直接制造翼子板模具关键技术的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子熔积、脉冲MIG焊熔积成形与铣削复合快速制造是一种以电弧为热源的创行创质并行复合制造技术,简称为弧焊直接成形快速制造系统,其为金属零件和模具提供了一种低成本高质量的快速制造途径,通过此制造系统可以直接制造翼子板模具。快速制造翼子板模具技术中,凸凹模的设计至关重要,需要用数值模拟的技术分析模具设计的合理性,不断的改正优化工艺参数,从而设计出成形效果较好的模具。为便于在电弧快速成形制造系统中加工,就必须将凸凹模的模型进行简化,对STL实体模型进行检验与修复,只有这样才可以得到熔积成形的轨迹,为后续翼子板模具的直接制造做好准备。本文以翼子板模具为例,研究了翼子板成形仿真和快速制造翼子板模具的技术,以期实现熔积成形与表面精整铣削复合一体化高效率直接制造。本文主要研究内容如下:
     1.基于快速制造模具技术,系统分析了现阶段的快速制造模具技术,阐述了快速制模的关键技术和特点,为弧焊直接成形快速制造系统提供理论指导
     2.介绍了弧焊直接成形快速制造工艺相关基础知识,分析了等离子熔积成形和脉冲MIG焊成形原理,深入研究了电弧快速成形制造系统的结构、设备、原理、成形过程及特性。
     3.以翼子板为实例,对其成形过程进行了模拟,研究了成形模拟流程和影响成形模拟结果的关键因素,分析了翼子板成形模拟结果
     4.详细阐述了翼子板模具快速制造技术基础,对翼子板模型的实体重建和STL文件检验修复,最后根据修复后的STL文件得到熔积成形路径。
     5.为了验证上述研究的实用性,本文进行了基于弧焊直接成形快速制造系统制造翼子板模具的基本路径研究。结果表明,翼子板模具熔积成形路径完全符合模拟加工路径和制造加工工艺,为后续制造翼子板模具提供了基础。
Arc Deposition Manufacturing is one type of shape-creative and mass-creative parallel rapid manufacturing technology using arc as thermal resource,which includes Plasma Deposition Manufacturing and Pulsed MIG welding. This technology provides a low-cost rapid manufacturing of high-quality way. The convex and concave mold designing is very essential in the rapid manufacturing technology for fender mold. The technical analysis of the numerical simulation can be used to determine the rationality of die design, optimize the process parameters of the correction, thereby forming a better design of the mold. In order to meet the rapid prototyping manufacturing system, the model of convex and concave mold must be simplifies and the STL should be detected and repaired. Only in this way the system can form deposition trajectory, preparing for the follow-up processing. Therefore, this paper has researched on rapid fender mold manufacturing technology, to achieving volume and surface finish forming integrated manufacturing. Key elements include:
     1. Based on the rapid tooling manufacturing technology, this paper has analyzed the rapid tooling manufacturing technology at this stage, studied the key to rapid tooling studied the key to rapid tooling technology and the characteristics, provided theoretical guidance for arc deposition manufacturing system.
     2. This paper has introduced the basic knowledge of the rapid tooling manufacturing technology, analyzed the forming principle of Plasma Deposition Manufacturing and Pulsed MIG welding, and studied the structure, equipment, principles, and characteristics of the forming process of the rapid tooling manufacturing system.
     3. The major issues and factors of the forming simulation results were analyzed in-depth, the forming process simulation of the fender metal sheet was simulated, and the simulation processes and the fender forming simulation results were studies.
     4. The basic knowledge about the rapid fender mold manufacturing technology was studied in detail, the molder of fender mold was reconstructed and the STL files were repaired.
     5. To validate the utility of above research, a double-twist leave has been made by Hybrid Plasma Deposition & Milling. The results show that the fender forming tool path is in full compliance with the analog processing path and manufacturing process technology, and provide the foundation for follow-up fender mold manufacturing.
引文
[1]范君艳,李卫平,苏海,徐人平.快速模具制造技术的应用研究[J].昆明理工大学学报(自然科学版), 2001,(04).
    [2]桑田.快速制模技术[J].国外塑料, 2006,(04).
    [3]颜永年,魏大忠,单忠德.快速模具制造[A].全国生产工程第九届年会暨第四届青年科技工作者学术会议论文集(二)[C], 2004.
