乡镇尺度钉螺分布的高风险区域分析与Bayesian时空建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的血吸虫病防治工作经过60多年的努力取得了举世瞩目的成就,但目前也面临着巨大挑战。血吸虫病人数明显下降,但急性感染者人数增多;血吸虫病治疗药物疗效显著,但高风险地区居民化疗依从性降低;钉螺孳生地广泛存在,但灭螺比例相对较低;加之全球气候变暖、流动人口增多、血吸虫病防治工作投入不足等诸多原因都对我国的血吸虫病防治工作提出了新的难题。湖沼型地区患者多、钉螺孳生地广泛,仍然是今后血吸虫病防控工作的重点。为了更好地为血吸虫病防治工作提供参考与指导,本研究以湖沼型血吸虫病流行区——安徽省为现场,以现有血吸虫病防治工作为基础,在乡镇尺度采用空间信息分析技术和多水平模型、Bayesian时空模型等先进的模型理论,对钉螺分布进行空间分析,以解决血吸虫病防治工作中的关键问题,同时建立的研究方法也为相关疾病的聚集性分析和时空分析提供参考。
     第一部分钉螺分布和血吸虫病的空间聚集性分析
     本部分旨在探索安徽省乡镇级别的钉螺和血吸虫病的空间聚集性并加以可视化展示,找出血吸虫病高风险区域的同时,揭示现象之间的时空相互作用机制,为今后的血吸虫病防控提出建议。主要通过回顾性调查方法,收集整理2000-2008年安徽省乡镇血吸虫病患病率和有螺面积百分比,并将该数据与安徽省乡镇级电子地图进行匹配,以构建起本次研究所用的时空分析数据库。通过地统计学中全局空间自相关与局部空间自相关分析方法和空间动态窗口扫描统计方法,探索血吸虫病、钉螺的空间聚集性,并通过ArcGIS软件将结果进行可视化表达。
     2000-2008年钉螺分布全局空间自相关结果均具有统计学意义(Moran's I>0,P<1.05),采用局部空间自相关和SaTScan探测的具体聚集位置较为吻合。整体来看有螺面积百分比不随时间变化而发生更为聚集的趋势(t=1.85,P>1.05)。SaTScan探测结果提示该指标聚集区域主要集中分布在沿长江周围62千米的带状区域内。2005年之前,钉螺聚集分布主要集中在长江安徽段的中下游;从2005年开始,钉螺分布的聚集区域转移到了长江上游。
     对于血吸虫病患病率指标,2000~2001年和2005-2007年间全局空间自相关结果显示其分布无空间聚集效应(P>1.05)。局部空间自相关结果虽有少量高值聚集区域,但是聚集乡镇数量少且位置较为分散,其与SaTScan探测的聚集中心又有所差异,整体上说明其分布呈空间随机分布。2002-2004年和2008年间全局空间自相关结果显示血吸虫病患病率分布呈现空间聚集性(Moran's I>0,P<1.05),但是聚集程度较弱。局部空间自相关结果与SaTScan探测结果较为一致。SaTScan探测的聚集半径下包括了绝大部分局部空间自相关探测出的高值聚集乡镇,整体上说明这些年份该指标分布呈现空间聚集性。
     全局空间自相关可以从整体上把握空间数据是否具有空间聚集性;局部空间自相关可以探测出各个单元格之间的关系,从而判断其具体聚集区域;SaTScan可以计算出其具体的中心位置和范围。三种方法联合使用,逐步深入,使得结果呈现更加全面、系统。
     第二部分钉螺分布的多水平模型构建与分析
     本部分旨在进一步控制影响钉螺分布的混杂因素,探讨乡镇级别钉螺分布变化的时间趋势,同时为建立Bayesian时空模型筛选出主要的危险因素。研究采用多水平模型中的发展模型排除组内相关对研究结果的影响,对影响钉螺分布的环境因素(归一化植被指数、地表温度)和气候因素(年平均降水量、年极端最低温度)以及灭螺措施、地理位置等相关因素综合分析。
     空模型结果显示,组内相关系数ICC为84.17%,随机截距的方差具有统计学意义(t=-8.19,P<1.01),因此推断ICC具有统计学意义且乡镇各测量值之间相关性较大,采用多水平模型分析该纵向数据较传统模型更为合适。
     纳入随时间变化协变量所建立的最终模型最适合拟合该数据。结果显示,随机截距的方差存在统计学意义(σ2u0=33.57,t=5.81,P<1.01),即各乡镇是否具有钉螺的概率初始值不同;时间变化率的方差存在统计学意义(σ2u1=0.74,t=5.87,P<1.01),即各个乡镇有螺概率随时间的变化率存在不同;协方差存在统计学差异(σ2u01=-3.02,t=-4.71,P<1.01),说明研究对象初始有螺概率越高,其有螺概率随时间变化的变化率越小。
     乡镇离长江的距离对乡镇有螺概率有影响(t=-8.03,P<1.01),有螺概率随乡镇离长江的距离增加而降低(P<1.01)。灭螺情况和地表温度均具有统计学意义(P<1.05),即前一年对有螺乡镇采取灭螺措施后,其有螺概率仍然高于无螺乡镇(95%CI:2.9,6.7);地表温度高于平均温度27℃的乡镇其有螺风险低于平均温度低于27℃的乡镇(95%CI:0.5,0.9)。
     第三部分钉螺分布的Bayesian时空模型构建与分析
     本部分在排除其它危险因素和空间自相关性的基础上,旨在定量刻画乡镇有螺风险的时间变化趋势及空间聚集性。以第二部分研究中筛选出的危险因素(乡镇离长江的距离、灭螺情况和地表温度)的基础上,构建起Bayesian非时空模型、时空独立模型和时空交互模型。
     根据DIC值越小越好的准则,时空独立模型拟合数据最合适。每年各研究乡镇之间存在空间随机效应,且每年的空间效应一致,不随时间变化而变化。每年乡镇级别的有螺概率呈现逐年递减趋势(OR=0.87,95%CI:0.84,0.90);地表温度高于27℃的乡镇其有螺概率为低于27℃乡镇的0.7倍(OR=0.73,95%CI:0.59,0.90);乡镇距长江的距离每增加10千米,其有螺风险降低约20%(OR=0.83,95%CI:0.76,0.91):前一年灭螺后的乡镇其有螺风险仍是无螺且未灭螺乡镇的10倍(OR=9.97,95%CI:7.85,12.81)。在校正其它危险因素和空间随机效应的情况下,距长江超过62千米的乡镇有螺概率是在此范围内的0.43倍(OR=0.43,95%CI:0.22,0.84)。空间随机效应夸大了时间和乡镇离长江的距离对乡镇有螺概率的影响,高估了灭螺措施对有螺概率的影响。整体上在长江安徽段上游高风险有螺乡镇仍然较多,且分布较为集中,主要位于池州市东至县和贵池区。随时间的推移,其它地区高风险有螺乡镇数呈现减少的趋势。
     建议血防工作者加强对历史有螺区的监测和灭螺力度,特别是距离长江62千米范围内,地表温度低于27℃的地区,因为这些地区更适于钉螺生存和繁殖,有螺风险也要比其它地区更高,血吸虫病传播风险更大,对血吸虫病防治工作的意义更为重大。同时也应加强对以往无螺地区的监测,因为这些地区随时间变化的变化率更大。
In spite of the great achievements in the national schistosomiasis control during the past half century, the new century will indeed be confronted by the great challenges. The number of the schistosomiasis decreased sharply, but the acute schistosomiasis increased. The drugs for the schistosomiasis were effective, but the long-term chemotherapy decreased compliance of the patients in the high risk areas. Snail habitats existed wildly, but the percent of snail control areas was relatively small. In addition, there were some new problems including global warming, floating population increase, limited financial supports and so on. The focus of schistosomiasis control was in the lake and marshland areas. In our study, modern spatial analysis technology, multilevel model and Bayesian spatial-temporal model were complemented and analyzed based on the data collection of schistosomiasis control program in Anhui province, in order to solve the key problems from the practical work and provide suggestions for the development of integrated schistosomiasis control program. This study can be referenced by the other related diseases for clustering and spatial-temporal analysis.
