扫描电化学显微镜电子控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扫描电化学显微镜(Scanning ElectroChemical Microscope,简称SECM)是一种新型的扫描探针显微镜,自1986年被提出后便得到了迅速的发展。它基于电化学原理工作,驱动非常小的探针在靠近样品处进行扫描,可测量微区内物质氧化或还原所给出的电化学电流,从而获得对应的微区电化学和相关信息,目前可达到的最高分辨率为100纳米。由于SECM具有化学灵敏性,不但可以研究导体和绝缘体表面的几何形貌,而且可以分辨不均匀电极表面的电化学活性,对材料进行微米级加工等。
     国外已经有商品化SECM仪器,但价格非常昂贵,而且不提供任何详细线路图,目前国内尚无生产此类仪器。本文主要研究SECM电子控制系统的两个关键部分:微位移驱动工作台和微电流检测仪,为自主研制这一新型仪器提供技术准备。
     本文选用压电陶瓷微位移器作为驱动SECM探针的微定位工作台,具有纳米级的高定位精度。压电陶瓷驱动电源是压电陶瓷微位移器的关键部件,国内外已有大量研究,多采用分立器件,电路复杂。本文在分析了压电陶瓷驱动电源的要求后,利用高精度高压运算放大器PA69设计了一种新的电压控制型驱动电源,提高了电路集成度,并补偿了输入失调电压。经实验证明该电源能满足SECM探针驱动中微定位的控制需要,具有精度高、电路简单、可靠性强的特点。
     SECM实验中需要同时控制两个工作电极的电位,且工作电极上产生的微电流信号极其微弱(一般在纳安级甚至更小)很难采集和识别。本文在现有的研究基础上,提出并设计了一种参考电极虚地的双恒电位仪,两个工作电极的电位控制电路完全对称,从而简化了电路设计,提高了电路的抗干扰性。在微电流检测上通过在反馈回路中串一个电阻器采集电流信号,并用仪表放大器AD620差动测量电阻两端的电压,实验证明该电路较好的满足了微电流信号的检测要求,克服了现有一些仪器灵敏度越高稳定性越差的弊端。
     SECM的仪器控制部分采用32位嵌入式ARM微控制器LPC2138实现,设计了16位的程控电压源来控制压电陶瓷驱动电源和双恒电位仪,16位的AD数据采集电路实现对微电流信号的采集。同时设计了一个基于CP2102的USB通信接口电路以实现和上位机的通信。软件上采用C语言作为编程语言实现了各个功能模块。
     最后,针对SECM的后续研究工作提出了进一步完善的建议,为今后的深入研究打下了良好的基础。
Scanning electrochemical microscope (SECM) is a new scanning probe microscope, which is proposed in 1986 and has a rapid development. According to electrochemical principle, SECM drives little tip close to sample, measures the electrochemical current which is produced by redox, and acquires the information about sample. The resolution of SECM is up to 100 nanometer. For SECM has chemical sensitivity, it is used not only to detect surface of conductor or nonconductor but also to distinguish electrochemical character of non-uniformility surface and to fabricate in micron.
    Presently commodity of SECM has been produced abroad, and it is very expensive. There isn't apparatus of SECM in China. The paper mainly designs the electronic control system of SECM, which includes power supply of piezoelectric ceramic and micro-current detection. The paper is to provide technical preparation for the research and design of SECM..
    SECM chooses piezoelectric ceramic as micro-positioning stage, which has a super-high resolution in nanometers. The power supply is the key components of piezoelectric ceramic actuators. There are a lot of researches about its power supply, most of which has a complex circuit. After analyzing demands of power supply, the paper designed a new power supply based on voltage-controlled with high voltage amplifier PA69. Thus the integration of circuit is improved, and input offset voltage is compensated. Test proves that the power supply can achieve demands of probe positioning of SECM, and power supply has high precision, simply circuit, and high reliability.
    There are two work electrodes in cell of SECM. The current signal of work electrode is so weak in nanoampere that it is difficult to be distinguished from the noise. The paper proposes a biopotentiostat with reference electrode of virtual ground. The voltage of two work electrode is controlled dependently by a complete symmetry circuit, which makes design simply and improves anti-jamming. On micro-current detecting, the paper collects signals by a feedback resistor, and amplifies the voltage on resistor by an instrument amplifier AD620. Test proves that the circuit can detect micro-current very well, and overcome disadvantages of some instruments.
    The control part is designed based on the embedded, 32 bit RISC microcontroller ARM LPC2138. Design a D/A circuit to control power supply of piezoelectric ceramic and Biopotentiostat, a A/D circuit to sample micro-current. Also design an USB circuit of CP2102 to communicate with PC. In software programming , the paper selects C as programming language to realize each functions.
    In the end, some advice is put forward to improve the performance of SECM, which provides favorable foundation for future research.