    [4]颜永年,张人佶.快速成形技术国内外发展趋势.电加工与模具, 2001, 1: 5~9.
    [5]张海鸥,徐继彭,王桂兰.等离子熔积直接快速制造金属原型技术.中国机械工程, 2003, 12: 1077~1079.
    [6] Lewis G K, Nemec R B, Milewski J O, et al. Directed light fabrication. Proceedings of the ICALEO’94, Laser Institute of America, Orlando, Florida, 1994:17.
    [7] D J Thoma, G K Lewis, R B Nemec. Solidification behavior during directed light fabrication. In: J. Singh, editors. Beam Processing of Advanced Materials. Cleveland, OH: ASM, 1995.
    [8] Thoma D J, Lewis G K, Schwartz E M, et al. Near net shape processing of metal powders using directed light fabrication. Advanced Materials and Technology for the 21st Century, J Inst Metals, 1995 Fall Annual Meeting (117th) Hawaii, 1995:13~15.
    [9]李发致.模具先进制造技术.机械工业出版社.2003.
    [10] Zhang Haiou、Xu Jipeng、Wang Guilan.Fundamental study on plasma deposition manufacturing [ J ]. Surface and Coating Technology. 2003 , 171(1-3) :112 - 118 [2] .
    [11]朱东波,王伊卿,李涤尘,卢秉恒.板料成形模具快速制造技术研究.中国机械工程.2002, 13(6):487-491.
    [12]黄海量,丁玉成,卢秉恒.远程快速成型制造与服务系统构筑的研究.西安交通大学学报. 2000,34(7):52-57.
    [13]娄建新.基于电弧喷涂方法的汽车模具快速制造技术[D].沈阳工业大学,2006.
    [14]李晓蓓.基于快速成形技术的石膏型快速模具制造技术[D].合肥工业大学, 2004 .
    [15]陈正江.电弧熔射成形法快速制造模具技术研究[D].大连理工大学, 2006 .
    [16] Amon C.H., Beuth J.L., Weiss L.E. Shape deposition manufacturing with microcasting: Processing, thermal and mechanical issues. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 1998, v120(3): 656-665.
    [17] Sreenathbabu Akula, K.P. Karunakaran. Hybrid adaptive layer manufacturing: An Intelligent art of direct metal rapid tooling process. Robotics and Computer-Integrated Manufacturing 22 (2006) : 113-123.
    [18] Yong-Ak Song, Sehyung Park. Experimental investigations into rapid prototyping of compositesby novel hybrid deposition process. Journal of Materials Processing Technology 171 (2006): 35-40.
    [19] Yong-Ak Song, Sehyung Park, Doosun Choi, et al. 3D welding and milling: Part I–a direct approach for freeform fabrication of metallic prototypes. International Journal of Machine Tools & Manufacture 45 (2005) :1057-1062.
    [20] Yong-Ak Song, Sehyung Park, Soo-Won Chae. 3D welding and milling: part II—optimization of the 3D welding process using an experimental design approach. International Journal of Machine Tools & Manufacture 45 (2005):1063-1069.
    [21]张海鸥,熊新红,王桂兰,陈竞.等离子熔积成形与铣削光整复合直接制造金属零件技术.中国机械工程,2005,V20:1863~1866.
    [22]熊新红,张海鸥,王桂兰.HPDM直接制造金属零件的铣削表面光整技术研究.华中科技大学学报,2007.
    [23] Xinhong Xiong, Haiou Zhang,Guilan Wang. Metal direct prototyping by using hybrid plasma deposition and milling. Journal of Materials Processing Technology.2008.
    [24]熊新红,张海鸥,王桂兰. HPDM直接制造金属零件的表面光整技术[J].华中科技大学学报(自然科学版), 2007,(10) .
    [25]张海鸥,王桂兰.直接快速制造模具与零件的方法及其装置[P].中国专利:CN1298780, 2001-06-13.
    [26]李仁杰.基于快速成型技术的快速模具制造技术[D].大连理工大学,2005.
    [27]张昌明.基于RP的快速模具制造技术研究[D].太原理工大学,2006.
    [28]张海鸥.金属模具快速制造技术[J].电加工与模具, 2002,(02).