     Part I Clustering analysis of snail distribution and schistosomiasis
     This part aimed to analyze the spatial clustering of schistosomiasis and snail for the high risk areas based on data collection in Anhui province and indicate the spatial-temporal association and mechanism for the development of integrated schistosomiasis control program. Two variables of the prevalence rate and the percentage of snail areas were computed according to the data collection of schstosomiasis prevalence in Anhui province from 2000 to 2008 and the spatial analysis database was constituted by the two variables matched with the spatial database of polygon. Global Autocorrelation Analysis, Local Autocorrelation Analysis and spatial scan statistics approach through moving windows were complemented to detect the clusters of schstosomiasis and snails. The results were visualized through the software of ArcGIS.
     For the variable of the percentage of snail areas, the spatial clustering of Global autocorrelation analysis were statistically significant from 2000 to 2008(Moran's I>0, P<0.05). And the clusters by Local autocorrelation analysis and SaTScan analysis were almost consistent. The clusters of different radius by SaTScan analysis covered most of the towns with spatial clustering of high values of Local autocorrelation analysis and it didn't appear to cluster more towns with the positive spatial clustering(T=1.85,P>0.05). The result of exploration by SaTScan suggested that the cluster area of the index mainly gathered in the band area 62 kilometers far away from both sides of the Yangtze River. The main clusters located near the downstream of Yangtze River through Anhui province before 2005. However, the clusters moved to the upstream since 2005.
     For the variable of prevalence rate of schistosomiasis, the results from Global Autocorrelation Analysis were not statistically significant (P>0.05) during the periods of 2000 to 2001 and 2005 to 2007. A few towns covered by small clusters were detected by Local Autocorrelation Analysis, however, the positions of the clusters were different from the result of SaTScan anslysis and distributed randomly. On the other hand, it was significant that some clusters were detected by Global Autocorrelation Analysis from 2002 to 2004 and in 2008(Moran's I>0,P<0.05), but the clustering effect was weak. The results were consistent between the Local autocorrelation analysis and SaTScan analysis. The clusters of different radiuses by SaTScan analysis covered most of the towns with spatial clustering of high values of Local Autocorrelation Analysis. According to the analysis of the three methods mentioned above, it was proved that the spatial clustering was significant to the prevalence rate of schistosomiasis from 2002 to 2004 and in 2008.
     Global autocorrelation analysis can identify the clustering from the global view. Local Autocorrelation Analysis can detect the spatial association and the locations with positive spatial clustering with high values. The cluster centers and radius can be identified by SaTScan analysis. The three methods can be combined and implemented gradually and the integrated results are more systematic and comprehensive.
     PartⅡEstablishment and analysis of Multilevel Model of snail distribution
     This part aimed to study the time trend of snail distribution based on town data collection adjusted by the confounding factors and identified the significant factors influencing the snail distribution in order to control the spatial autocorrelation by Bayesian spatial-temporal model. Growth Model of Multilevel model was used to adjust the within-group autocorrelation and study the effect of environmental factors(Normalized Difference Vegetation Index, Surface Temperature), climatic factors(Average Annual Precipitation, Annual Extreme Minimum Temperature), snail elimination and local position.
     The results of Empty model showed that ICC was 84.17% and the variance of the random intercept was statistically significant(t=8.19, P<0.01), so that ICC was significant and there was a great autocorrelation between the adjacent towns. It was indicated that the multilevel model was preferable to the classical statistical model for the longitudinal study.
     The model including the covariants with time was judged as the best model to fit our data. The variances of both the random intercept and slope were significant (σu02 =33.57,t=5.81, P<0.01;σu12=0.74, t=5.87, P<0.01). The results indicated that both the initial probability of snail and the rate of change of the probability were different and changing with the time moving for different towns. The significant covariance (σu012=-3.02,t=-4.71, P<0.01) suggested that if the initial probability of snail was great, the rate of change of snail probability would be small.
     The index of distance from the Yangtze River to the towns had the effect to the probability of snail for different towns (t=-8.03, P<0.01). The probability of snail would decreased with the distance increase (P<0.01). The effect of snail elimination and Land Surface Temperature were significant(P<0.05). Although the snail elimination was implemented in some towns, the probability of snail in these towns would be greater than that without snail elimination (95%CI:2.9,6.7). The probability of towns with Land Surface Temperature above 27℃was smaller than that of Land Surface Temperature below 27℃(95%CI:0.5,0.9).
     Part III Establishment and analysis of Bayesian spatial-temporal model for snail distribution
     This part aimed to study the time trend and spatial clustering for quantitative measurement adjusted by the significant factors from Multilevel Model and spatial autocorrelation. Non-spatial model, separate spatial-temporal model and spatial-temporal interaction model were modeled including risk factors adjusted from Multilevel Model.
     According to the DIC principle, the separate spatial-temporal model was selected as the best model to fit the longitudinal data. It indicated that the random spatial effect was significant every year respectively and had no interaction as the time went by. The probability of snail decreased at town level year by year(OR=0.87,95%CI:0.84, 0.90). The probability of snail of towns with Land Surface Temperature above 27℃was 0.7 time of those with the temperature below 27℃(OR=0.73,95%CI:0.59,0.90). The risk of snail for different towns decreased by 20% with the distance increase away from the Yangtze River every 10 km (OR=0.83,95%CI:0.76,0.91). Though some towns implemented the snail elimination, the risk of snail was 9 times than that of the towns without snail and any control measures(OR=9.97,95%CI:7.85,12.81). In general, when the towns were over 62 km far away from the Yangtze River, the risk of this area was 0.43 times that of the towns inside this zone adjusted by other risk factors and spatial correlation(OR=0.43,95%CI:0.22,0.84). The effect of the distance from town to the Yangtze River on the probability of snail was overestimated due to the spatial correlation. The snail elimination had same effect on the probability of snail as well. More generally, the towns with high risk of snail clustered in the upstream of the Yangtze River though Anhui province, especially near the boundary of Dongzhi County and Guichi District in Chizhou City. The probability of other towns decreased with the time going.
     It was suggested that the surveillance and snail elimination should be reinforced greatly to the former snail habitats, especially in the zone of 62km away from the both sides of the Yangtze River and with the Land Surface Temperature below 27℃. Because the environment in these areas was suitable for the survival and reproduction of snail and people had more risks than other places to schistosomiasis infection. The snail control to this zone played an important role in controlling schistosomiasis. At the same time, it was necessary to strengthen the surveillance to the areas without detection of snail, because these areas had the greater rate of change of probability than other areas with snail as the time went on.
引文
[1]Jiang QW, Wang LY, Guo JG, et al. Morbidity control of schistosomiasis in China[J]. Acta Trop,2002,82(2):115-125.
    [2]Zhang ZJ, Clark AB, Bivand R, et al. Nonparametric spatial analysis to detect high-risk regions for schistosomiasis in Guichi, China[J]. Trans R Soc Trop Med Hyg,2009,103(10):1045-1052.
    [3]Yuan HC. Schistosomiasis control in China[J]. Mem Inst Oswaldo Cruz,1995, 90(2):297-301.
    [4]McManus DP, Gray DJ, Li Y, et al. Schistosomiasis in the People's Republic of China:the era of the Three Gorges Dam[J]. Clin Microbiol Rev,2010, 23(2):442-466.
    [5]Chen XY, Wang LY, Cai JM, et al. Schistosomiasis control in China:the impact of a 10-year World Bank Loan Project (1992-2001)[J]. Bull World Health Organ,2005,83(1):43-48.
    [6]Guo JG, Cao CL, Hu GH, et al. The role of 'passive chemotherapy' plus health education for schistosomiasis control in China during maintenance and consolidation phase[J]. Acta Trop,2005,96(2-3):177-183.
    [7]Yuan HC, Guo JG, Bergquist R, et al. The 1992-1999 World Bank Schistosomiasis Research Initiative in China:outcome and perspectives[J]. Parasitol Int,2000,49(3):195-207.
    [8]Yuan HC, Jiang QW, Zhao GM, et al. Achievements of schistosomiasis control in China[J]. Mem Inst Oswaldo Cruz,2002,97 Suppl 1:187-189.
    [9]Pan HD, Huang DS, Wang KT. Approach to surveillance and consolidation during past 15 years after elimination of schistosomiasis in Shanghai[J]. Acta Trop,2002,82(2):301-303.
    [10]Zhang W, Wong CM. Evaluation of the 1992-1999 World Bank Schistosomiasis Control Project in China[J]. Acta Trop,2003,85(3):303-313.
