海南省疟疾疫情时空分析及影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     通过对1990年-2010年海南省疟疾疫情时空分析及影响因素的研究,为该省及类似地区疟疾防控提供科学依据。通过尝试时间空间分析技术与统计分析方法在疟疾研究领域的综合应用,为类似研究提供方法学参考。
     研究方法
     收集整理1990-2010年海南省疟疾疫情监测数据,将全国1:100万电子地图加工处理为1:100万海南省市县边界图。提取海南省各县市的气温、降水量、湿度等气象与环境数据,人口、GDP、卫生、人民生活指标等数据,建立海南省市县综合信息数据库。应用时空扫描统计量、时间序列分析方法、主成分分析以及多元线性回归分析方法对资料进行分析。所采用的软件包括Excel2003、SatScan9.0、SPSS13.0、Mapinfo7.0等统计软件。
     研究结果
     1.1990年-2010年海南省疟疾呈整体下降的趋势,总体来说,海南省疟疾发病最高峰为7、8月份,2月份为全年发病最低峰。海南省西南部地区是疟疾疾病的高发区。人群分布,30-50岁男性为高发人群,农民、工人及民工占总报告人数的85.11%。
     2.运用时空重排扫描统计量对2005-2010年疟疾发病数据进行分析发现,2005-2010年海南省可能存在7个疟疾聚集区域(P<0.05)。对2010年疟疾发病数据进行时空扫描发现有3个聚集区域(P<0.05)。运用2005年1月-2009年12月建立的ARIMA模型对海南省2010年1月份的疾病发病率进行预测,预测值为0.15/10万,95%的可信区间为[-1.04,1.33],实际检测发病率为0.17/10万,疟疾月发病率实际值落入了预测值的95%可信区间内,预测相对误差为11.8%。将2010年1月份疟疾实际发病率纳入时间序列模型,重新拟合,并对2010年2-12月份疟疾发病率进行预测,实际疟疾发病率比理论疟疾发病率平均下降了85.75%。
     3.将15个温度指标和13个降水量指标进行主成分分析得其主成分,并以2010年市县疟疾发病率为因变量,男性人口、农业人口、少数名族人口、GDP、第一产业、第二产业、第三产业、人均GDP、卫生机构总数、执业医师人数、农村居民家庭人均纯收入、城市居民家庭人均纯收入、温度主成分、降雨量主成分、湿度等为解释变量构建结局变量为连续型变量的多元线性回归模型。其中,疟疾发病的危险因素的包括“城市居民家庭人均纯收入”、“降水量主成分2”、“湿度”这三个因素,疟疾发病的保护因素包括“男性人口”、“农业人口”、“人均GDP”、“医疗机构个数”、“执业医师个数”、“农村居民家庭人均纯收入”这6个因素。
     研究结论
     本课题重点探讨了1990-2010年海南省疟疾流行病学特征和时空聚集性,还重点研究了海南省不同市县疟疾疫情存在差异的主要影响因素。在海南,疟疾的流行有一定的周期性、地域性,并在某些特定人群中有较高的发病率。时间序列模型可以很好的拟合疟疾发病率在时间序列上的变化趋势。在防治措施、人口免疫状态及人口流动没有发生大幅度变化的时候可以用来预测疟疾的发病率变化。海南省2010年起开始实施的消除疟疾计划作用明显,时间序列模型从侧面也证明了这一点。另外,降水量和湿度将影响海南省疟疾在各市县的发病,而经济、卫生和人民生活水平也是影响疟疾发病的重要因素。这一研究结果将有助于当地进一步在多方面对疟疾疫情进行防控。创新点
     本课题在整个研究过程中,将多个领域的信息与知识进行了整合。将疟疾疫情数据进行时间、空间上的整合,打破了时间与空间的限制,不仅仅研究了有网络直报系统以来的数据,而且还研究了从1990年来的疟疾发病数据。在空间上,打破了县市的界限,对海南省全省疫情进行空间扫描,为疟疾疾病的预警提供新思路。将人口学、经济学及卫生学知识相融合,使得疟疾疫情及影响因素的分析更加的立体,更加的贴合实际。将自然因素与社会因素相结合的分析方法在国内外的疟疾研究领域较为罕见。
Obsjectives
     The study explored the spatio-temporal characters of malaria and the factors effectedthe incidence of malaria in Hainan province since1990to2010in order to provide theevidence for the prevention and control policy of malaria in Hainan and other similardistricts. It also provided a methodological reference for similar studies by thecomprehensive application of time and space methods in the field of malaria research.
