直接乙醇燃料电池纳米结构阳极催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接甲醇燃料电池(DMFC)由于其燃料来源丰富、价格便宜、运输和储存较安全等优点而受到广泛重视。然而甲醇有相当高的毒性。因此,要想实现DMFC在诸如手机、笔记本电脑等可移动电源领域的应用,必须探索寻找新的液体燃料以替代有毒性的甲醇。其中乙醇很易从农作物中大量生产,来源广泛,又无毒,因此乙醇燃料电池的研究具有很大的应用潜力。但乙醇完全电化学氧化需要C-C键断裂,其氧化过程涉及到更多的中间产物,致使DEFC的实际应用发展速度一直很缓慢。因此,研制和发展高催化活性、抗中毒能力强的新型的催化剂已成为当前DEFC发展的关键技术。本文采用电合成前驱体Ti(OEt)_4直接水解法和电化学扫描电沉积制备活性高的nanoTiO_2-CNT/Pt、nanoTiO_2-CNT-PAn/Pt多组分复合纳米催化剂,并利用TEM、XRD和SEM技术表征了催化剂晶型、晶粒大小及表面形貌,采用电化学方法评价了多组分复合纳米催化剂对乙醇氧化的电催化活性和稳定性。主要研究结果如下:
     第一部分:采用循环伏安(CV)扫描电沉积方法制备出高分散的nanoTiO_2-CNT/Pt催化剂,利用电化学方法评价了该催化剂对乙醇氧化的电催化活性和稳定性。TEM、XRD和SEM技术表征了修饰在nanoTiO_2-CNT膜上的Pt催化剂颗粒的大小、分散状态。研究结果表明,纳米Pt粒子分散在nanoTiO_2-CNT复合膜表面,电化学活性表面积达到51.8 m~2·g~(-1)。nanoTiO_2-CNT/Pt催化剂对乙醇的电催化氧化呈现出很好的活性和稳定性,Pt载量为0.32 mg·cm~(-2)时,常温常压下乙醇氧化起始电位为90 mV,在正扫方向的两个氧化峰和负扫方向的一个氧化峰的峰电流分别达到115 mA·cm~(-2)、113 mA·cm~(-2)和75 mA·cm~(-2)。这主要是由于Pt和nanoTiO_2、CNT之间的协同催化作用使乙醇氧化中间产物的毒化物种易氧化成最终产物。
     第二部分:采用电氧化聚合和扫描电沉积方法制备nanoTiO_2-CNT -PAn膜载Pt(nanoTiO_2-CNT-PAn/Pt)四组分复合纳米催化剂,探讨了复合纳米催化剂对乙醇直接电氧化的催化活性和稳定性。通过CV、线性扫描伏安和计时电流法实验结果比较表明,正扫时乙醇氧化峰电位分别为0.65 V和0.96 V,氧化峰电流密度分别为173 mA·cm~(-2)和190 mA·cm~(-2)。在25℃~55℃温度范围
Recently developed direct methanol fuel cell has been received widespread attention due to the abundant source, the low price, the safety of the storage and transportation of the fuel. However, the question of the toxicity of methanol remains crucial, such as portable electronic devices(laptop computers, cellular phones). Another alternative is to use other alcohols presenting negligible or very low chemical toxicity which is essential, at least for some applications. On the other hand, certain countries with abundant biomass resources are producing significant amounts of ethanol, which is a convenient, cheap and relatively nontoxic liquid fuel. As an alternative fuel, ethanol is safer and exhibits higher energy density than methanol. Thus, it is possible to be applied for the fuel in the fuel cell. But, one of the problems is that the oxidation of ethanol is not as easy as the oxidation of methanol, mainly because of the presence of the C-C bond. It is clear that ethanol electro-oxidation involves more intermediates and products than that of methanol, and thus the actual performance obtained are slightly lower than those observed with methanol. It is key techniques in DEFC to find with the composite catalysts have good electrocatalytic activity and resistant ability to poisoning for the ethanol oxidation. The good electrocatalytic active nanoTiO_2-CNT/Pt, nanoTiO_2-CNT-PAn/Pt composite nanostructural catalysts were prepared by the precursor Ti(OEt)_4 directly hydrolyzed and cyclic voltammetry electrodepositing method. TEM, XRD and SEM results show the size, crystallinity and surface character of the catalysts. The electrocatalytic activitics and stability for the ethanol oxidation were evaluated with the electrochemical techniques. The main result obtained are as follows:
     Part one: electrochemical deposition method by cyclic voltammetry(CV) to prepare the nanoTiO_2-CNT/Pt, and the composite electrocatalysts were characterized to study those composition and those electrochemical behavior by CV. The electrocatalytic activitics and stability for the ethanol electrooxidation
引文
[1] Carrette, L.; Friedrich, K A.; Stimming, U. Fuel cell: principles,types,fuels,and applications, Chemphyschem, 2000, 1, 162.