    [11]Sun CS, Yu BG, Liao HY, et al. Achievement of the World Bank loan project on schistosomiasis control (1992-2000) in Hubei province and the challenge in the future[J]. Acta Trop,2002,82(2):169-174.
    [12]郝阳,郑浩,朱蓉,等.2009年全国血吸虫病疫情通报[J].中国血吸虫病防治杂志,2010,22(6):521-527.
    [13]郭京平.1998年全国血吸虫病防治工作及进展[J].中国血吸虫病防治杂志, 1999(3):129-131.
    [14]Chen XY. The challenges and strategies in schistosomiasis control program in China[J]. Acta Trop,2002,82(2):279-282.
    [15]Wang LD, Chen HG, Guo JG, et al. A strategy to control transmission of Schistosoma japonicum in China[J]. N Engl J Med,2009,360(2):121-128.
    [16]Wang LD, Guo JG, Wu XH, et al. China's new strategy to block Schistosoma japonicum transmission:experiences and impact beyond schistosomiasis[J]. Trop Med Int Health,2009,14(12):1475-1483.
    [17]Li YS, Zhao ZY, Ellis M, et al. Applications and outcomes of periodic epidemiological surveys for schistosomiasis and related economic evaluation in the People's Republic of China[J]. Acta Trop,2005,96(2-3):266-275.
    [18]Zhao GM, Zhao Q, Jiang QW, et al. Surveillance for schistosomiasis japonica in China from 2000 to 2003[J]. Acta Trop,2005,96(2-3):288-295.
    [19]Liang S, Yang C, Zhong B, et al. Re-emerging schistosomiasis in hilly and mountainous areas of Sichuan, China[J]. Bull World Health Organ,2006, 84(2):139-144.
    [20]Gryseels B, Polman K, Clerinx J, et al. Human schistosomiasis[J]. The Lancet, 2006,368(9541):1106-1118.
    [21]Liang S, Seto EY, Remais JV, et al. Environmental effects on parasitic disease transmission exemplified by schistosomiasis in western China[J]. Proc Natl Acad Sci U S A,2007,104(17):7110-7115.
    [22]郝阳,郑浩,朱蓉,等.2008年全国血吸虫病疫情通报[J].中国血吸虫病防治杂志,2009(6):451-456.
    [23]全国预防控制血吸虫病中长期规划纲要(2004-2015年)[A].防治血吸虫病、寄生虫病文献选编[C]:卫生部疾病预防控制局,2004.
    [24]Zhu HM, Xiang S, Yang K, et al. Three Gorges Dam and its impact on the potential transmission of schistosomiasis in regions along the Yangtze River[J]. EcoHealth,2008,5(2):137-148.
    [25]Utzinger J, Bergquist R, Shu-Hua X, et al. Sustainable schistosomiasis control--the way forward [J]. Lancet,2003,362(9399):1932-1934.
    [26]Utzinger J, Raso G, Brooker S, et al. Schistosomiasis and neglected tropical diseases:towards integrated and sustainable control and a word of caution[J]. Parasitology,2009,136(13):1859-1874.
    [27]Lardans V, Dissous C. Snail control strategies for reduction of schistosomiasis transmission[J]. Parasitol Today,1998,14(10):413-417.
    [28]Utzinger J, Bergquist R, Xiao SH, et al. Sustainable schistosomiasis control--the way forward[J]. Lancet,2003,362(9399):1932-1934.
    [29]Zhang ZJ, Carpenter TE, Lynn HS, et al. Location of active transmission sites of Schistosoma japonicum in lake and marshland regions in China[J]. Parasitology,2009,136(7):737-746.
    [30]Wang W, Dai JR, Liang YS, et al. Impact of the South-to-North Water Diversion Project on the transmission of Schistosoma japonicum in China[J]. Ann Trop Med Parasitol,2009,103(1):17-29.
    [31]张志杰,彭文祥,周艺彪,等.湖沼地区湖北钉螺不同调查方法的比较研究[J].中国血吸虫病防治杂志,2007(1):38-42.
    [32]Yang K, Wang XH, Yang GJ, et al. An integrated approach to identify distribution of Oncomelania hupensis, the intermediate host of Schistosoma japonicum, in a mountainous region in China[J]. Int J Parasitol,2008,38(8-9): 1007-1016.
    [33]Guo JG, Vounatsou P, Cao CL, et al. A geographic information and remote sensing based model for prediction of Oncomelania hupensis habitats in the Poyang Lake area, China[J]. Acta Trop,2005,96(2-3):213-222.
    [34]Li Y, Sleigh AC, Williams GM, et al. Measuring exposure to Schistosoma japonicum in China. Ⅲ. Activity diaries, snail and human infection, transmission ecology and options for control[J]. Acta Trop,2000,75(3): 279-289.
    [35]Chang K. Introduction to geographic information systems[M]:McGraw-Hill New York, NY,2002.
    [36]Anno S, Takagi M, Tsuda Y, et al. Analysis of relationship between Anopheles subpictus larval densities and environmental parameters using Remote Sensing (RS), a Global Positioning System (GPS) and a Geographic Information System (GIS)[J]. Kobe J Med Sci,2000,46(6):231-243.
    [37]Schuurman N. GIS:a short introduction[M]:Wiley-Blackwell,2004.
    [38]汤国安,杨昕ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社,2008.
    [39]Cromley EK, McLafferty S. GIS and public health[M]:The Guilford Press, 2002.
    [40]Longley P. Geographic information systems and science[M]:John Wiley& Sons Inc,2005.
    [41]邓良基.遥感基础与应用[M].北京:中国农业出版社,2002.
    [42]Brooker S, Beasley M, Ndinarotan M, et al. Use of remote sensing and a geographical information system in a national helminth control programme in Chad[J]. B World Health Organ,2002,80(10):783-789.
    [43]胡友健,罗昀,曾云.全球定位系统(GPS)原理与应用[M].武汉:中国地质大学出版社,2003.
    [44]Abdel-Rahman MS, El-Bahy MM, Malone JB, et al. Geographic information systems as a tool for control program management for schistosomiasis in Egypt[J]. Acta Trop,2001,79(1):49-57.
    [45]Saxena R, Nagpal BN, Srivastava A, et al. Application of spatial technology in malaria research & control:some new insights[J]. Indian J Med Res,2009, 130(2):125-132.
    [46]Khan OA, Davenhall W, Ali M, et al. Geographical information systems and tropical medicine[J]. Ann Trop Med Parasitol,2010,104(4):303-318.
    [47]王济川,谢海义,姜宝法.多层统计分析模型一方法与应用[M].北京:高等教育出版社,2008.
    [48]Clarke P. When can group level clustering be ignored? Multilevel models versus single-level models with sparse data[J]. J Epidemiol Commun H,2008, 62(8):752-758.
    [49]Lawson AB, Browne WJ, Rodeiro C, et al. Disease mapping with WinBUGS and MLwiN[M]:Wiley Online Library,2003.
    [50]张南.20世纪统计学的回顾与展望[J].统计研究,2000(9):3-9.
    [51]Gelfand AE, Smith A. Sampling-based approaches to calculating marginal densities[J]. J Am Stat Assoc,1990,85(410):398-409.
    [52]Smith A, Roberts GO. Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods[J]. Journal of the Royal Statistical Society. Series B (Methodological),1993,55(1):3-23.
    [53]Lawson A. Bayesian disease mapping:Hierarchical modeling in spatial epidemiology[M]. Charleston, U.S.A:CRC Press,2009.
    [54]Ntzoufras I. Bayesian modeling using WinBUGS[M]. Hoboken, New Jersey, U.S.A:WILEY & Sons, Inc.,2009.
    [55]Etzioni RD, Kadane JB. Bayesian statistical methods in public health and medicine[J]. Annu Rev Public Health,1995,16:23-41.
    [56]Ashby D. Bayesian statistics in medicine:a 25 year review[J]. Stat Med,2006, 25(21):3589-3631.
    [57]Basanez MG, Marshall C, Carabin H, et al. Bayesian statistics for parasitologists[J]. Trends Parasitol,2004,20(2):85-91.
    [58]Brooker S. Spatial epidemiology of human schistosomiasis in Africa:risk models, transmission dynamics and control[J]. Trans R Soc Trop Med Hyg, 2007,101(1):1-8.