     Results
     1. The incidence of malaria was decreased in the past few years in Hainan Province. Overall,the highest peak of malaria infection was July and August was the minimum peak. Hainanwas February. The southwest region in Hainan is the area of highest incidence of malariadisease. Population distribution,30-50-year-old male resident was reported to be high-riskpopulation. We found that peasants, workers and migrant workers accounting for85.11%ofthe total number of reports.
     2. We applied space-time permutation scan statistic to analyze malaria incidence data andfound that from2005to2010, there was seven malaria gathering area in Hainan (P <0.05).For malaria incidence data in2010, we found three gathering area (P <0.05). using data fromJanuary2005to December2009to establish ARIMA model to predict the incidence of thedisease in January2010, the predictive value was0.15/10million,95%confidence intervalwas [-1.04,1.33]. The actual detection incidence rate of this month was0.17/10million, andthe actual monthly incidence value falls within the95%confidence interval of the predictedvalue, the relative prediction error was11.8%. We re-fitting the model after the actual incidence of malaria in January2010included in the time series model to predict theincidence of malaria from February to December in2010, the actual incidence of malariawas85.75%lower than the theoretical incidence of malaria.
     3. We obtained the principal component from15temperature indicators and13precipitationindicators by using principal component analysis. The dependent variable of multiple linearregression model was the incidence of malaria in2010, and the outcome variables were themale population, agricultural population, minority ethnic population, GDP, first industry,secondary industry and tertiary industry, GDP per capita, the total number of healthinstitutions, the number of practicing physicians, net income of rural households per capita,net income of urban households per capita, the main component of the temperature, the maincomponent of the rainfall, humidity and other explanatory variables. The risk factorsincluding net income of urban households per capita, the main component of theprecipitation and humidity, and the protective factors include the male population,agriculture population, per capita GDP, the number of medical institutions, the number ofpracticing physicians, net income of rural households per capita.
     Conclusion
     This study focused on the malaria epidemiological characteristics and spatio-temporalaggregation since1990in Hainan Province, and we also studied the main factors associatedwith different incidents of malaria among different cities and counties in Hainan. Themalaria in Hainan was infected with a certain periodicity, in a certain regional, and with ahigher incidence in certain populations. Time series model can be good fit to the trend of theincidence of malaria in the time series. It can be used to predict changes in the incidence ofmalaria under the premise of prevention and control measures, the population of immunestatus and population movements did not significantly changed. The policy and instructionimplemented since2010to eliminate malaria program in Hainan is obvious, the forecastresult of time series model in2010also proved this point. In addition, precipitation andhumidity will affect the incidence of malaria in different cities and counties. And economic,health and people's living standards are also important factors associated with the incidenceof malaria. The results of this study will help the local relevant departments furtherstrengthen the prevention and control of malaria epidemics.
     Innovation
     This study integrated a number of areas of information and knowledge. The integrationof time and space for the malaria epidemic data broke the limitations of time and spaceresearch. It not only analyzed the data since direct reporting network system developed, butalso study the malaria incidence data from1990. In space, our study broke the boundaries ofthe counties of Hainan Province. We use space scanning scaned the epidemic situation of thewhole province to provide new ideas for early warning of malaria disease. The integration ofdemography, economics, and health knowledge made malaria epidemic and its influencingfactors analysis more dimensional, more fit the actual. The analysis method which combinednatural factors and social factors in the field of malaria research is rare at home and abroad.
引文
[1] Gething P W, Smith D L, Patil A P, et al. Climate change and the global malariarecession[J]. Nature,2010,465(7296):342-345.
    [2]温亮,徐德忠,王善青,等.海南省疟疾发病情况及利用气象因子进行发病率拟合的研究[J].疾病控制杂志,2003,7(6):520-523.
    [3]刘莹,王光泽,胡锡敏,等.海南省2006~2010年疟疾疫情分析[J].中国热带医学,2012,12(2):144-145.
    [4] Hay S I, Guerra C A, Gething P W, et al. A world malaria map: Plasmodium falciparumendemicity in2007[J]. PLoS Med,2009,6(3):e1000048.
    [5]温亮,施润和,方立群,等.海南省疟疾流行空间分布的环境影响因素初步分析[J].中华流行病学杂志,2008,29(06):581-585.
