol on titaium dioxide coated titanium electrodes[J].J Appl Electrochem 1991,21: 60-63.
    43 Ravichandran C,Noel M,Anantharaman P N. Electrosynthesis of toluidines using thermally coated Ti/ TiO_2 electrodes[J].J Appl Electrochem,1994,24:965-969.
    44 Ravichandran C,Noel M,Anantharaman P N. Comparative evaluation of nitrobenzene and m-dinitrobenzene on Ti/TiO_2 electrodes in H2SO4 [J]. J Appl Electrochem,1994,24:1256-1261.
    45 Vasudevan D,Chellammal S,Anantharaman P N,Synthesis of 5-amino salicylic acid at a Ti/ TiO_2 electrodel[J].J Appl Electrochem,1991,21:839-841.
    46 Vasudevan D. Reduction of maleic acid at Ti/ceramic TiO_2 cathode[J].J Appl Electrochem, 1995,25:176-182.
    47 褚道葆,顾家山,杨富国,等硝基苯在Ti/TiO_2 电极上间接电化学还原的研究[J].精细化工(增刊),1996,13: 57-59.
    48 顾家山,褚道葆,周幸福,等.间接电还原合成氟哌酸中间体氟氯苯胺的研究[J].精细化工,1999,16(4): 31-34.
    49 eremiah K N,Mbindyo,James F,et al Catalytic electrochemical Sythesis using nanocystalline Titanium Dioxide Cathodes in micromulsions[J].Langmuir,1998,14: 7027-7033.
    50 沈广霞,褚道葆,周幸福,等.Ti/nano-Ti0_2 膜电极间接电催化还原草酸合成乙醛酸[A]. 第十届全国电化学会议交流论文[C].武汉:武汉大学出版社,1999.D030.
    51 FISCHER J,JOHNSON A .Electronic properties of Cabon Nanotubes[J].Curr Opin Solid State Mater Sci,1999,(4):23 -33.
    52 Mintmiir J,WHITE C. Electronic and Structural properties of Carbon Nanoubes[J]Carbon,1995,33:893-902.
    53 KASUMOV A,BOUCHAT H,REULET B,et al. Conductivity and Atomic Structure of lsolated Multi-Walled Carbon Nanotubes[J].Euro Phys Lett. 1998,43:89-94.
    54 EBBESEN T,LEZEC H,HIURA H,et al. Electrical Conductivity of Individual Cabon Nanotubes[J].Nature,1996,382:54-56.
    55 ODOM T,HUANG J,KIMP,et al. Atomic Structure and Electronic Properties of single-walled Carbon Nanotubes[J]Nature.1998,391:62-64.
    56 MINTMIRE J,DUNLAP B,WHITE C. Are Fullerene Tubules Metallic?[J].Phys Rev Lett,1992,68:631-634.
    57 SAITO Y,HAMAGUCHI K,UEMURAS,et al. Field Emission from Multi-Walled Carbon Nanotubes and Its Application to Electron Tubes[J]Appl phys A,1998,67:95-100.
    58 HEER de WA,CHATELAI N A,UGARTE D.A Carbon Nanotube Field emission Electron Source[J].Science,1995,270:1179-1180.
    59 Luo J Z,Gao L Z,Leung Y L,et al .The decomposition of NO on CNT and 1 wt% Rh/CNT[J].Catal Lett.2000,66(l-2):91-97.
    60 Planeix J M,Coustel N,Coq B,et al .APPlication of carbon nanotube as supports in heterogeneous catalysis[J].J Am Chem Soc. 1994,1 16(17):7935-7936.
    61 马淳安《有机电化学合成导论》[M].科学出版社,2002:138
    62 江琳才.《电合成》[M].高等教育出版社,1993: 43
    63 Ravichandran C, Chellammal S, Anantharaman P N, et al. Indirect electroreduction of o-aminophenol on titanium dioxide coated titanium electrodes[J]. J. Appl. Electrochem., 1991,
    21:60-63
    64 Ravichandran C, Noel M, Anantharaman p N. Electrosythesis of toluidines using thermally coated Ti/TiO_2 electrodes[J]. J. Appl. Electrochem., 1994, 24:965-969
    65 Ravichandran C, Chellammal S, Anantharaman P N. Electroreduction of nitrobenzene to p-aminophenol at a TiO_2/Ti electrode[J]. J. Appl. Electrochem., 1989,19:465-466
    66 Vasudevan D, Chellammal S, Anantharaman P N. Synthesis of 5-amino salicylic acid at a TiO_2/Ti electrode[J]. J. Appl. Electrochem., 1991, 21:839-840
    67 Ravichandran C, Noel M, Anantharaman P N. Comparative evaluation of nitrobenzene and m-dinitrobenzene on Ti/ TiO_2 electrodes in H_2SO_4[J]. J. Appl. Electrochem., 1994,24:1256-1261
    68 Vasudevan D. Reduction of maleic acid at Ti/ceramic TiO_2 cathode[J]. J. Appl. Electrochem., 1995, 25:176-182
    69 Nazeeruddn N K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2Bis (2,2’-bipyridyl-4,4’-Dicarboxylate) ruthenium(Ⅱ) Charge-Transfer sensitizers (X=Cl-,Br-, I-,CN-,and SCN-) on nanocrystalline TiO_2 electrodes[J]. J. Am. Chem. Soc., 1993,115: 6382-6390
    70 褚道葆,姚文俐,李晓华. 纳米TiO_2 膜修饰电极异相电催化还原对硝基苯甲酸[B],第十二次全国电化学会议论文集,上海:2003. 11:(B051).