    [59]MacNab YC. Hierarchical Bayesian spatial modelling of small-area rates of non-rare disease[J]. Stat Med,2003,22(10):1761-1773.
    [60]Durr PA, Tait N, Lawson AB. Bayesian hierarchical modelling to enhance the epidemiological value of abattoir surveys for bovine fasciolosis[J]. Prev Vet Med,2005,71(3-4):157-172.
    [61]Dagne GA, Snyder J. Bayesian Hierarchical Duration Model for Repeated Events:An Application to Behavioral Observations[J]. J Appl Stat,2009, 36(11):1267-1279.
    [62]Yanmaz-Tuzel O, Ozbay K. A comparative Full Bayesian before-and-after analysis and application to urban road safety countermeasures in New Jersey[J]. Accident Analysis & Prevention,2010,42(6):2099-2107.
    [63]Clements AC, Brooker S, Nyandindi U, et al. Bayesian spatial analysis of a national urinary schistosomiasis questionnaire to assist geographic targeting of schistosomiasis control in Tanzania, East Africa[J]. Int J Parasitol.2008, 38(3-4):401-415.
    [64]Dendoncker N, Rounsevell M, Bogaert P. Spatial analysis and modelling of land use distributions in Belgium[J]. Computers, Environment and Urban Systems,2007,31(2):188-205.
    [65]Thapa RB, Murayama Y. Urban growth modeling of Kathmandu metropolitan region, Nepal[J]. Computers, Environment and Urban Systems,2011,35(1): 25-34.
    [66]戴光强.关于血吸虫病防治策略的几点思考[J].疾病控制杂志,2001(2):97-98.
    [67]操治国,汪天平,张世清,等.2008年安徽省血吸虫病潜在流行区疫情监测预警报告[J].中国病原生物学杂志,2010(3):195-197.
    [68]. Http://www.ah.gov.cn/[EB/OL]
    [69]李立明.流行病学[M].北京:人民卫生出版社,2003.
    [70]Ringer ME, Cunningham C, Johnson A. Public health education and practice using geographic information system technology[J]. Public Health Nurs,2004, 21(1):57-65.
    [71]Tung A, Hou J, Han J. Spatial clustering in the presence of obstacles[A]:IEEE, 2002:359-367.
    [72]Getis A, Ord K. The Analysis of Spatial Association by Use of Distance Statistics [J]. Geographical Analysis,1992,24(3):189-206.
    [73]Queiroz JW, Dias GH, Nobre ML, et al. Geographic Information Systems and Applied Spatial Statistics Are Efficient Tools to Study Hansen's Disease (Leprosy) and to Determine Areas of Greater Risk of Disease[J]. The American Journal of Tropical Medicine and Hygiene,2010,82(2):306-314.
    [74]张松林,张昆.空间自相关局部指标Moran指数和G系数研究[J].大地测量与地球动力学,2007,27(03):31-34.
    [75]张松林,张昆.全局空间自相关Moran指数和G系数对比研究[J].中山大学学报(自然科学版),2007,46(04):93-97.
    [76]张松林,张昆.局部空间自相关指标对比研究[J].统计研究,2007,24(07):65-67.
    [77]戚晓鹏,周脉耕,胡以松,等.应用地理信息系统探测消化道癌症死亡率空间聚集性[J].地理研究,2011,29(01):181-187.
    [78]Kulldorff M. SaTScanTM User Guide for version 8.0[M],2009.
    [79]Coleman M, Coleman M, Mabuza AM, et al. Using the SaTScan method to detect local malaria clusters for guiding malaria control programmes[J]. Malar J,2009,8:68-73.
    [80]Robertson C, Nelson TA. Review of software for space-time disease surveillance[J]. Int J Health Geogr,2010,9:16.
    [81]张志杰,彭文祥,周艺彪,等.基于空间点模式分析的疾病分布状态的量化指标研究[J].中华预防医学杂志,2008,42(6):422-426.
    [82]Szonyi B, Wade SE, Mohammed HO. Temporal and spatial dynamics of Cryptosporidium parvum infection on dairy farms in the New York City Watershed:a cluster analysis based on crude and Bayesian risk estimates[J]. Int J Health Geogr,2010,9:31.
    [83]Jackson MC, Huang L, Luo J, et al. Comparison of tests for spatial heterogeneity on data with global clustering patterns and outliers[J]. Int J Health Geogr,2009,8:55.
    [84]Ward MP, Carpenter TE. Techniques for analysis of disease clustering in space and in time in veterinary epidemiology[J]. Prev Vet Med,2000,45(3-4): 257-284.
    [85]Dubin RA. Spatial autocorrelation:a primer[J]. Journal of Housing Economics, 1998,7(4):304-327.
    [86]Http://resources.arcgis.com/zh-cn/[EB/OL]
    [87]Ord JK, Getis A. Testing for local spatial autocorrelation in the presence of global autocorrelation[J]. Journal of Regional Science,2001,41(3):411-432.
    [88]Janelle DG, Warf B, Hansen K. Worldminds:Geographical Perspectives on 100 Problems[M]. The Netherlands:Kluwer Academic Pub,2004
    [89]McEntee JC, Ogneva-Himmelberger Y. Diesel particulate matter, lung cancer, and asthma incidences along major traffic corridors in MA, USA:A GIS analysis[J]. Health Place,2008,14(4):817-828.
    [90]Turechek WW, Madden LV. Analysis of the association between the incidence of two spatially aggregated foliar diseases of strawberry[J]. Phytopathology, 2000,90(2):157-170.
    [91]Tsai PJ, Lin ML, Chu CM, et al. Spatial autocorrelation analysis of health care hotspots in Taiwan in 2006[J]. Bmc Public Health,2009,9:464-476.
    [92]Anselin L. Local indicators of spatial association-LISA[J]. Geographical analysis,1995,27(2):93-115.
    [93]Turnbull BW, Iwano EJ, BURNETT WS, et al. Monitoring for clusters of disease:application to leukemia incidence in upstate New York[J]. Am J Epidemiol,1990,132(suppl):136.
    [94]Kulldorff M, Nagarwalla N. Spatial disease clusters:detection and inference[J]. Stat Med,1995,14(8):799-810.
    [95]Kulldorff M. A spatial scan statistic[J]. Commun Stat-Theor M,1997,26(6): 1481-1496.
    [96]Aamodt G, Samuelsen SO, Skrondal A. A simulation study of three methods for detecting disease clusters[J]. Int J Health Geogr,2006,5:15.
    [97]Kulldorff M. In Balakrishnan and Glaz (eds), Recent Advances on Scan Statistics and Applications [M]. Boston, USA:Birkhauser,1999.
    [98]Kulldorff M. Prospective time periodic geographical disease surveillance using a scan statistic[J]. Journal of the Royal Statistical Society:Series A (Statistics in Society),2001,164(1):61-72.
    [99]Kleinman KP, Abrams AM, Kulldorff M, et al. A model-adjusted space-time scan statistic with an application to syndromic surveillance[J]. Epidemiol Infect,2005,133(03):409-419.
    [100]Abrams AM, Kleinman KP. A SaTScan macro accessory for cartography (SMAC) package implemented with SAS software[J]. Int J Health Geogr, 2007,6:6.
    [101]王陇德.中国控制血吸虫病流行的关键是管理好人畜粪便[J].中华流行病学杂志,2005,26(12):929-930.
    [102]赵飞,朱蓉,张丽娟,等SaTScan在湖沼型血吸虫病聚集区域探测中的应用[J].中国血吸虫病防治杂志,2011,23(1):28-31.
    [103]赵飞,朱蓉,张丽娟,等.中国湖区五省血吸虫病聚集区域地理信息系统综合探测分析[J].中华流行病学杂志,2011,31(11):1272-1275.
    [104]张志杰.湖沼地区血吸虫病高风险区域的空间分析及重点钉螺孳生地的探测[D]:复旦大学,2008.
    [105]赵安,蒋梅鑫,简敏菲,等.血吸虫病医学地理研究的回顾与展望[J].地理科学进展,2011,29(01):45-51.
    [106]杨坤,王显红,吴晓华,等.空间流行病学技术在血吸虫病防治研究中应用[J].中国公共卫生,2007,23(8):1117-1021.
    [107]Elliott P, Wartenberg D. Spatial epidemiology:current approaches and future challenges[J]. Environ Health Persp,2004,112(9):998-1006.