    [6]温亮,徐德忠,王善青,等.卫星遥感植被指数与海南省疟疾流行地区分布的相关性研究[J].中华流行病学杂志,2005,26(04):263-266.
    [7] Teklehaimanot H D, Schwartz J, Teklehaimanot A, et al. Weather-based prediction ofPlasmodium falciparum malaria in epidemic-prone regions of Ethiopia II. Weather-basedprediction systems perform comparably to early detection systems in identifying times forinterventions[J]. Malar J,2004,3:44.
    [8]钱会霖,汤林华.中国五十年疟疾防治工作的成就与展望[J].中华流行病学杂志,2000,21(03):225-227.
    [9] Adimi F, Soebiyanto R P, Safi N, et al. Towards malaria risk prediction in Afghanistanusing remote sensing[J]. Malar J,2010,9:125.
    [10]王丽萍,方立群,许娴,等.安徽省2004-2006年疟疾环境影响因素研究[J].中华流行病学杂志,2009,30(01):38-41.
    [11] Teklehaimanot H D, Lipsitch M, Teklehaimanot A, et al. Weather-based prediction ofPlasmodium falciparum malaria in epidemic-prone regions of Ethiopia I. Patterns of laggedweather effects reflect biological mechanisms[J]. Malar J,2004,3:41.
    [12]蔡红林.海南省1996—2000年流动人口疟疾感染分析[J].中国热带医学,2002,2(2):197-199.
    [13]王善青,陈文江,等.海南省疟疾发病及疫情漏报情况调查[J].中国寄生虫病防治杂志,2002,15(4):198-200.
    [14]殷菲,李晓松,冯子健,等.基于网络直报系统和时空聚集性探测的传染病模拟实时监测与预警[J].现代预防医学,2009,36(12):2204-2207.
    [15]殷菲.时—空扫描统计量在传染病早期预警中的应用研究[D].四川大学,2007.
    [16]王丽萍.安徽疟疾疫情时空分析及影响因素研究[D].中国疾病预防控制中心,2008.
    [17]曹品光,农智,蒋智华.灰色系统理论GM(1,1)模型预测百色市疟疾发病趋势[J].中国热带医学,2011,11(11):1318-1319.
    [18]郭海强,丁海龙,曲波,等.1988-2010年全国疟疾发病率的灰色预测模型研究[J].热带医学杂志,2011,11(6):639-640.
    [19]刘洁,曲波,何钦成.应用时间序列模型对全国2004-2009年疟疾疫情分析及预测[J].中国媒介生物学及控制杂志,2011,22(2):134-136.
    [20]周水森,黄芳,沈毓祖. ARIMA模型在疟疾发病预测中的应用[J].中国病原生物学杂志,2007,2(4):284-286.
    [21] Briet O J, Vounatsou P, Gunawardena D M, et al. Models for short term malariaprediction in Sri Lanka[J]. Malar J,2008,7:76.
    [22]贺天锋,沈月平.三种模型预测疟疾在中国未来的发病趋势[J].上海预防医学,2008,20(2):57-60.
    [23] Kulldorff M, Huang L, Konty K. A scan statistic for continuous data based on thenormal probability model[J]. Int J Health Geogr,2009,8:58.
    [24] Hjalmars U, Kulldorff M, Gustafsson G, et al. Childhood leukaemia in Sweden: usingGIS and a spatial scan statistic for cluster detection[J]. Stat Med,1996,15(7-9):707-715.
    [25] Jung I, Kulldorff M, Richard O J. A spatial scan statistic for multinomial data[J]. StatMed,2010,29(18):1910-1918.
    [26] Huang L, Kulldorff M, Gregorio D. A spatial scan statistic for survival data[J].Biometrics,2007,63(1):109-118.
    [27] Pollack L A, Gotway C A, Bates J H, et al. Use of the spatial scan statistic to identifygeographic variations in late stage colorectal cancer in California (United States)[J]. CancerCauses Control,2006,17(4):449-457.
    [28] M K. A spatial scan statistic[Z].1997:26,1481-1496.
    [29] Jung I, Kulldorff M, Klassen A C. A spatial scan statistic for ordinal data[J]. StatMed,2007,26(7):1594-1607.
    [30] Kulldorff M, Heffernan R, Hartman J, et al. A space-time permutation scan statistic fordisease outbreak detection[J]. PLoS Med,2005,2(3):e59.