    [2] 杨辉; 卢文庆 应用电化学, 北京,科学技术出版社, 2001,119.
    [3] Feng, Zh. Phase stability and Processing of Sr and Mg Doped Lanthanum Gallate, a dissertation submitted for the degree of Ph.D,University of Washington:Meterials Science and Engineering Department, 2000.
    [4] 衣宝廉,《燃料电池——高效、环境友好的发电方式》,北京,化学工业出版社, 2000
    [5] 衣宝廉,《燃料电池——原理、技术、应用》,北京,化学工业出版社, 2003,6-7
    [6] 林维明,《燃料电池系统》,化学工业出版社,1996, 1-3
    [7] A.O.麦克杜格尔著,江船等译,《燃料电池》, 国防工业出版社,1984,25
    [8] Hirschenhofer, J. H.; Stauffer, D. B.; Engleman, R. R.; Klett, M.G. Fuel Cell Handbook, Fourth Edition, 1998.
    [9] 查全性, 燃料电池技术的发展与我国应有的对策,应用化学,1993,10(5): 38-42
    [10] Baldauf, M.; Prelif, J.W.; Staus of development of a direct methanol fuel cell J. Power Sourse, 1999, 84(1):161-166
    [11] Robert, G. H; Surface replica fuel cell USP:6631099, 1997,05, 20
    [12] Hobson, L. J.; Nakano, Y.; Ozu, H.; Hayase, S. Targeting improve DMFC performance, J. Power Sources, 2002,104, 79
    [13] Haubold, H.G.; Vad, T.; Nano structure of NAFION: A SAXS study. Electrochim. Acta, 2001,46, 1559.
    [14] Hiklta, S.;Yamane, K.; Nakajima, Y. Influence of cell perssure and amount of electrode catalyst in MEA on methanol crossover of Direct Methanol Fuel Cell, JSAE, Review, 2002, 23,133
    [15] Iwasita, T.; Rasch, B.; Cattanel, E. A sniftirs study of ethanol oxidation on Platinum, J. Electrochim. Acta, 1989, 34, 1073.
    [16] Delime, F.; Leager, J. M.; Lamy, C. Optimization of Platinum dispersion in Pt PEM Electrodes: application to the electrooxidation of ethanol, J. Appl. Electrochem, 1998, 28, 27.
    [17] Bltowska-Brzezinska, M.; Luczak, T. Electrocatalytic oxidation of mono and polyhydric alcohols on gold and platinum, J. Appl. Electrochem 1997, 27, 999.
    [18] Eedenb, B.; Morin, M. C.; Halin, F. In Situ analysis by infrared reflectance spectroscopy of the adsorbed species resulting from the electrosorption of ethanol on platinum in acid medium, J. Electroanal.Chem.,1987, 229, 353.
    [19] Francisco, J. Performance of a co-electrode deposited Pt-Ru Electrode for the electro-oxidation of ethanol studied by In Situ FTIR Spectroscopy, J. Electroanal. Chem. 1997, 420, 17.