    [108]陈彦光.基于Moran统计量的空间自相关理论发展和方法改进[J].地理研究,2009,28(06):1449-1463.
    [109]周晓农,林丹丹,王天平,等.我国“十二五”期间血吸虫病防治策略与工作重点[J].中国血吸虫病防治杂志,2011,23(1):1-4.
    [110]陈红根,谢曙英,曾小军,等.当前我国湖区血吸虫病流行特征与防治策略[J].中国血吸虫病防治杂志,2011,23(1):5-9.
    [111]Lemenuel-Diot A, Mallet A Laveille C, et al. Estimating heterogeneity in random effects models for longitudinal data[J]. Biom J,2005,47(3):329-345.
    [112]Diggle P. Analysis of longitudinal data[M]:Oxford University Press, USA, 2002.
    [113]Raudenbush SW, Bryk AS. Hierarchical linear models:Applications and Data Analysis Methods.2nd ed[M]. Chichester, UK:Sage,2002.
    [114]Cleophas TJ, Zwinderman AH. Random effects models in clinical research[J]. Int J Clin Pharmacol Ther,2008,46(8):421-427.
    [115]Matyas L, Sevestre P. The Econometrics of Panel Data Fundamentals and recent developments in theory and practice[M], D.C. USA:Springer,2008.
    [116]Sarholz B, Piepho HP. Variance component estimation for mixed model analysis of cDNA microarray data[J]. Biom J,2008,50(6):927-939.
    [117]Kang HM, Sul JH, Service SK, et al. Variance component model to account for sample structure in genome-wide association studies[J]. Nat Genet,2010, 42(4):348-354.
    [118]Patel HI. Robust analysis of a mixed-effect model for a multicenter clinical trial[J]. J Biopharm Stat,2002,12(1):21-37.
    [119]Zaslavsky BG. Empirical Bayes models of Possion clinical trials and sample size determination[J]. Pharm Stat,2010,9(2):133-141
    [120]Shrout PE, Fleiss JL. Intraclass correlations:uses in assessing rater reliability[J]. Psychol Bull,1979,86(2):420-428.
    [121]Baldwin SA, Murray DM, Shadish WR, et al. Intraclass correlation associated with therapists:estimates and applications in planning psychotherapy research[J]. Cogn Behav Ther,2011,40(1):15-33.
    [122]Murray DM, Catellier DJ, Hannan PJet al. School-level intraclass correlation for physical activity in adolescent girls[J]. Med Sci Sports Exerc,2004,36(5): 876-882.
    [123]Gelman A. Multilevel (hierarchical) modeling:what it can and can't do[J]. Technometrics,2005,48:241-251.
    [124]Verbeke G, Molenberghs G. Linear mixed models for longitudinal data[M]: Springer Verlag,2009.
    [125]Goldstein H. Multilevel statistical models[M]:Wiley,2010.
    [126]Veugelers PJ, Yip AM, Kephart G. Proximate and contextual sociocconomic determinants of mortality:multilevel approaches in a setting with universal health care coverage[J]. Am J Epidemiol,2001,154(8):725-732.
    [127]Roos LL, Magoon J, Gupta S, et al. Socioeconomic determinants of mortality in two Canadian provinces:multilevel modelling and neighborhood context[J]. Soc Sci Med,2004,59(7):1435-1447.
    [128]Wagenmakers EJ, Farrell S. AIC model selection using Akaike weights[J]. Psychon Bull Rev,2004,11(1):192-196.
    [129]Seghouane AK, Amari S. The AIC criterion and symmetrizing the kullback-Leibler divergence[J]. IEEE Trans Neural Netw,2007,18(1):97-106.
    [130]Broersen PMT. Finite sample criteria for autoregressive order selection[J]. Signal Processing, IEEE Transactions on,2000,48(12):3550-3558.
    [131]Volinsky CT, Raftery AE. Bayesian information criterion for censored survival model[J]. Biometrics,2000,56(1):256-262.
    [132]郑英杰,姜庆五,赵根明,等.空间叠加技术分析气象条件在钉螺分布中的作用[J].中国公共卫生,1998,14(12):724-725.
    [133]汪天平,周晓农,Malone JB,等.地理信息系统(GIS)用于江苏、安徽和江西省血吸虫病流行预测的研究[J].中国血吸虫病防治杂志,2004,16(02):86-89.
    [134]崔道永,张志杰,倪映,等.年极端低气温在湖北钉螺分布中的敏感性分析[J].中国血吸虫病防治杂志,2007,19(4):289-292.
    [135]张志杰,彭文祥,庄建林,等.湖北钉螺分布与年极端低气温的关系分析[J].中国血吸虫病防治杂志,2005(5):341-343.
    [136]Gong P, Xu B, Liang S. Remote sensing and geographic information systems in the spatial temporal dynamics modeling of infectious diseases[J]. Sci China C Life Sci,2006,49(6):573-582.
    [137]Simoonga C, Utzinger J, Brooker S, et al. Remote sensing, geographical information system and spatial analysis for schistosomiasis epidemiology and ecology in Africa[J]. Parasitology,2009,136(13):1683-1693.
    [138]Martins-Bede FT, Dutra LV, Freitas CC, et al. Schistosomiasis risk mapping in the state of Minas Gerais, Brazil, using a decision tree approach, remote sensing data and sociological indicators[J]. Mem Inst Oswaldo Cruz,2010, 105(4):541-548.
    [139]Haque U, Hashizume M, Glass GE, et al. The role of climate variability in the spread of malaria in Bangladeshi highlands[J]. PLoS One,2010,5(12): e14341.
    [140]Zelazowski P, Malhi Y, Huntingford C, et al. Changes in the potential distribution of humid tropical forests on a warmer planet[J]. Philos Transact A Math Phys Eng Sci,2011,369(1934):137-160.
    [141]王济川,谢海义,姜宝法.多层统计分析模型—方法与应用[M].北京:高等教育出版社,2008
    [142]Muller HP, Stadermann S. Multivariate multilevel models for repeated measures in the study of smoking effects on the association between plaque and gingival bleeding[J]. Clin Oral Investig,2006,10(4):311-316.
    [143]Lake ET. Multilevel models in health outcomes research. Part Ⅱ:statistical and analytic issues[J]. Appl Nurs Res,2006,19(2):113-115.
    [144]Langford IH, Leyland AH, Rasbash J, et al. Multilevel modelling of the geographical distributions of diseases[J]. J R Stat Soc Ser C Appl Stat,1999, 48(2):253-268.
    [145]Browne WJ, Steele F, Golalizadeh M, et al. The use of simple reparameterizations to improve the efficiency of Markov chain Monte Carlo estimation for multilevel models with applications to discrete time survival models[J]. J R Stat Soc Ser A Stat Soc,2009,172(3):579-598.
    [146]Yau KK. Multilevel models for survival analysis with random effects[J]. Biometrics,2001,57(1):96-102.
    [147]Kristjansson SD, Kircher JC, Webb AK. Multilevel models for repeated measures research designs in psychophysiology:an introduction to growth curve modeling[J]. Psychophysiology,2007,44(5):728-736.
    [148]Hedeker DR, Gibbons RD. Longitudinal data analysis[M]:John Wiley and Sons,2006.
    [149]Diggle P. Analysis of longitudinal data[M]. USA:Oxford University Press, 2002.
    [150]Marsh HW, Kong CK, Hau KT. Longitudinal multilevel models of the big-fish-little-pond effect on academic self-concept:counterbalancing contrast and reflected-glory effects in Hong Kong schools[J]. J Pers Soc Psychol,2000, 78(2):337-349.
    [151]Rekaya R, Gianola D, Weigel K, et al. Longitudinal random effects models for genetic analysis of binary data with application to mastitis in dairy cattle[J]. Genet Sel Evol,2003,35(5):457-468.
    [152]Bryk AS, Raudenbush SW. Hierarchical linear models:Applications and data analysis methods[M]:Sage Publications,2002.
    [153]Molenberghs G, Verbeke G. Models for discrete longitudinal data[M]: Springer Verlag,2005.
    [154]Marcogliese DJ. Implications of climate change for parasitism of animals in the aquatic environment[J]. Canadian Journal of Zoology,2001,79(8): 1331-1352.