    [31] Kulldorff M, Mostashari F, Duczmal L, et al. Multivariate scan statistics for diseasesurveillance[J]. Stat Med,2007,26(8):1824-1833.
    [32] Sato R C. Disease management with ARIMA model in time series[J]. Einstein (SaoPaulo),2013,11(1):128-131.
    [33] Jian L, Zhao Y, Zhu Y P, et al. An application of ARIMA model to predict submicronparticle concentrations from meteorological factors at a busy roadside in Hangzhou, China[J].Sci Total Environ,2012,426:336-345.
    [34] Fernandez-Gonzalez M, Rodriguez-Rajo F J, Jato V, et al. Forecasting ARIMA modelsfor atmospheric vineyard pathogens in Galicia and Northern Portugal: Botrytis cinereaspores[J]. Ann Agric Environ Med,2012,19(2):255-262.
    [35]刘洁,曲波,何钦成.我国1989-2009年疟疾变化趋势分析及未来发病预测[J].实用预防医学,2011,18(3):385-387.
    [36]李军,董辉,刘洪斌,等.1990--2010年河北省疟疾流行特征分析[J].国际医学寄生虫病杂志,2012,39(4):215-217.
    [37] Lu Y L, Wang A P, Xu L, et al.[Surveillance of malaria epidemic situation aftermalaria basically eliminated in Wujin District, Changzhou City][J]. Zhongguo Xue XiChong Bing Fang Zhi Za Zhi,2011,23(6):667,681.
    [38]刘学周,许汴利.河南省1990~2005年疟疾疫情及防治效果评价[J].中国寄生虫学与寄生虫病杂志,2006,24(3):226-229.
    [39]金行一,朱素娟,黄阳梅,等.杭州市1990-2009前后十年疟疾流行病学特征比较分析[J].中国预防医学杂志,2011,12(7):621-624.
    [40] Wang G Z, Wang S Q, Hu X M, et al.[Analysis of malaria epidemic situation in HainanProvince,2010][J]. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi,2012,24(3):369-370.
    [41] Alonso D, Bouma M J, Pascual M. Epidemic malaria and warmer temperatures inrecent decades in an East African highland[J]. Proc Biol Sci,2011,278(1712):1661-1669.
    [42] Nau J Y.[Summer2012, the final new cases of malaria][J]. Rev MedSuisse,2012,8(344):1250-1251.
    [43] Mahapatra N, Marai N, Dhal K, et al. Malaria outbreak in a non endemic tribal block ofBalasore district, Orissa, India during summer season[J]. Trop Biomed,2012,29(2):277-285.
    [44] Bain B J. Malaria-one swallow makes a summer[J]. Am J Hematol,2012,87(2):190.
    [45] Mayor A, Kumar U, Bardaji A, et al. Improved Pregnancy Outcomes in WomenExposed to Malaria With High Antibody Levels Against Plasmodium falciparum[J]. J InfectDis,2013.
    [46] Manyando C, Njunju E M, D'Alessandro U, et al. Safety and efficacy of co-trimoxazolefor treatment and prevention of Plasmodium falciparum malaria: a systematic review[J].PLoS One,2013,8(2):e56916.
    [47] Na-Bangchang K, Congpuong K. Current malaria status and distribution of drugresistance in East and Southeast Asia with special focus to Thailand[J]. Tohoku J ExpMed,2007,211(2):99-113.
    [48] Zhu X G, She G S.[Epidemic situation and prevention and control countermeasures ofimported falciparum malaria in Jiangdu District, Yangzhou City][J]. Zhongguo Xue XiChong Bing Fang Zhi Za Zhi,2012,24(5):616-617.
    [49] Wang G Z, Wang S Q, Hu X M, et al.[Analysis of malaria epidemic situation in HainanProvince,2010][J]. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi,2012,24(3):369-370.
    [50] Xiao D, Long Y, Wang S, et al. Epidemic distribution and variation of Plasmodiumfalciparum and Plasmodium vivax malaria in Hainan, China during1995-2008[J]. Am JTrop Med Hyg,2012,87(4):646-654.
    [51] Wang G Z, Wang S Q.[Relationship between falciparum malaria incidence and thenumber of Anopheles dirus in Hainan from2001to2008][J]. Zhongguo Xue Xi Chong BingFang Zhi Za Zhi,2011,23(1):74-75.