    [20] Hitmi, H.; Belgsir, E. M.; Leager, J. M. A kinetic analysis of the electro-oxidaton of ethanol at platinum electrode in acid medium, J. Electrochim. Acta 1994, 39, 407
    [21] Li, W. Z.; Sun, G. Q.; Yan, Y. S.; Xin, Q. Supported noble metal electrocatalysts in low temperature fuel cells Progress in chemistry 2005,17(5), 761-772
    [22] Attwood, P. A.; Mclliwl, B. D.; Short, R. T. Temperature programmed reduction and cyclic voltammetry of Pt/carbon-fiber paper catalysts for methanol electrooxidation, J. Catal 1987, 67, 287
    [23] Ma, G. X.; Tang, Y. W.; Zhou, Y. M.; Xing, W.; Lu, T. H. Study of electocatalytic activity of Pt-Ru/C catalytic prepared with solid phase reaction method for ethanol oxidation Chinese Journal of inorganic chemistry 2004, 20(4), 394-398
    [24] Jiang, L. H.; Zhou, Z. H.; Zhou, W. J. Synthesis, characterization and performance of PtSn/C electrocatalyst for direct ethanol fuel cell, Chem. J. Chinese Universities, 2004,25(8) ,1511-1516
    [25] Chen, G. L.; Sun, S. G.; Chen, S. P.; Zhou, Z. Y. In-situ FTIR spectroscopic study ofelectrocatalytic oxidation of CH3CH2OH on Sb modified nm-Pt/GC electrode Chinese journal of applied chemistry 2001,18(6), 432-435
    [26] Shen, P. K.; Chen, K. Y. ; Tseung A.C.C. J. Chem. SOC. Faraday Trans., 1994, 90, 3089
    [27] Shen, P. K; Tseung, A. C. C. J.Electroanal.Chem., 1995, 389, 223
    [28] Chen, K .Y.; Shen, P. K.; Tseung, A.C. C. J. Electrohem. Soc.,1995,142, L54
    [29] Liu, C. P.;Yang, H.; Xing, W.; Lu, T. H. Electrocatalytic performance of Pt-TiO2/ C complex catalysts for oxidation of methanol, Chem. J. Chinese Universities, 2002, 23(7), 1367-1370
    [30] Morimoto, Y.; Yeager, E. CO oxidation on smooth and high area Pt, Pt-Ru and Pt-Sn electrodes, J. Electroanal Chem. 1998, 441, 77
    [31] Ren, B.; Li, X.Q. Surface Raman spectroscopy as a versatile technique to study methanol oxidation on rough Pt electrodes, Electrochim. Acta , 2000, 46,193
    [32] Spinacé, E. V.; Neto, A. O.; Linardi, M. Electro-oxidation of methanol and ethanol using PtRu/C electrocatalysts prepared by spontaneous deposition of platinum on carbon-supported ruthenium nanoparticles Journal of Power Sources 2004, 129 , 121-126
    [33] Massong, H.; Tillmann, S. On the influence of tin ans bismuth UPD on Pt(111) and Pt(332) on the oxidation of CO, Electrochim. Acta.,1998,44, 1379
    [34] Bǒnnemann, H.; Brijoux, W. Advanced catalysts and nanostructured materials(ed. Moser W). Academic Press, 1996, 165
    [35]Lee, S. A.; Park, K. W.; Choi, J. H. J. Electrochem. Soc. , 2002,149, 1299-1304
    [36] Wang, Y.; Ren, J.; Deng, K. Chem. Mater. , 2000,12,1622-1627
    [37] Zhou, Z. H.; Wang, S. L.; Zhou, W. J. Chem. Comm. , 2003, 394-395
    [38] Zhou, W. J.; Zhou, Z. H.; Song, S. Q. Appl. Catal. , 2003,46, 273-285
    [39] Zhou, W. J.; Zhou, B.; Li, W. Z. J. Power Sources, 2004,126,16-22
    [40] Yahikozawa, K.; Fujii, Y.; Matsuda, Y. Electrocatalytic properties of ultrafine platinum particles for oxidation of methanol and formic acid in aqueous solutions, Electrochim Acta, 1991, 36(5/6), 973.
    [41] Zhang, X. G.; Murakami, Y.;Yahikozawa, K.; Takasu, Y. Electrocatalytic oxidation of formaldehyde on ulteafine palladium particles supported on a glass carbon, Electrochim Acta, 1996, 42(2), 223.
    [42] Snell, K. D.; Keenan, A. G. Chloride inhibition of ethanol electrooxidation at a platinum electrode in aqueous acid solution, Electro-chimica Acta, 1981, 26(9), 1339-1344.
    [43] Hikita, S.;Yamane, K.; Nakajima, Y. Influence of cell perssure and amount of electrode catalyst in MEA on methanol crossover of direct methanol fuel cell, JSAE, Review 2002, 23, 133
    [44] Hamnett, A. Mechanism and electrocatalysis in the direct methanol fuel cell, Catalysis Taday, 1997,38, 445.
    [45] Prabhuram, J.; Manoharan, R. Investigation of methanol oxidation on unsupported platimum electrodes in strong alkal and strong acid, J. Power Sources, 1998, 74, 54.
    [46] Kabbabi, A.; Faure, R.; Durand, R.; Lamy, C. In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum-ruthenium bulk alloy electrodes, J. Electroanal.Chem., 1998, 444, 41.