    [155]Bavia ME, Hale LF, Malone JB, et al. Geographic information systems and the environmental risk of schistosomiasis in Bahia, Brazil[J]. Am J Trop Med Hyg, 1999,60(4):566-572.
    [156]何战英,林丹丹,朱蓉,等.地表温度在监测湖区钉螺孳生地中的作用[J].中华预防医学杂志,2006,40(4):234-238.
    [157]Stensgaard A, J Rgensen A, Kabatereine NB, et al. Modeling the distribution of Schistosoma mansoni and host snails in Uganda using satellite sensor data and Geographical Information Systems[J]. Parassitologia,2005,47(1): 115-125.
    [158]Fuller T, Thomassen HA, Mulembakani PM, et al. Using Remote Sensing to Map the Risk of Human Monkeypox Virus in the Congo Basin[J]. Ecohealth, 2010, Epub ahead of print.
    [159]Gomez JA, Alonso CA, Garcia AA. Remote sensing as a tool for monitoring water quality parameters for Mediterranean Lakes of European Union water framework directive (WFD) and as a system of surveillance of cyanobacterial harmful algae blooms (SCyanoHABs)[J]. Environ Monit Assess,2011, Epub ahead of print.
    [160]Al-Mashreki MH, Akhir JB, Abd RS, et al. Remote sensing and GIS application for assessment of land suitability potential for agriculture in the IBB governorate, the Republic of Yemen[J]. Pak J Biol Sci,2010,13(23): 1116-1128.
    [161]Martins-Bede FT, Dutra LV, Freitas CC, et al. Schistosomiasis risk mapping in the state of Minas Gerais, Brazil, using a decision tree approach, remote sensing data and sociological indicators[J]. Mem Inst Oswaldo Cruz,2010, 105(4):541-548.
    [162]Mikhelson I, Bakhtiari S, Elmer T, et al. Remote Sensing of Heart Rate and Patterns of Respiration on a Stationary Subject Using 94 GHz Millimeter Wave Interferometry[J]. IEEE Trans Biomed Eng,2011, Epub ahead of print.
    [163]Kim MK, Daigle JJ. Detecting vegetation cover change on the summit of Cadillac Mountain using multi-temporal remote sensing datasets:1979,2001, and 2007[J]. Environ Monit Assess,2010, Epub ahead of print.
    [164]Rinaldi L, Musella V, Biggeri A, et al. New insights into the application of geographical information systems and remote sensing in veterinary parasitology[J]. Geospat Health,2006,1(1):33-47.
    [165]Hay SI. An overview of remote sensing and geodesy for epidemiology and public health application[J]. Adv Parasitol,2000,47:1-35.
    [166]Http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/MODIS[EB/ OL].
    [167]Https://lpdaac.usgs.gov/lpdaac/products/modis_products_table/vegetation_in dices/16_day_13_global_250m/modl3ql[EB/OL].
    [168]Https://lpdaac.usgs.gov/lpdaac/products/modis_products_table/land_surface_temperature_emissivity/8_day_13_global_l km/mod11a2[EB/OL].
    [169]中国气象数据共享服务网http://cdc.cma.gov.cn[EB/OL].
    [170]Eddy SR. What is Bayesian statistics?[J]. Nat Biotechnol,2004,22(9): 1177-1178.
    [171]Raso G, Li Y, Zhao Z, et al. Spatial distribution of human Schistosoma japonicum infections in the Dongting Lake Region, China[J]. PLoS One,2009, 4(9):e6947.
    [172]Berry DA. Bayesian statistics[J]. Med Decis Making,2006,26(5):429-430.
    [173]Yoccoz NG. Hierarchical Modelling for the Environmental Sciences[J]. Ecoscience,2007,14(3):399.
    [174]Liu P, Yang HT, Qiang LY, et al. Evaluation of 30 commercial assays for the detection of antibodies to HIV in China using classical and Bayesian statistics[J]. J Virol Methods,2010,170(1-2):73-79.
    [175]饶克勤.卫生统计方法与应用进展[M].北京:人民卫生出版社,2008.
    [176]Hu J, Johnson VE. Bayesian model selection using test statistics[J]. J Roy Stat Soc B,2009,71(1):143-158.
    [177]Liu P, Shi Q, Daume HI, et al. A Bayesian statistics approach to multiscale coarse graining[J]. J Chem Phys,2008,129(21):1-11.
    [178]Dunson DB, Stanford JB. Bayesian inferences on predictors of conception probabilities[J]. Biometrics,2005,61(1):126-133.
    [179]Durr PA, Tait N. Lawson AB. Bayesian hierarchical modelling to enhance the epidemiological value of abattoir surveys for bovine fasciolosis[J]. Prev Vet Med,2005,71(3-4):157-172.
    [180]Knorr-Held L. Bayesian modelling of inseparable space-time variation in disease risk[J]. Stat Med,2000,19(17-18):2555-2567.
    [181]Lawson AB, Browne WJ, Rodeiro CLV, et al. Disease mapping with WinBUGS and MLwiN[M]:Wiley Online Library,2003
    [182]Song HR, Lawson A. Space-time Bayesian survival modeling of chronic wasting disease in deer[J]. Prev Vet Med,2009,91(1):46-54.
    [183]Thomas A, Best N, Lunn D, et al. GeoBUGS user manual[M].2004
    [184]Manda SO, Feltbower RG, Gilthorpe MS. Investigating spatio-temporal similarities in the epidemiology of childhood leukaemia and diabetes[J]. Eur J Epidemiol,2009,24(12):743-752.
    [185]Richardson S, Abellan JJ, Best N. Bayesian spatio-temporal analysis of joint patterns of male and female lung cancer risks in Yorkshire (UK)[J]. Stat Methods Med Res,2006,15(4):385-407.
    [186]Brooks SP, Gelman A. General methods for monitoring convergence of iterative simulations[J]. J Comput Graph Stat,1998,7(4):434-455.
    [187]Huang H, Abdel-Aty M. Multilevel data and Bayesian analysis in traffic safety[J]. Accident Analysis & Prevention,2010,42(6):1556-1565.
    [188]Spiegelhalter DJ, Best NG, Carlin BP, et al. Bayesian measures of model complexity and fit[J]. Journal of the Royal Statistical Society. Series B (Statistical Methodology),2002,64(4):583-639.
    [189]朱慧明,韩玉启.贝叶斯多元统计推断理论[M].北京:科学出版社,2006.
    [190]Greiner M, Gardner IA. Application of diagnostic tests in veterinary epidemiologic studies[J]. Prev Vet Med,2000,45(1-2):43-59.
    [191]Bello NM, Steibel JP, Tempelman RJ. Hierarchical Bayesian modeling of random and residual variance-covariance matrices in bivariate mixed effects models[J]. Biom J,2010,52(3):297-313.
    [192]Chagneau P, Mortier F, Picard N, et al. A Hierarchical Bayesian Model for Spatial Prediction of Multivariate Non-Gaussian Random Fields[J]. Biometrics, 2011,67(1):97-105.
    [193]Pennell ML, Whitmore GA, Ting LM. Bayesian random-effects threshold regression with application to survival data with nonproportional hazards[J]. Biostatistics,2010,11(1):111-126.
    [194]Ogle K. Hierarchical Bayesian statistics:merging experimental and modeling approaches in ecology[J]. Ecol Appl,2009,19(3):577-581.
    [195]Carabin H, Balolong E, Joseph L, et al. Estimating sensitivity and specificity of a faecal examination method for Schistosoma japonicum infection in cats, dogs, water buffaloes, pigs, and rats in Western Samar and Sorsogon Provinces, The Philippines[J]. Int J Parasitol,2005,35(14):1517-1524.
    [196]Miller RA. Computer-assisted diagnostic decision support:history, challenges, and possible paths forward[J]. Adv Health Sci Educ Theory Pract,2009, 14(Suppl 1):89-106.
    [197]Schurink CA, Lucas PJ, Hoepelman IM, et al. Computer-assisted decision support for the diagnosis and treatment of infectious diseases in intensive care units[J]. Lancet Infect Dis,2005,5(5):305-312.
    [198]Wang LD, Utzinger J, Zhou XN. Schistosomiasis control:experiences and lessons from China[J]. Lancet,2008,372(9652):1793-1795.
    [199]Gryseels B, Polman K, Clerinx J, et al. Human schistosomiasis[J]. Lancet, 2006,368(9541):1106-1118.
    [200]王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999.