    [52] Su Y Q, Zhang Z Y, Xu D Z, et al.[Study on the distribution of malaria in Hainanprovince through spatial local interpolation technique][J]. Zhonghua Liu Xing Bing Xue ZaZhi,2003,24(4):269-271.
    [53] Xiao D, Long Y, Wang S, et al. Spatiotemporal distribution of malaria and theassociation between its epidemic and climate factors in Hainan, China[J]. MalarJ,2010,9:185.
    [54] Jones A E, Wort U U, Morse A P, et al. Climate prediction of El Nino malariaepidemics in north-west Tanzania[J]. Malar J,2007,6:162.
    [55] Teklehaimanot H D, Lipsitch M, Teklehaimanot A, et al. Weather-based prediction ofPlasmodium falciparum malaria in epidemic-prone regions of Ethiopia I. Patterns of laggedweather effects reflect biological mechanisms[J]. Malar J,2004,3:41.
    [56] Kumada S, Hayashi M, Arima K, et al. Renal disease in Arima syndrome isnephronophthisis as in other Joubert-related Cerebello-oculo-renal syndromes[J]. Am J MedGenet A,2004,131(1):71-76.
    [57] Friedman L S, Barach P, Richter E D. Raised speed limits, case fatality and road deaths:a six year follow-up using ARIMA models[J]. Inj Prev,2007,13(3):156-161.
    [58] Xiang Q, Chen P Y.[Construction and application of an ARIMA model for predictingthe number of outpatient visits in general hospitals][J]. Nan Fang Yi Ke Da Xue XueBao,2009,29(5):1076-1078.
    [59] Earnest A, Chen M I, Ng D, et al. Using autoregressive integrated moving average(ARIMA) models to predict and monitor the number of beds occupied during a SARSoutbreak in a tertiary hospital in Singapore[J]. BMC Health Serv Res,2005,5:36.
    [60] Nelson B K. Statistical methodology: V. Time series analysis using autoregressiveintegrated moving average (ARIMA) models[J]. Acad Emerg Med,1998,5(7):739-744.
    [61] Wang X, Mu J, Li G, et al. Decreased prevalence of the Plasmodium falciparumchloroquine resistance transporter76T marker associated with cessation of chloroquine useagainst P. falciparum malaria in Hainan, People's Republic of China[J]. Am J Trop MedHyg,2005,72(4):410-414.
    [62] Wen L, Xu D Z, Wang S Q, et al.[Analysis on the relationship between malariaepidemics and NOAA-AVHRR NDVI in Hainan province][J]. Zhonghua Liu Xing BingXue Za Zhi,2005,26(4):263-267.
    [63] Wang S Q, Christophel E, Lin S G, et al.[Efficacy of dihydroartemisinin-piperaquineand artemether-lumefantrine in the treatment of uncomplicated falciparum malaria in Hainan,China][J]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing ZaZhi,2008,26(1):50-52.
    [64] Duan J S, Zhang Y B, Chen S Y.[Six-year survey of malaria in the agriculturereclamation system in Hainan][J]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong BingZa Zhi,2000,18(1):61.
    [65] Wu K, Chen W, Tang L, et al.[A study on behavioural characteristics of staying on themountain and its relationship with malaria infection in Li and Miao minorities in HainanProvince][J]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing ZaZhi,1995,13(4):255-259.
    [66] Wu K C, Chen W J, Wang Z G, et al.[Studies on distribution and behavior ofAnopheles minimus and its role of malaria transmission in Hainan Province at present][J].Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi,1993,11(2):120-123.
    [67] Tang L, Manderson L, Deng D, et al. Social aspects of malaria in Heping, Hainan[J].Acta Trop,1995,59(1):41-53.
    [68] Gething P W, Smith D L, Patil A P, et al. Climate change and the global malariarecession[J]. Nature,2010,465(7296):342-345.
    [69] Chrastansky A, Callies U. Model-based long-term reconstruction of weather-drivenvariations in chronic oil pollution along the German North Sea coast[J]. Mar PollutBull,2009,58(7):967-975.
    [70] Hunter P R. Climate change and waterborne and vector-borne disease[J]. J ApplMicrobiol,2003,94Suppl:37S-46S.
    [71] Patz J A, Vavrus S J, Uejio C K, et al. Climate change and waterborne disease risk inthe Great Lakes region of the U.S[J]. Am J Prev Med,2008,35(5):451-458.