    [47] Kardash, D.; Huang, J.; Korzeniewski, C. Surface electrochemisty of CO and methanol at 25-75℃ probed in situ by infrared spectroscopy, Langmuir, 2000,16, 2019.
    [48] Munk, J.; Christensen, P. A.; Hamnett, A.; Skou, E. The electrochemical oxidation of methanol on platinum and platinum + ruthenium particulate electrodes studied by in-situm FTIR spectroscopy and electrochrmical mass spectrometry. J. Electroanal. Chem. 1996, 401, 215.
    [49] Arico, A. S.; Creti, P.; Antonucci, P. L. Antonucci, V. Electrochem Solid-State Lett., 1998,1(2), 66
    [50] 宋树芹, 陈利康, 刘建国, 魏昭彬,辛勤 电化学 , 2002,8(1), 105
    [1] Claude, L.; Alexandre, L.; Véronique, L. R. et al. Recent advances in the development of direct alcohol fuel cells(DAFC) Journal of Power Sources 2004, 105, 283-296
    [2] Hogarth, M. P.; Hards, G. A. Direct methanol fuel cell Platinum Metals Rev. 1996, 40, 150
    [3] Jiang, L. H.; Sun, G. Q.; Zhao, X. S. et al. Preparation of supported PtRu/C electrocatalyst for direct methanol fuel cells Electrochimica Acta 2005, 50 , 2371-2376
    [4] Ge, J. B.; Liu, H. T. Experimental studies of a direct methanol fuel cell Journal of Power Sources 2005, 142, 56-69
    [5] Jiang, L. H.; Sun, G. Q.; Zhou, Z. H. et al. Preparation and characterization of PtSn/C anode electrocatalysts for direct ethanol fuel cell Catalysis Today 2004, 93-95, 665-670
    [6] Spinacé, E. V.; Neto, A. O.; Linardi, M. Electro-oxidation of methanol and ethanol using PtRu/C electrocatalysts prepared by spontaneous deposition of platinum on carbon-supported ruthenium nanoparticles Journal of Power Sources 2004, 129, 121-126
    [7] Lamy, C.; Lima, A.; LeRhun, V. et al. Journal of Power Sources, 2002, 105, 203
    [8] Zhou, W. J.; Li, W. Z.; Song, S. Q. et al. Bi-and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells Journal of Power Sources 2004,131, 217-223
    [9] Gupta, S. S.; Mahapatra S. S.; Datta J. A potential anode material for the direct alcohol fuel cell Journal of Power Sources 2004, 131, 169-174
    [10] Lamy, C.; Rousseau S.; Belgsir E. M. et al. Rencent progress in the direct ethanol fuel cell:development of new platinum-tin electrocatalysts Electrochimica Acta 2004, 49, 3901-3908
    [11] Neto A. O. , Franco E. G. , Aricó E. , Electro-oxidation of methanol and ethanol on Pt–Ru/C and Pt–Ru–Mo/C electrocatalysts prepared by Bo¨ nnemann’s method, Journal of the European Ceramic Society , 2003, 23, 2987-2992
    [12] Neto, A. O.; Giz, M. J.; Perez, J. et al. The Electro-oxidation of ethanol on Pt-Ru and Pt-Mo Particles Supported on High-Surface-Area Carbon Journal of the Electrochemical Society 2002, 149(3), A272-A292
    [13] O'Regan, B.; Grtzel, M.; A low-cost, high-efficiency solar cell based ondye-sensitized colloidal TiO2 films Nature 1991, 353, 737-739
    [14] Cui, X. L.; Jiang, Z. Y. Synthesis of nano-TiO2 film Progress in chemistry 2004, 14(5): 325-33
    [15] Liu, C. P.; Yang, H.; Xing, W.; Lu, T. H. Electrocatalytic performance of Pt-TiO2/C complex catalysts for oxidation of methanol Chem. J. Chin. Univ.(高等学校化学学报) 2002, 23, 1367-1370
    [16] Ebbesen, T. W.; Ajayan P. M.; Large-scale synthesis of carbon nanotubes Nature 1992, 358, 220-222
    [17] Che, G.; Lakshml, B. B.; Flsher, E. R.; Martin, C. R. Carbon nanotubule membranes for electrochemical energy storage and production Nature 1998, 393, 346-349