    [29]韩鹏彪,张双杰,毛浩恩等.基于即技术的模具快速制造.河北工业科技.2003,20(2):l一3.
    [30]胡晓冬,彭伟,赵万华,卢秉恒.直接模具制造技术的发展动态[J].航空制造技术, 2005,(10).
    [31]张永忠,石力开,章萍芝,徐骏.基于金属粉末的激光快速成型技术新进展[J].稀有金属材料与工程, 2000,(06).
    [32] http://www.aerometcorp.com.
    [33] http://bbs.designnews.com.cn/ShowTopic.aspx?id=26170.
    [34]范君艳,李卫平,苏海,徐人平.快速模具制造技术的应用研究[J].昆明理工大学学报(自然科学版),2001,(04).
    [35]王广春,赵国群,杨艳.快速成型与快速模具制造技术[J].新技术新工艺, 2000,(09).
    [36]邹海平,张海鸥,王桂兰.基于等离子弧焊的金属零件直接制造系统设计[J].电焊机,2007,(9).
    [37]张人佶,林峰,颜永年.我国快速模具(RT)技术的发展与展望[J].金属加工(冷加工),2008,(8).
    [38]张明超,丘宏扬,谢嘉生.快速制造模具技术[J].机电工程技术, 2001,(03).
    [39]基于快速成型技术的快速模具制造[J].航空制造技术, 2007,(02).
    [40]蔡咏梅.基于快速成型与逆向工程技术的快速模具制造[D].新疆大学, 2005 .
    [41]赵继勋,朱胜,孟凡军,李超. MIG焊熔敷快速成形温度场数值模拟[J].焊接技术,2009,(1).
    [42]朱政强,张华,胡瑢华,徐健宁,付明丽.基于熔焊快速成型零件的组织性能[J].焊接技术,2008,(3).
    [43]邹海平,张海鸥,王桂兰.基于等离子弧焊的金属零件直接制造系统设计[J].电焊机,2007,(9).
    [44]甘洪岩.脉冲MIG焊控制系统的研究[D].沈阳工业大学,2006.
    [45]王飞.基于嵌入式的数字化MIG焊机[D].山东大学,2008.
    [46]余智明.等离子熔积铣削复合精确成形技术基础研究[D].华中科技大学,2007.
    [47]郭锟,张海鸥,王桂兰. PPDM集成制造系统的等离子熔积CAM系统[J]. CAD/CAM与制造业信息化,2003,(6).
    [48]闫江松,张海鸥,王桂兰,艾辉.等离子熔积直接制造容积式送粉系统设计[J].华中科技大学学报(自然科学版),2006,(11).
    [49]汪亮.等离子熔积直接成形金属原型表面激光光整关键技术[D].华中科技大学,2004.
    [50]吴红军.等离子熔积直接成形高温材料工艺及组织研究. [硕士学位论文].武汉:华中科技大学图书馆,2006.
    [51] Ojo OA, Richards NL, Chaturvedi MC. Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy. Scripta Materialia, 2004, 50(5): 641~646.
    [52]李廷忠,吴圣川.等离子熔积成形的热源输入数学模型.电焊机,2006,36(6):34~37.
    [53]熊新红.等离子熔积成形与铣削光整复合直接制造金属零件技术基础. [博士学位论文].武汉:华中科技大学图书馆,2007.
    [54]吴林.焊接手册(第一卷) [M ].北京:机械工业出版社, 1981. 132 - 201.
    [55]刘望兰,胡绳荪,尹玉环.电弧快速成形工艺的研究现状[J].焊接,2006,(7).
    [56]王荣忠.脉冲MIG焊数字化控制系统的研究[D].山东大学: ,2006.
    [57] Amin. Microcomputer control of synergic pulsed MIG welding. Metal Construction,1985(4): 216~221
    [58] Amin. Pulse Current Parameters for Arc Stability and Controlled Metal Transfer in Arc Welding. Metal Construction, 1983,9(5): 556~560
    [59]蔡道生,史玉升,陈功举,黄树槐. SLS快速成形系统扫描路径优化方法的研究.锻压机械. 2002.2
    [60]徐金波,董湘怀.汽车翼子板零件冲压成形过程模拟[J].华中科技大学学报(自然科学版),2003,(9).