    [72] Funari E, Manganelli M, Sinisi L. Impact of climate change on waterborne diseases[J].Ann Ist Super Sanita,2012,48(4):473-487.
    [73] Charron D, Thomas M, Waltner-Toews D, et al. Vulnerability of waterborne diseases toclimate change in Canada: a review[J]. J Toxicol Environ HealthA,2004,67(20-22):1667-1677.
    [74] Hoshen M B, Morse A P. A weather-driven model of malaria transmission[J]. MalarJ,2004,3:32.
    [75] Serandour J, Girel J, Boyer S, et al. How human practices have affected vector-bornediseases in the past: a study of malaria transmission in Alpine valleys[J]. MalarJ,2007,6:115.
    [76] Van Bortel W, Trung H D, Roelants P, et al. Population genetic structure of the malariavector Anopheles minimus A in Vietnam[J]. Heredity (Edinb),2003,91(5):487-493.
    1Miller, J.C., Spread of infectious disease through clustered populations. Journal of theRoyal Society Interface,2009.6(41):1121-1134.
    2李立明,流行病学.第五版.2006,北京:人民卫生出版社.
    3Lee, A.M., et al., Stress and psychological distress among SARS survivors1year afterthe outbreak. Canadian Journal of Psychiatry-Revue Canadienne De Psychiatrie,2007.52(4):233-240.
    4Ince, J. and A. McNally, Development of rapid, automated diagnostics for infectiousdisease: advances and challenges. Expert Review of Medical Devices,2009.6(6):641-651.
    5Reis, B.Y., I.S. Kohane, and K.D. Mandl, An epidemiological network model for diseaseoutbreak detection. Plos Medicine,2007.4(6):1019-1031.
    6WHO, An integrated approach to communicable disease surveillance, in W ER.2000.
    7Schutkowski, H., Infectious Disease Ecology, Effects of Ecosystems in Disease and ofDisease on Ecosystems. Journal of Archaeological Science,2009.36(12):2882-2883.
    8Griffiths, S. and J. Lau, The influence of SARS on perceptions of risk and reality. Journalof Public Health,2009.31(4):466-467.
    9WHO. Public health response to biological and chemical weapons: WHO guidance(2004).2004[cited;Available from: http://www.who.int/csr/delibepidemics/biochemguide/en/index.html.
    10WHO. WHO Recommended surveillance standards, second edition:8.2004[citedhttp://www.who.int/csr/resources/publications/en/].
    11Craddock, S., Searching Eyes: Privacy, the State, and Disease Surveillance in America.Social History.35(1):114-116.
    12Brunham, R.C., Infectious Disease Prevention and Control: Remembering1908andImagining2108. Canadian Journal of Public Health-Revue Canadienne De SantePublique,2009.100(1):5-8.
    13Mounchili, A., J.J. Wichtel, and J. Sanchez, Geographical and temporal aspects of anoutbreak of off-flavours in bulk-tank milk in Prince Edward Island, Canada. PreventiveVeterinary Medicine,2006.74(2-3):154-161.
    14Guglielmetti, P., et al., The early warning and response system for communicablediseases in the EU: an overview from1999to2005. Euro Surveill,2006.11(12):215-20.
    15D'Ambrosio, L., et al., Improving tuberculosis surveillance in Europe is key tocontrolling the disease. Euro Surveill.15(11).
    16Castillo-Riquelme, M., et al., Modelling geographic variation in the cost-effectiveness ofcontrol policies for infectious vector diseases: The example of Chagas disease. Journal ofHealth Economics,2008.27(2):405-426.
    17卫生部,《突发公共卫生事件应急条例》.2004:中国.
    18卫生部,《国家突发公共卫生事件相关信息报告管理工作规范(试行)》.2006:北京.
    19卫生部,《传染病信息报告管理规范》.2006:北京.
    20卫生部,《突发公共卫生事件与传染病监测信息报告管理办法》.2003:北京.
    21卫生部,《中华人民共和国传染病防治法》.2004:中国.
    22Tsui, F.C., et al., Data, network, and application: Technical description of the UtahRODS winter Olympic biosurveillance system, in Amia2002Symposium, Proceedings-Biomedical Informatics: One Discipline, I.S. Kohane, Editor.2002, Hanley&Belfus IncMed Publishers: Philadelphia.815-819.