    [18] Zhu, H.; Ge, F. J.; Kang X. H. et al. The study on carbon nanotube-loaded Pt catalysts for proton exchange membrane fuel cells Electrochemistry 2003, 9(4), 445-450
    [19] Carmo, M.; Paganin, V. A.; Rosolen, J. M. et al. Alternative supports for the preparation of catalysts for low-temperature fuel cells: the use of carbon nanotubes Journal of Power Sources 2005, 142, 169-176
    [20] Li, W. Z.; Liang, C. H.; Zhou, W. J. et al. Homogeneous and controllable Pt particles depositedon multi-wall carbon nanotubes as cathode catalyst for direct methanol fuel cells Carbon 2004, 42, 423-460
    [21] Zhou, X. F.; Chu, D. B.; Lin, C. J. New route to prepare nanocrystaline TiO2 and its reaction mechanism Materials Research Bulletin 2002, 37, 1851-1857
    [22] Zhou, X. F.; Chu, D. B.; Lin, C. J. Anodic dissolution of spongy titanium in ethanol solution for preparation of nano-sizes TiO2 powder Electrochimica Acta 2002, 47, 2769-2773
    [23] Mbindyo, J. K. N.; Rusling J. F. Catalytic electrochemical synthesis using nanocrystalline titanium dioxide cathodes in microemulsions Langmuir 1998, 14, 7027-7033
    [24] Li, W. Z.; Liang, C. H.; Qin, J. S. et al. Fabrication of glassy carbon spools for utilization in fiber optic gyroscopes Carbon 2002, 40, 787
    [25] 陈国良,孙世刚,陈声培等 乙醇在碳载 Pt 纳米薄膜电极上吸附氧化过程研究Ⅰ碱性介质中循环伏安和原位 FTIR 反射光谱 电化学 2000, 6(4), 406-410
    [26] Chen, W. X.; Lee, J. Y.; Liu, Z. L.; Microwave-assisted synthesis of carbon supported Pt nanoparticles for fuel cell applications Chem. Commun. 2002, 21, 2588
    [27] Yao, Y. L.; Zhang, D.; Xia, X. H. Study on deposition mechanism of nanoparticles on carbon nanotube Chin. J. Inorg. Chem. 2004, 20(5), 531-535
    [28] William, H. L-V.; Dayse, C. A.; Ernesto R. G. Supported metal nanoparticles as electrocatalysts for low-temperature fuel cells Electrochimica Acta 2004, 49, 1289-1295
    [29] Yang, H.; Xue, K. H.; Lu, T. H. et al. Electrocatalytic oxidation of methanol at the titanium oxide electrode modified with Pt microparticles Chem. J. Chin. Univ. 1998, 19(8), 1320-1322
    [30] 马国仙,唐亚文,杨辉等,固相反应制备的 Pt/C 催化剂对乙醇氧化的电催化活性 物理化学学报 2003, 19(11), 1001-1004
    [31] 马国仙,唐亚文,周益明等,固相反应法制备 Pt-Ru/C 催化剂对乙醇氧化的电催化活性研究 无机化学学报 2004, 20(4), 394-398
    [32] 钟起玲,张兵,章磊等, 乙醇在粗糙铂电极上解离吸附与氧化的原位 SERS 研究 物理化学学报 2004, 20(9), 1163-1166
    [33] He, Z. B.; Chen, J. H.; Liu, D. Y.; Tang, H.; Wei, D.; Kuang, Y. Deposition and electrocatalytic prorerties of platinum nanoparticals on carbon nanotubes for methanol electrooxidation Materials Chemistry and Physics 2004, 85, 396-401
    [34] Tian, F. M.; Falconer, J. L.; Methanation sites on a Pt/TiO2 catalyst Journal of Catalysis 1990, 123, 443-445
    [1] Hobson, L. J.; Nakano, Y.; Ozu H.; Hayase, S. Targeting improve DMFC performance, J. Power Sources 2002, 104, 79
    [2] Hikita, S.; Yamane, K.; Nakajima, Y. Influence of cell pressure and amount of electrode catalyst in MEA on methanol crossover of direct methanol fuel cell JSAE Review 2002, 23, 133
    [3] Zhou, W. J.; Zhou, B.; Li, W. Z.; Zhou, Z. H.; Song, S. Q.; Sun, G. Q.; Xin, Q. et al. Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts Journal of Power Sources 2004, 126, 16
    [4] Jiang, L. H.; Sun, G. Q.; Zhou, Z. H.; Zhou, W. J.; Xin, Q. Preparation and characterization of PtSn/C anode electrocatalysts for direct ethanol fuel cell Catalysis Today 2004, 93–95, 665–670