    [61]王家昆,李琦,胡东勇,罗英,李再参.汽车覆盖件冲压成形的数值模拟[J].模具工业,2006,(2).
    [62]郝洪艳.基于Autoform的汽车覆盖件拉深成形数值模拟研究[J].模具工业,2009,(1).
    [63]董云海.汽车覆盖件冲压成形的数值模拟研究[D].南京工业大学,2006.
    [64]石磊,王永志,杨玉英.翼子板零件拉延成形的有限元分析[J].材料科学与工艺,2004,(2).
    [65]胡磊.基于UG的覆盖件冲压成形工艺设计的研究与软件开发[D].武汉理工大学,2006.
    [66]周杰,罗征志,李慧,阳德森.翼子板拉延模具型面优化设计及成形模拟[J].锻压技术,2005,(4).
    [67]于汇泳.汽车覆盖件成形过程有限元数值模拟技术研究及应用[D].新疆大学,2006.
    [68]桂娟.桑塔纳2000轿车前翼子板模具设计[J].模具工业,2003,(6).
    [69]刘世豪,王东方,唐绍华.基于Dynaform的汽车覆盖件冲压成形仿真研究与应用[J].电加工与模具,2008,(S1).
    [70]刘世豪,王东方,苏小平,徐练.基于Dynaform的汽车覆盖件冲压成形仿真的研究[J].新技术新工艺,2008,(2).
    [71]葛盛,傅戈雁,孙承峰,巩磊.基于Magics的激光快速成型三维CAD模型数据处理[J].新技术新工艺,2006,(4).
    [72]侯宝明,刘雪娜. STL实体模型的拓扑重建及其缺陷修复[J].计算机工程,2005,(3).
    [73]田宗军,李小林,黄因慧.快速成形系统中STL文件的缺陷与修复[J].电加工与模具, 1999,(02) .
    [74]李文龙,何韶君,魏莉,丁广峰.快速成型制造中STL文件缺陷检测与修复技术[J].大连民族学院学报, 2004,(05) .
    [75]王刘记.STL文件纠错及IGES文件转换为STL的算法研究[D].华中科技大学,2006.
    [76] S. McMains, Double sided layered manufacturing, Japan-USA Symposium on Flexible Automation, July 2002, Hiroshima, Japan: 269-272
    [77] R. Dwivedi, R. Kovacevic, Solid freeform fabrication based on laser-additive multi-axis deposition. Proceedings of the Solid Freeform Fabrication Symposium, Austin Texas, August 2003: 1-12.
    [78] R. Dwivedi, R. Kovacevic, Process planning for multi-directional laser-based direct metal deposition. Proceedings of the Institution of Mechanical Engineers, Journal of Mechanical Engineering Science C219 (2005): 695-707
    [79] R. Dwivedi, R. Kovacevic, An expert system for generation of machine inputs for laser-based multi-directional metal deposition, International Journal of Machine Tools & Manufacture, 46 (2006): 1811-1822
    [80] R. Dwivedi, S. Zekovic, R. Kovacevic, A novel approach to fabricate uni-directional and branching slender structures using laser-based direct metal deposition. International Journal of Machine Tools & Manufacture, 2006: 1-11
    [81] Amon C.H., Beuth J.L., Weiss L.E. Shape deposition manufacturing with microcasting: Processing, thermal and mechanical issues. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 1998, v120(3): 656-665.
    [82] Sreenathbabu Akula, K.P. Karunakaran. Hybrid adaptive layer manufacturing: An Intelligent art of direct metal rapid tooling process. Robotics and Computer-Integrated Manufacturing 22 (2006) : 113-123.
    [83] Yong-Ak Song, Sehyung Park. Experimental investigations into rapid prototyping of compositesby novel hybrid deposition process. Journal of Materials Processing Technology 171 (2006): 35-40.
    [84] Yong-Ak Song, Sehyung Park, Doosun Choi, et al. 3D welding and milling: Part I–a direct approach for freeform fabrication of metallic prototypes. International Journal of Machine Tools & Manufacture 45 (2005) :1057-1062
    [85] Yong-Ak Song, Sehyung Park, Soo-Won Chae. 3D welding and milling: part II—optimization of the 3D welding process using an experimental design approach. International Journal of Machine Tools & Manufacture 45 (2005):1063-1069

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700