    23Richards DB, C.C., Brown CK,et al, Geographic Information systems and public health:Mapping the future. Public Health Reports,1999(114):359-373.
    24卫生部,《传染病监测信息网络直报工作与技术指南》.2009:北京.
    25Porco, T.C. and S.M. Blower, Quantifying the intrinsic transmission dynamics oftuberculosis. Theor Popul Biol,1998.54(2):117-32.
    26马家奇,王.,戚晓鹏,施晓明,杨功焕,基于网络直报的传染病监测自动预警信息系统概念模型.疾病监测,2006.21(12):679-681.
    27中国疾病预防控制中心,重点传染病监测自动预警信息系统建设与应用项目试点工作实施方案.2004:北京.
    28漆莉,李革,李勤, Arima模型在流行性感冒预测中的应用.第三军医大学学报,2007(03).
    29胡明,赵.,灰色模型在传染病预测中的应用.铁道医学,1991.19(3):167-1681.
    30吴晓清,丁.,应用灰色模型预测流脑发病率.江苏预防医学,2000.11(3):35-36.
    31Hao, H., H. Feng, and C. Li, Methods for infectious disease forecasting. MEDINFO89.Proceedings of the Sixth Conference on Medical Informatics|MEDINFO89. Proceedingsof the Sixth Conference on Medical Informatics,1989:1024-8|2vol.(xlix+xxiv+1262).
    32Hochberg, M.E., Nonlinear Transmission Rates and the Dynamics of Infectious-Disease.Journal of Theoretical Biology,1991.153(3):301-321.
    33Yang, Y. and P.M. Atkinson, Individual space-time activity-based model: a model for thesimulation of airborne infectious-disease transmission by activity-bundle simulation.Environment and Planning B-Planning&Design,2008.35(1):80-99.
    34马知恩,周义仓,王稳地,传染病动力学的数学建模与研究.2004,北京:科学出版社.
    35代小秋.国内外症状监测系统发展现状及其评价框架[J].中华预防医学杂志,2010,44(6):550-552.
    36Helfenstein U. Box-Jenkins modelling in medical research[J]. MethodsMed Res,1996,5(1):3-22.
    37Ben Y R Kenneth D M. Time series modeling for syndromic surveillance[J]. BMCMedical Informatics and Decision Making,2003,3:2.
    38DanielsM L, Dominici F, Samet J M, et al.Estimating particulate matter mortality doseresponse curves, threshold levels: an analysis of daily time series for the20largest UScities[J]. Am J Epidemiol,2000,152(5):397-406.
    39CardinalM, R R, Lamber J. On the application of integer-valued time series models forthe analysis of disease incidence[J]. StatMed,1999,18(1):2025-2039.
    40吴秀华,王福兴.风疹疫情时间序列模型预测效果评价[J].中国公共卫生,2010,27(11):1375.
    41Heffernan R, Mostashari F, Das D, et al. Syndromic surveillance in public health practice,New York City[J]. MMWR Morb Mortal Wkly Rep,2004,53(Suppl):23-27.
    42Takahashi K, Kulldorff M, Tango T, et al. A flexibly shaped space-time scan statistic fordisease outbreak detection and monitoring[J]. Int J Health Geogr,2008,11(7):14.
    43Lewis MD, Pavlin JA, Mansfield J L, et al. Disease outbreak detection system usingsyndromic data in the greater Washington DC area[J]. Am J PrevMed,2002,23(3):180-186.
    44Miller B, Kassenborg H, Dunsmuir W, et al. Syndromic Surveillance for InfluenzalikeIllness in Ambulatory Care Setting[J]. Emerging Infectious Diseases2004,10(10):1806-1811.
    45Lombardo J, Burkom H, Elbert E, et al. A systems overview of the ElectronicSurveillance system for the Early Notification of Community-BasedEpidemics(ESSENCE Ⅱ)[J]. J Urban Health,2003,80(Suppl):32-42.
    46张岚.应用"Z-D现象"进行传染病疫情预测的研究[J].数理医药学杂志,2002,15(3):268-269.
    47Quenel P, D.W. Sensitevety specificity and preduictive values of health service basedindicators for the surveillance of influenza A epidemics[J]. International Journal ofEpidemiology,1994,23(4):849-855.