    [5] Tatsuhiro, O.; Yoshifumi, S.; Takuji, H.; Takeo, O.; Novel system of electro-catalysts for methanol oxidation based on platinum and organic metal complexes Electrochimica Acta 2004, 49, 385–395
    [6] Claudia, B.; Sandro, C.; Marco, M. Deposition of non-stoichiometric tungsten oxides-MO2 composites (M-Ru or Ir) and study of their catalytic properties in hydrogen or oxygen evolution reactions Electrochimica Acta 2003, 48, 3921-3927
    [7] Mathiyarasu, J.; Remona, A. M.; Mani, A.; Phani, K. L. N.; Yegnaraman, V. Exploration of electrodeposited platinum alloy catalysts for methanol electro-oxidation in 0.5M H2SO4:Pt-Ni system. Journal of solid state electrochemistry 2004, 8(12), 968-975
    [8]Yang, L. X.; Bock, C.; Macdougall, B.; Park, J. The role of the WOX ad-component to Pt and PtRu catalyst in the electrochemical CH3OH oxidation reaction. Journal of applied electrochemistry 2004, 34(4), 427-438
    [9] Zhou, W. J.; Zhou, Z. H.; Song, S.Q.; Li, W. Z.; Sun, G. Q. et al., Pt based anode catalysts for direct ethanol fuel cells Applied Catalysis B: Environmental 2003, 46, 273–285
    [10] Vigier, F.; Coutanceau, C.; Hahn, F.; Belgsir, E. M.; Lamy, C. On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reectancespectroscopy studies Journal of Electroanalytical Chemistry 2004, 563, 81–89
    [11] Song, S. Q.; Zhou, W. J.; Zhou, Z. H.; Jiang, L. H.; Sun, G. Q.; Xin, Q.; Leontidis, V. Direct ethanol PEM fuel cells: The case of platinumbased anodes, International. Journal of Hydrogen Energy 2005, 30, 995-1001
    [12] Zhou, W. J.; Song, S. Q.; Li, W. Z.; Zhou, Z. H.; Sun, G. Q.; Xin, Q. et al., Direct ethanol fuel cells based on PtSn anodes: the effect of Sn content on the fuel cell performance Journal of Power Sources 2005,140, 50–58
    [13] Dimitris, K. L.; Katerina, G.; Xenophon, E. V. Production of hydrogen for fuel cells by catalytic partial oxidation of ethanol over structured Ru catalysts International Journal of Hydrogen Energy 2004, 29, 419-427
    [14] Spinacé, E. V.; Neto, A. O.; Linardi, M.; Electro-oxidation of methanol and ethanol using PtRu/C electrocatalysts prepared by spontaneous deposition of platinum on carbon-supported ruthenium nanoparticles Journal of Power Sources 2004, 129, 121–126
    [15] Oliveria, N. A.; Giz, M. J.; Perez, J.; Ticianelli, E. A.; Gonzalez, E. R. The electro-oxidation of ethanol on Pt-Ru and Pt-Mo particles supported on high-surface-area Carbon. J. Electrochem. Soc. 2002,149(3), A272–9
    [16] Neto, A.O.; Franco, E. G.; Arico, E.; Linardi, M.; Gonzalez, E. R. Electro-oxidation of methanol and ethanol on Pt–Ru/C and Pt–Ru–Mo/C electrocatalysts prepared by Bo¨ nnemann’s method Journal of the European Ceramic Society 2003, 23, 2987–2992
    [17]吴婉群,万本强,罗维忠. 载铂微粒的聚苯胺薄膜电极对甲醇的电催化氧化 应用化学 1994, 11(2),40-43.
    [18]Prasad, R. K.; Munichandraiah N. Journal of Power Sources 2002,103,300
    [19]Mikhaylova, A. A.; Molodkina, E. B.; Khazova, O.A.; Bagotzky, V. S. J. Electroanal. Chem. 2001, 509, 119
    [20]Grzeszczuk, M.;Poks, P. Electrochimica Acta, 2000, 45, 4171
    [21] 周海晖,焦树强,陈金华,魏万之,旷亚非 Pt 微粒修饰纳米纤维聚苯胺电极对甲醇氧化电催化 物理化学学报 2004, 20(1), 9-14
    [22] Chu, D. B.; Shen, G. X.; Zhou, X. F. Electrochemistry, 2001, 7(2), 249-254
    [23] Chu, D. B.; Li, X. H.; Liu, X. Y.; Yao, W. L. Chin.J.Chem. 2004, 22,1231.