    [201]Del RVV, Ancelet S, Abellan JJ, et al. A Bayesian hierarchical analysis to compare classical and atypical scrapie surveillance data; Wales 2002-2006[J]. Prev Vet Med,2011,98(1):29-38.
    [202]Weiss RE. Bayesian methods for data analysis[J]. Am J Ophthalmol,2010, 149(2):187-188.
    [203]Kruschke JK. What to believe:Bayesian methods for data analysis[J]. Trends Cogn Sci,2010,14(7):293-300.
    [204]Havens TC, Roggemann MC, Schulz TJ, et al. Measurement and data processing approach for detecting anisotropic spatial statistics of the turbulence-induced index of refraction fluctuations in the upper atmosphere[J]. Appl Opt,2002,41(15):2800-2808.
    [205]Perez AM, Ward MP, Torres P, et al. Use of spatial statistics and monitoring data to identify clustering of bovine tuberculosis in Argentina[J]. Prev Vet Med,2002,56(1):63-74.
    [206]Jiang X, Cooper GF. A Bayesian spatio-temporal method for disease outbreak detection[J]. J Am Med Inform Assoc,2010,17(4):462-471.
    [207]Braunholtz D, Lilford R. Bayesian statistics may inform public policy better than significant odds ratios[J]. Brit Med J,1997,314(7088):1202.
    [208]Austin PC, Brunner LJ, Hux JE. Bayeswatch:an overview of Bayesian statistics[J]. J Eval Clin Pract,2002,8(2):277-286.
    [209]Pfeiffer D, Stevenson M, Robinson TPet al. Spatial analysis in epidemiology[M]:Oxford University Press, USA,2008.
    [210]Basanez MG, Marshall C, Carabin N, et al. Bayesian statistics for parasitologists[J]. Trends Parasitol,2004,20(2):85-91.
    [211]O'Neill PD. A tutorial introduction to Bayesian inference for stochastic epidemic models using Markov chain Monte Carlo methods[J]. Math Biosci, 2002,180(Sp. Iss. SI):103-114.
    [212]Gosoniu L, Vounatsou P, Sogoba N, et al. Bayesian modelling of geostatistical malaria risk data[J]. Geospat Health,2006,1(1):127-139.
    [213]Riedel N, Vounatsou P, Miller JM, et al. Geographical patterns and predictors of malaria risk in Zambia:Bayesian geostatistical modelling of the 2006 Zambia national malaria indicator survey (ZMIS)[J]. Malar J,2010,9(1):1-13.
    [214]Raso G, Vounatsou P, Gosoniu L, et al. Risk factors and spatial patterns of hookworm infection among schoolchildren in a rural area of western Cote d'Ivoire[J]. Int J Parasitol,2006,36(2):201-210.
    [215]Clements AC, Lwambo NJ, Blair L, et al. Bayesian spatial analysis and disease mapping:tools to enhance planning and implementation of a schistosomiasis control programme in Tanzania[J]. Trop Med Int Health,2006, 11(4):490-503.
    [216]Ocana-Riola R, Mayoral-Cortes JM. Spatio-temporal trends of mortality in small areas of Southern Spain[J]. Bmc Public Health,2010,10(26):1-12.
    [217]Tsai PJ, Lin ML, Chu CM, et al. Spatial autocorrelation analysis of health care hotspots in Taiwan in 2006[J]. Bmc Public Health,2009,9(464):1-13.
    [218]Paolino L, Sebillo M, Cringoli G. Geographical Information Systems and on-line GIServices for health data sharing and management[J]. Parassitologia, 2005,47(1):171-175.
    [219]Brooker S, Utzinger J. Integrated disease mapping in a polyparasitic world[J]. Geospat Health,2007,1(2):141-146.
    [220]Nykiforuk CI, Flaman LM. Geographic information systems (GIS) for Health Promotion and Public Health:a review[J]. Health Promot Pract,2011,12(1): 63-73
    [221]徐飚.流行病学原理[M].上海:复旦大学出版社,2007.
    [1]Barbujani G. Geographic patterns:how to identify them and why[J]. Hum Biol, 2000,72(1):133-153.
    [2]Getis A, Ord K. The Analysis of Spatial Association by Use of Distance Statistics [J]. Geographical Analysis,1992,24(3):189-206.
    [3]张松林,张昆.全局空间自相关Moran指数和G系数对比研究[J].中山大学学报(自然科学版),2007,46(4):93-97.
    [4]张松林,张昆.空间自相关局部指标Moran指数和G系数研究[J].大地测量与地球动力学,2007,27(03):31-34.
    [5]魏晓峰,吴健平.基于ArcGIS的空间自相关分析模块的开发与应用[J].测绘与空间地理信息,2005,28(6):77-80.
    [6]陈彦光.基于Moran统计量的空间自相关理论发展和方法改进[J].地理研究,2009,28(06):1449-1463.
    [7]陈雅淑.局部空间自相关指标的适用性研究[D]:华东师范大学,2009.
    [8]刘旭华,王劲峰.空间权重矩阵的生成方法分析与实验[J].地球信息科学,2002,4(2):38-44.
    [9]潘海燕,程朋根,肖根如,等.基于ArcObjects的空间权重矩阵的建立与实现[M],2007
    [10]徐彬.空间权重矩阵对Moran's I指数影响的模拟分析[D]:南京师范大学,2007.
    [11]Anselin L. Exploring Spatial Data with GeoDaTM[M],2004.
    [12]ESRI. ArcGIS Desktop Help[M],2009.
    [13]王红亮,胡伟平,吴驰.空间权重矩阵对空间自相关的影响分析——以湖南省城乡收入差距为例[J].华南师范大学学报(自然科学版)2010(1):110-115.
    [14]Deknegt HJ, Vanlangevelde F, Coughenour MB, et al. Spatial autocorrelation and the scaling of species-environment relationships[J]. Ecology,2010, 91(8):2455-2465.
    [15]Grubesic TH. Efficiency in broadband service provision:A spatial analysis[J]. Telecommun Policy,2010,34(3):117-131.
    [16]Tempi M, Filzmoser P, Reimann C. Cluster analysis applied to regional geochemical data:Problems and possibilities[J]. Appl Geochem,2008,23(8): 2198-2213.
    [17]Theodoridis S, Koutroumbas K. Clustering:Basic Concepts [M]:Academic Press,2006.
    [18]Deza E, Deza M. Distances and Similarities in Data Analysis [M]:Elsevier, 2006:217-229.
    [19]Wartenberg D, Uchrin C, Coogan P. Estimating exposure using kriging:a simulation study[J]. Environ Health Perspect,1991,94:75-82.
    [20]戚晓鹏,周脉耕,胡以松,等.应用地理信息系统探测消化道癌症死亡率空间聚集性[J].地理研究,2010,29(1):181-187.
    [21]Zimmerman DL, Li J, Fang X. Spatial autocorrelation among automated geocoding errors and its effects on testing for disease clustering[J]. Stat Med, 2010,19:Epub ahead of print.
    [22]Tsai PJ, Lin ML, Chu CM, et al. Spatial autocorrelation analysis of health care hotspots in Taiwan in 2006[J]. BMC Public Health,2009,9:464.
    [23]Sokal RR, Thomson BA. Population structure inferred by local spatial autocorrelation:an example from an Amerindian tribal population[J]. Am J Phys Anthropol,2006,129(1):121-131.
    [24]Flahaut B, Mouchart M, San ME, et al. The local spatial autocorrelation and the kernel method for identifying black zones. A comparative approach[J]. Accid Anal Prev,2003,35(6):991-1004.
    [25]王劲峰,孙英君,韩卫国,等.空间分析引论[J].地理信息世界,2004.02(5):6-10.
    [26]Dearaujo EM, Costa MC, Deoliveira NF, et al. Spatial distribution of mortality by homicide and social inequalities according to race/skin color in an intra-urban Brazilian space[J]. Rev Bras Epidemiol,2010,13(4):549-560.
    [27]Ord JK, Getis A. Testing for local spatial autocorrelation in the presence of global autocorrelation[J]. Journal of Regional Science,2001,41(3):411-432.
    [28]Maciel EL, Pan W, Dietze R, et al. Spatial patterns of pulmonary tuberculosis incidence and their relationship to socio-economic status in Vitoria, Brazil[J]. Int J Tuberc Lung Dis,2010,14(11):1395-1402.