    48Love S, Wilson M. et al. Syndromic surveillance at hospital emergencydepartmentssoutheastern Virginia[J]. Morb Mortal Wkly Rep,2004,53(Suppl):56-58.
    49Muscatello DJ,Churches T,Kaldor J,et al. An automated, broad-based, near real-timepublic health surveillance system using presentations to hospital EmergencyDepartments in New South Wales, Australia[J]. BMC public health,2005,22(5):141.
    50Hadler JL, Siniscalchi A, Dembek Z, et al. Hospital admissions syndromicsurveillance-Connecticut[J].Morb Mortal Wkly Rep,2005,54(Suppl):169-173.
    51Joseph Lombardo, Howard Burkom, Eugene Elbert, et al. A systems overview of theelectronic surveillance system for the early notification of community-based epidemics(ESSENCE II)[J].the New York Academy of Medicine,2003,80(Suppl):1.
    52D Han,F Tsung. A generalized EWMA control chart and its comparison with the optimalEWMA, CUSUM and GLR schemes[J]. The Annals of Statistics,2004,32(1):316-339.
    53AS Neubauer. The EWMA control chart: properties and comparison with otherquality-control procedures by computer simulation[J]. Clinical Chemistry,1997,43(4):594-601.
    54Kulldorff M. A spatial scan statistic[J].Communications in Statistics-Theory andMethods,1997,26(6):1481–1496.
    55Tango T, Takahashi K. A flexibly shaped spatial scan statistic for detectingclusters[J].Int J Health Geogr,2005,18(4):11.
    56Kulldorff M. Prospective time periodic geographical disease surveillance using a scanstatistic[J]. J. R. Statist Soc,2001, A164(1):61-72.
    57Lombardo J, Burkom H, Parlin J. ESSENCE Ⅱand the framework for evaluatingsnydromic surveillance systems[J]. Morb Mortal Wkly Rep,2004,53(suppl):159-165.
    58Richard Heffernan, F Mostashari, D Das. New York City Syndromic SurveillanceSystems[J]. Morb Mortal Wkly Rep,2004,53(Suppl):25-27.
    59Wong W K, Moore A, Cooper G, et al. WSARE What s Strange about RecentEvents[J].Journal of Urban Health,2003,80(Suppl):66-75.
    60Kulldorff M. Prospective time periodic geographical disease surveillance using a scanstatistic[J]. The Royal Statistical Society and Blackwell Publishing Ltd,2001,164(1):61-72.
    61W Katherine Yih, B Caldwell, R Harmon,et al. National bioterrorism syndromicsurveillance demonstration program[J].MMWR Morb Mortal Wkly Rep,2004,53(Suppl):43.
    62Kulldorff M, Heffernan R, Hartman J, et al. A space-time permutation scan statistic fordisease outbreak detection[J].PLoS Med,2005,2(3):216-224.
    63Henry JV, Magruder S, Snyder M. Comparison of office visit and nurse advice hotlinedata for syndromic surveillance Baltimore Washington, D.C., metropolitan area,2002.[J]. MMWR Morb Mortal Wkly Rep,2004,53(Suppl):112.
    64张子武,冯子健,李晓松. WSARE计算方法在传染病暴发早期预警中的应用[J].中华流行病学杂志,2010,31(11):1306-1310.
    65Wong WK, Cooper G, Dash D,. Use of multiple data streams to conduct Bayesianbiologic surveillance. MMWR Morb Mortal Wkly Rep.200554Suppl:63-9.,
    66JM Bates, J Granger. The Combination of Forecasts[J].Operations Research Quarterly,1969,20(4):451-468.
    67Kao J J, S S Huang. Forecasts using neural network versus Box-Jenkins methodology forambient air quality monitoring data[J].J Air Waste Manag Assoc,2000,50(2):219-26.
    68张明华.组合预测法在门急诊量预测中的应用[D].中国科学院上海冶金研究所博士学位论文,2000.
    69严薇荣.基于灰色马尔可夫模型的伤寒副伤寒发病率预测[J].数理医药学杂志,2008(02):137-139.
    70Rogerson PA. Monitoring point patterns for the development of space-time clusters[J].JR Stat Soc A,2002164(1):87-96.
    71Goldenberg A G,Shmueli R A, Caruana S E Fienberg. Early statistical detection ofanthrax outbreaks by tracking over-the-counter medication sales[J]. Proceedings of theNational Academy of Sciences,2002,99(8):5237-5249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700