    [24] Chu, D. B.; Li, X. H.; Feng, D. X.; Gu, J. S.; Sheng, G. X. Acta Chim. Sinica 2004, 62(24), 2403
    [25] Chu, D. B.; Yao,W. L.; Gu, J. S.; Li X. H., Shen G. X., Chem.J.Chin.Univ., 2004, 25(11),2137
    [26] Chu, D. B.; Feng, D. X.; Zhang, J. H.; Lin, H. S.; Hu, W. L.; Tian, S.W. Acta Chim Sinica 2005, 63(22), 2027-2031
    [27] Che, G.; Lakshml, B. B.; Flsher, E. R.; Martin, C. R. Carbon nanotubles membranes for electrochemical energy storage and production Nature 1998, 393, 346-349
    [28] Zhou, X. F.; Chu, D. B.; Electrochimica Acta 2002, 47, 2769-2773
    [29] Gu, J. S.; Chu, D. B.; Zhou, X. F. et al. Acta Chimica Sinica 2003, 61(9), 1405-1409
    [30] 李根喜, 方惠群, 陈洪渊 分析试验室 1994, 13(3),16-20
    [31] 魏亦军, 褚道葆, 姚文俐 合成化学 2004, 12(1), 69-72
    [32] Nanziante, P; Pistoia, G. Electrochim Acta 1989, 34, 223
    [33] Itava, K.; Takahash, H.; Uchida, I. Electrodepodition of Pt ultramicroparticles in nafion films on glassy carbon electrodes J Electroanal Chem 1986, 208, 373-382
    [34] Wakabayashi, N.; Uchida, H.; Wethanation, M. J. Electremical and Solid-State Letters 2002, 5(11), E62-E65
    [35] 马国仙, 唐亚文, 杨辉 固相反应制备的 Pt/C 催化剂对乙醇氧化的电催化活性 物理化学学报 2003, 19(11), 1001-1004
    [36]马国仙, 唐亚文, 周益明 固相反应法制备 Pt-Ru/C 催化剂对乙醇氧化的电催化活性研究 无机化学学报 2004, 20(4), 394-398
    [37] 姜鲁华, 周振华, 周卫江, 王素力, 汪国雄, 孙公权, 辛勤, 直接乙醇燃料电池 PtSn/C 电催化剂的合成表征和性能 高等学校化学学报 2004, 8(25), 1511-1516
    [38]章冬云, 马紫峰, 原鲜霞 乙醇电催化氧化反应动力学分析与研究进展 化工进展 2005, 24(2), 126-131
    [39] 赵新生, 姜鲁华, 孙公权, 杨少华, 衣宝廉, 辛勤 新型 Pt-Sn/C 阳极催化剂对乙醇的电催化氧化性能 2004, 25(12), 983-988
    [40] Arico, A. S.; Creti, P.; Antonucci, P. L.; Antonuxxi, V. Electrochem Solid-State Lett. 1998, 1(2), 66
    [1] Claude, L.; Alexandre, L.; Véronique, L. R. et al. Recent advances in the development of direct alcohol fuel cells(DAFC) Journal of Power Sources 2004, 105, 283-296
    [2] 李瑛,王林山,《燃料电池(Fuel cell)》, 北京(Beijing)冶金工业出版社,2000
    [3] Mathiyarasu, J.; Remona, A. M.; Mani, A.; Phani, K. L. N.; Yegnarman, V. Exploration of electrodeposited platinum alloy catalysts for methanol electro-oxidation in 0.5M H2SO4: Pt-Ni system. Journal of Solid State Electrochemistry 2004, 8(12), 968-975
    [4] 褚道葆,冯德香,张金花,林华水,胡维玲,田昭武,直接甲醇燃料电池阳极催化剂的新体系:纳米 TiO2-CNT-PtNi 复合纳米催化剂,化学学报,2005, 63(22), 2027-2031
    [5] Hejze, T.; Gollas, B. R.; Sauerbrey, R. K.; Schmied, M.; Hofer, F.; Besenhard, J. O. Preparation of Pd-coated polymer electrolyte membranes and their application in direct methanol fuel cells Journal of Power Sources 2005, 140, 21–27
    [6] 杜荣兵,徐维林,刑巍,陆天虹,桑革,低甲醇透过直接甲醇燃料电池 电源技术,2002,27(3),46-48
    [7] Hikita, S.; Yamane, K.; Nakajima, Y. Influence of cell pressure and amount of electrode catalyst in MEA on methanol crossover of direct methanol fuel cell JSAE, Review 2002, 23, 133