    [29]Glick B. The spatial autocorrelation of cancer mortality[J]. Soc Sci Med Med Geogr,1979,13 D(2):123-130.
    [30]Sokal RR, Thomson BA. Population structure inferred by local spatial autocorrelation:an example from an Amerindian tribal population[J]. Am J Phys Anthropol,2006,129(1):121-131.
    [31]Schuurman N, Peters PA, Oliver LN. Are obesity and physical activity clustered? A spatial analysis linked to residential density[J]. Obesity (Silver Spring),2009,17(12):2202-2209.
    [32]Demirel R, Erdogan S. Determination of high risk regions of cutaneous leishmaniasis in Turkey using spatial analysis[J]. Turkiye Parazitol Derg,2009, 33(1):8-14.
    [33]Araujo EM, Costa MC, Oliveira NF, et al. Spatial distribution of mortality by homicide and social inequalities according to race/skin color in an intra-urban Brazilian space[J]. Rev Bras Epidemiol,2010,13(4):549-560.
    [34]Queiroz JW, Dias GH, Nobre ML, et al. Geographic Information Systems and Applied Spatial Statistics Are Efficient Tools to Study Hansen's Disease (Leprosy) and to Determine Areas of Greater Risk of Disease[J]. The American Journal of Tropical Medicine and Hygiene,2010,82(2):306-314.
    [35]Erdogan S. Explorative spatial analysis of traffic accident statistics and road mortality among the provinces of Turkey[J]. J Safety Res,2009,40(5): 341-351.
    [36]Beaudeau F, Bjorkman C, Alenius S, et al. Spatial patterns of Bovine Corona Virus and Bovine Respiratory Syncytial Virus in the Swedish beef cattle population[J]. Acta Vet Scand,2010,52(1):33.
    [37]Loobuyck M, Frossling J, Lindberg A, et al. Seroprevalence and spatial distribution of Neospora caninum in a population of beef cattle[J]. Prev Vet Med,2009,92(1-2):116-122.
    [38]Hinman SE, Blackburn JK, Curtis A. Spatial and temporal structure of typhoid outbreaks in Washington, D.C.,1906-1909:evaluating local clustering with the Gi* statistic[J]. Int J Health Geogr,2006,5:13.
    [39]Rainey JJ, Omenah D, Sumba PO, et al. Spatial clustering of endemic Burkitt's lymphoma in high-risk regions of Kenya[J]. Int J Cancer,2007,120(1): 121-127.
    [40]Chowell G, Rivas AL, Smith SD, et al. Identification of case clusters and counties with high infective connectivity in the 2001 epidemic of foot-and-mouth disease in Uruguay[J]. Am J Vet Res,2006,67(1):102-113.
    [41]Alvarez G, Lara F, Harlow SD, et al. Infant mortality and urban marginalization:a spatial analysis of their relationship in a medium-sized city in northwest Mexico[J]. Rev Panam Salud Publica,2009,26(1):31-38.
    [42]Neto OL, Barros MB, Martelli CM, et al. Differential patterns of neonatal and post-neonatal mortality rates in Goiania, Brazil,1992-1996:use of spatial analysis to identify high-risk areas[J]. Cad Saude Publica,2001,17(5): 1241-1250.
    [43]de Pina MF, Alves SM, Barbosa M, et al. Hip fractures cluster in space:an epidemiological analysis in Portugal[J]. Osteoporos Int,2008,19(12): 1797-1804.
    [44]Sabel CE, Wilson JG, Kingham S, et al. Spatial implications of covariate adjustment on patterns of risk:respiratory hospital admissions in Christchurch, New Zealand[J]. Soc Sci Med,2007,65(1):43-59.
    [45]Portnov BA, Dubnov J, Barchana M. On ecological fallacy, assessment errors stemming from misguided variable selection, and the effect of aggregation on the outcome of epidemiological study[J]. J Expo Sci Environ Epidemiol,2007, 17(1):106-121.
    [46]Chiang CT, Hwang YH, Su CC, et al. Elucidating the underlying causes of oral cancer through spatial clustering in high-risk areas of Taiwan with a distinct gender ratio of incidence[J]. Geospat Health,2010,4(2):230-242.
    [47]Mitra R, Buliung RN, Faulkner GE. Spatial clustering and the temporal mobility of walking school trips in the Greater Toronto Area, Canada[J]. Health Place,2010,16(4):646-655.
    [48]Tsai PJ, Lin ML, Chu CM, et al. Spatial autocorrelation analysis of health care hotspots in Taiwan in 2006[J]. Bmc Public Health,2009,9:464-476.
    [49]沈卓之,冯子建,马家奇,等.四川省2004年肺结核流行特征及空间聚集性分析[J].现代预防医学,2008,35(008):1412-1413.
    [50]巴雅尔,姚忠友,张丽娟,等.低山丘陵区达乌尔黄鼠的空间聚集性及与动物鼠疫的关系[J].中国地方病防治杂志,2004(03):134.
    [51]裴小琴,冯子健,李晓松,等.2004-2005年内蒙古自治区布鲁氏菌病发病的空间自相关分析[J].中华疾病控制杂志,2009,13(6):654-658.
    [52]陈炳为,许碧云,李德云,等.应用区域型空间自相关系数分析疾病的聚集性[J].中国公共卫生,2006,22(9):1146-1147.
    [53]唐咸艳,黄天王,朱小东,等.应用空间自相关分析研究广西壮族自治区肝癌的空间异质性分布特征[J].中华流行病学杂志,2009,30(2):167-170.
    [54]郭俊涛,周艺彪,张志杰,等.四川光壳钉螺微卫星遗传变异的小尺度空间自相关分析[J].中华流行病学杂志,2009,30(5):497-501.
    [55]张志杰,彭文祥,周艺彪,等.湖沼地区湖北钉螺小尺度分布的空间自相 关分析[J].中国血吸虫病防治杂志,2007,19(06):418-423.
    [56]赵飞,朱蓉,张丽娟,等.中国湖区五省血吸虫病聚集区域地理信息系统综合探测分析[J].中华流行病学杂志,2011,31(11):1272-1275.
    [57]杨国静,周晓农,汪天平,等.安徽、江西及江苏3省血吸虫病患者与钉螺分布的空间自相关分析[J].中国寄生虫学与寄生虫病杂志,2002,20(1):6-9.
    [58]蒋敏,李晓松,冯子健,等.四川省HIV/AIDS空间自相关分析[J].现代预防医学,2008,35(22):4329-4331.
    [59]陆青云,殷勇.基于GIS的南通地区食管癌死亡空间分布研究[J].交通医学,2010,24(1):101-102.
    [60]颜锋华,金亚秋,Yan FH,等.尺度分布的Getis统计对遥感图像特征参量空间自相关性的研究[J].中国图象图形学报,2006,11(2):191-196.
    [61]赵增炜,王文昌,张彦琦,等.”十五”期间中国地区人均卫生消费的空间分析[J].重庆医学,2008,37(17):1950-1952.
    [62]徐丽华,岳文泽,Xu LH,等.上海市人口分布格局动态变化的空间统计研究[J].长江流域资源与环境,2009,18(3):222-228.
    [63]宋同青,彭晚霞,曾馥平,等.喀斯特木论自然保护区旱季土壤水分的空间异质性[J].应用生态学报,2009,20(1):98-104.
    [64]Trisalyn N, Barry B, Michael AW. Techniques for accuracy assessment of tree locations extracted from remotely sensed imagery[J]. J Environ Manage,2005, 74(3):265-271.
    [65]吕安民,李成名,林宗坚,等.中国省级人口增长率及其空间关联分析[J].地理学报,2002,57(2):143-150.
    [66]吴拥政.区域经济增长空间关联性的纵向变化与横向差异实证分析——基于省级、地级数据和空间统计Moran's I指数方法[J].经济研究导刊,2010(4):87-89.
    [67]武继磊,王劲峰,郑晓瑛,等.空间数据分析技术在公共卫生领域的应用[J].地理科学进展,2003,22(3):219-227.
    [68]Anselin L, Getis A. Spatial statistical analysis and geographic information systems[J]. the annals of regional science,1992,26(1):19-33.
    [69]Rushton G, Elmes G, McMaster R. Considerations for improving geographic information system research in public health[J]. URISA Journal,2000,12(2): 31-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700