    71 顾家山, 褚道葆, 周幸福. 纳米TiO_2 膜修饰电极异相电催化还原马来酸[J].化学学报2003,61(9):1405-1409.
    72 Duong, R. Arechabaleta, N. J. Tao, `In situ AFM/STM characterization of porphyrin electrode films for electrochemical detection of neurotransmiters',Journal of Electroanal. Chem., (1998)447: 63-69.
    73 Watkins B F, Behling J R,Kariv E, Miller L L.J Am. Chem.Soc.1975.97:3549
    74 Firth B E, Miller L L. Mitani M,Rogers T, Lemmox J,Murray R W.J Am. hem.Soc. 1976, 98:8271
    75 Firth B E, Miller L L. J Am. Chem.Soc. 1976,98:8272
    76 J. Sagiv, `Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces', J. Am. Chem. Soc., (1980)102:92-98.
    77 R. G. Nuzzo, D. L Allara, `Adsorption of bifunctional organic disulfides on goldsurfaces', J. Am. Chem. Soc., (1983) 105:4481-4483.
    78 A. Ulman, `Formation and Structure of Self-Assembled Monolayers', Chem. Rev.,(1996) 96:1533-1554.
    79 田娜“金席夫碱自组装单层膜电化学行为研究”河北师范大学硕士学位论文
    80 Y. J. Yang, K. S. Beng, `Electrochemical study of monolayers of heterocyclic thiols self-assembled on polycrystalline gold electrode: the effect of solution pH on redoxkinetics', Electrochem. Commun., (2003) 6:87-90.
    81 K. Ozoemena, P. Westbrek, T. Nyokong, `Long-term stability of a gold electrode modified with a self-assembled monolayer of octabutylthiophthalocyaninato cobalt(I) towards L-cysteine detection', Electrochem. Commun., (2001) 3:529-534.
    82 M. J. Esplandi6, H. Hagenstr6m, D. M. Kolb, `Functionalized Self-Assembled Alkanethiol Monolayers on Au (111) Electrodes: 1. Surface Structure and Electrochemistry', Langmuir., (2001) 17: 828-838.
    83 H. M. Zhang, X. L. Zhou, R. T. Hui, N. Q.U,D. P. Lu, `Studies of the electrochemical behavior of epinephrine at a homocysteine self-assembled electrode',Talanta., (2002) 56:1081-1088.
    84 M. Nishizawa, T. Sunagawa, H Yoneyaha, ‘Selective desorption of 3-mercaptopropionic acid from a mixed monolayer with hexadecanethiol on a gold electrode', J. Etectroanat Chem, (1997) 436:213-218.
    85 C. E. D. Chidsey, D. N. Loiacono, `Chemical functionality in self-assembled monolayers: Structural and electrochemical properties', Langmuir., (1990) 6:682-691.
    86 I. Tabushi,KKurihara, K. Naka, K. Yamamura, H. Hatakeyama, `Supramolecular Sensor Based on Sn02 Electrode Modified With Octadecasilyl Monolayer Having Molecular Binding Sites', Tetrahedron Lett., (1987) 28: 4299-4302.
    87 Z. H. Jin, D. V. Vezenov, Y. W. Lee, J. E. Zull, C. N. Sukenik, R.F. Savinell,`Alternating Current Impedance Characterization of the Structure of Alkylsiloxdne Self-assembled Monolayers on Silicon', Langmuir., (1994) 10:2662-2671.
    88 M. R. Linford, C.E.D. Chidsey, `Alkyl Monolayers Covalently Bonded to Silicon Surfaces', J. Am. Chem. Soc., (1993) 115:12631-12632.
    89 C. M. Cordas, A. S. Viana, S. Leupold, F.-P. Montforts, L. M. Abrantes, 'Selfassembled monolayer of an iron(M) porphyrin disulphide derivative on gold', Electrochem. Commun, (2003) 5: 3641.
    90 F. C. Chen, S. H. Cheng, C. H. Yu, M. H. Liu, Y. O. Su, `Electrochemical characterization and electrocatalysis of high valent manganese meso-tetrakis(Nmethy-2-pyridyl) porphyrin', J. Electroanat. Chem., (1999) 474:52-59.
    91 S. Belanger, J. T. Hupp, `Porphyrin based thin films molecular materials with highly adjustable nanoscale porosity and permeability characteristics', Angew.Chem. Int. Ed., (1999) 38(15): 2222-2224.
    92 S. Berchmans, S. Arivukkodi, V. Yegnaraman, `Self-assembled monolayers of 2-mercaptobenzimidazole on gold: stripping voltammetric determination of Hg(II)',Electrochem. Commun., (2000) 2: 226-229.
    93 D. T. Gryko, C. Clausen, J. S. l indesy, `Thiol-derivatized porphyrins form attachment to electroactive surfaces', J. Org. Chem., (1999) 64:8635-8647.
    94 A. Ishida, T. Majima, `Exchange reaction of a decanethiol self-assembled monolayer with porphyrin dilsufides observed by surface plasmon enhancedfluorescence spectroscopy', Chem. Commun., (1999)1299-1300.
    95 K. Uosaki, T. Kondo, X. Q. Zhang, M. Yanagida, `Very efficient visible-light-induved uphill electron transfer at a self-assembled monolayer with a porphyrin-Ferrocene-thiol linked molecule', J. Am. Chem. Soc., (1997) 119:8367-8368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700