    [8] Zhou, W. J.; Song, S. Q.; Li, W. Z. et al. Direct ethanol fuel cells based on PtSn anodes: the effect of Sn content on the fuel cell performance Journal of Power Sources 2005, 140 , 50–58
    [9] Santos, V. P.; Filho, G. T. Effect of osmium coverage on platinum single crystals in the ethanol electrooxidation Journal of Electroanalytical Chemistry 2003, 554-555, 395-405
    [10] Song, S. Q.; Zhou, W. J.; Zhou, Z. H.; Jiang, L. H.; Sun, G.Q.; Xin, Q.; Leontidis, V.; Kontou, S.; Tsiakaras, P. Direct ethanol PEM fuel cells: The case of platinumbased anodes International Journal of Hydrogen Energy 2005, 30, 995-1001
    [11] Arico, A. S.; Creti, P.; Antonucci, P. L.; Antonuxxi, V. Electrochem Solid-State Lett 1998, 1(2), 66
    [12] Chu, D. B.; Shen, G. X.; Zhou, X. F.; Electrochemistry 2001, 7(2), 249-254
    [13] Chu, D. B.; Li, X. H.; Liu, X. Y.; Yao, W. L. Chin.J.Chem. 2004, 22, 1231
    [14] Zhou, X. F.; Chu, D. B. Anodic dissolution of spongy titanium in ethanol solution for for preparation of nano-sized TiO2 power Electrochimica Acta 2002, 47, 2769-2773
    [15]周海晖,焦树强,陈金华,魏万之,旷亚非 Pt 微粒修饰纳米纤维聚苯胺电极对甲醇氧化电催化 物理化学学报 2004,20(1),9-14
    [16] 黄乃科,王曙中,李灵忻, 质子交换膜燃料电池电极用气体扩散层材料,电源技术,2003,27(3),47-49
    [17] Chen, C. Y.; Yang, P.; Lee, Y. S.; Lin, K. F. Fabrication of electrocatalyst layers for direct methanol fuel cells Journal of Power Sources 2005, 141, 24–29
    [18]Srinivasan, S.; Hurwitz, H. D.; Bockris, J. O. Fundamental equations of electro- chemical kinetics at porous gas-diffusion electrodes J. Chem. Phys. 1967, 46, 3108
    [19] Srinivasan, S.; Hurwitz, H. D. Theory of a thin film model of porous gas-diffusion electrodes Electrochim.Acta 1967, 12, 495
    [20] 宋树芹,陈利康,刘建国,魏昭彬,辛勤, 直接乙醇燃料电池初探,电化学,2002, 8(1),105-111
    [21] Ramya, K.; Dhathathreyan, K. S. Direct methanol fuel cells: determination of fuel crossover in a polymer electrolyte membrane Journal of Electroanalytical Chemistry 2003, 542, 109-115
    [22] Junho, S.; Jungyeon, B.; Hwayong, K. Composite Nafion/polyphenylene oxide (PPO) membranes with phosphomolybdic acid (PMA) for direct methanol fuel cells Journal of Power Sources 2005, 143, 136–141
    [23] Song, S. Q.; Zhou, W. J.; Liang, Z. X.; Cai, R.; Sun, G. Q.; Xin, Q. Stergiopoulos V., Panagiotis T., The effect of methanol and ethanol cross-over on the performance of PtRu/C-based anode DAFCs Applied Catalysis B: Environmental 2005, 55 , 65–72
    [24] 顾军,隋升,李光强,隋智通,燃料电池电极制作方法的研究,电化学,1999,5(4), 20-23
    [25] Ren, S. Z.; Li, C. N.; Zhao, X. S.; Wu, Z. M.; Wang, S. L.; Sun, G. Q.; Xin, Q.; Yang, X. F. Surface modification of sulfonated poly(ether ether ketone) membranes using Nafion solution for direct methanol fuel cells Journal of Membrane Science 2005, 247 , 59–63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700