引文
[1] 夏和生,王琪.纳米技术进展[J].高分子材料科学与工程,2001,17(04):1-6
    [2] 白春礼.纳米科技及其发展前景[M].中国2001年科学发展报告,2001
    [3] 章效锋.清晰的纳米世界—显微镜终极目标的千年追求[M].北京:清华大学出版社,2005
    [4] 姚琲,叶声华,胡小唐.扫描探针显微镜[J].天津大学学报,1999,29(05):763-770
    [5] 白春礼.扫描隧道显微术及其应用[M].上海:上海科学技术出版社,1992
    [6] 赵政,丁建宁,许路宁.扫描探针显微镜的研究[J].机械制造,2005,43(486):34-37
    [7] 毛秉伟,任斌.扫描电化学显微技术[J]化学通报,1995,(03):13-17
    [8] 邵元华.扫描电化学显微镜及其最新进展[J]分析化学,1999,27(11):1348-1355
    [9] Allen J. Bard, Fu-Ren F. Fan, Juhyoun Kwak, and Ovadia Lev. Scanning Electrochemical Microscopy: Introduction and Principles. Analytical Chemistry, 1989, 61, 132-138
    [10] Michael V. Mirkin, Benjamin R. Horrocks. Electroanalytical measurements using the scanning electrochemical microscope. Analytica Chimica Acta 2000, 406 (2): 119-146
    [11] 阿伦.J.巴德,拉里.R.福克纳著.邵元华,朱果逸,重献堆,张柏林译.电化学方法原理和应用[M].北京:化学工业出版社,2005
    [12] 万立骏,王琛,白春礼.电化学扫描探针显微术的特点及其发展趋势.世界科技研究与发展,2000,(6):50~53
    [13] 杨晓辉,赵瑜,谢青季,姚守拙.扫描电化学显微镜近期进展.分析科学学报,2004,20(2):210-214
    [14] 刘俊标.微纳加工中的精密工作台技术[M].北京:北京工业大学出版社,2004
    [15] 王宗俐.扫描隧道显微镜控制系统的研究[D].南宁:广西大学,1997
    [16] 林伟,叶虎年,叶梅,冯海.压电陶瓷致动器驱动电源的研究[J].微纳电子技术,2006,(3):138-140
    [17] 周亮,姚英学,张洪志.低波纹度快速响应压电陶瓷驱动电源的研制[J].压电与声光,2000,22(4):237-239
    [18] 王广林.一种低耐压器件实现的压电陶瓷驱动电源[J].压电与声光,1998,20(1):38-40
    [19] 王宏,钟朝位,张树人.压电陶瓷驱动器线性动态驱动电源的研制[J].压电与声光,2004,26(3):189-191
    [20] 贾宏光,基于变比模型的压电驱动微位移工作台控制方法研究[D].长春:中国科学院长春精密机械与物理研究所,2000
    [21] V. Newcomb et al. Improving The Linearity of Piezoelectric Ceramic Actuators[J]. Electr. Let., 1982, 18(11): 442-444
    [22] PingGe, Musa Jouaneh. Tracking Control of a Piezoceramic Actuator[J]. IEEE Transactions on Control Systems Technology, 1996, 4(3): 209-216
    [23] Cleland A. N., Roukes M. L. Fabrication of High Frequency Nanometer Scale Mechanical Resonators from Bulk Si crystals[J]. Appl. Phys. Lett, 1996, 69(18): 2653-2655
    [24] Ping Ge, Musa Jouaneh. Moldeling hysteresis in piezoceramic actuators. Precision Engineering. 1995, 17: 211-221
    [25] www.apexmicrotech.com/mainsite/pdf/an19u.pdf
    [26] 康华光.电子技术基础模拟部分[M].北京:高等教育出版社,1999
    [27] 李正军.计算机测控系统设计与应用[M].北京:机械工业出版社,2004
    [28] 万立骏.电化学扫描隧道显微术及其应用[M].北京:科学出版社,2005
    [29] 冯业铭.恒电位仪电路原理及其应用[M].中国矿业大学出版社,1994
    [30] 刁国旺,张祖训.温度扫描控制仪及其在电化学研究中的应用[J].分析化学,1999,27(6):732-736
    [31] 钱忠仁,王少年,晏双龙.CH-1型恒电位仪的研制与应用[J].分析仪器.1999,(3):33-34
    [32] 英国南安普顿电化学小组著.柳厚田,徐品弟等译.电化学中的仪器方法[M]. 上海:复旦大学出版社,1992
    [33] Basil H. Vassos and Guillermo Martinez. Computer Interfaceable Potentiostat. Analytical Chemistry, 1978, 50(4): 665-668
    [34] 纪华民,汪尔康.多功能高灵敏度双恒电位仪的研制及应用.分析化学,1991,19(8):976-980
    [35] 周红,夏勇,董献堆.电分析仪器中的微电流测量[J].分析仪器,2000,(2):20-23
    [36] 王立新,傅崇岗.pA级微电流测量技术研究.仪表技术,1999,(4):34-36
    [37] David O. Wipf, Allen J. Bard. Scanning Electrochemical Microscopy Improvements in Imaging via Tip-Position Modulation and Lock-in Detection. Anal. Chem, 1992, 64: 1362-1367
    [38] Allen J. Bard, Guy Denuaultc, Chongmok Lee, Daniel Mandler, and David O. Wipf. Scanning Electrochemical Microscopy: A New Technique for the Characterization and Modification of Surfaces. Acc. Chem. Res. 1990, 23: 357-363
    [39] 陈国杰.高性能微电流集成放大器的设计.微电子学与探测技术,2005,25(3):243-245
    [40] 杜保强.实验曲线的线性度研究[J].自动化技术及应用.2004,23(9):72-73
    [41] 周立功等编著.ARM微控制器基础与实战[M].北京:北京航空航天大学出版社,2003.
    [42] 周立功,张华.深入浅出ARM7—LPC213x/LPC214x(上册).北京:北京航空航天大学出版社,2005
    [43] 戚银城,冯瑞军,鄂秀焕.高速高精度A/D转换MAX195及其应用.集成电路应用,2000,(6):8-10
    [44] 王玉明,梁玉英,蔡金燕.雷达状态监测系统数据传输技术的实现.微计算机信息,2005,21(12):102-103
    [45] Mark I.Montrose著,刘元安等译.电磁兼容和印刷电路板理论、设计和布线[M].北京:人民邮电出版社,2002.
    [46] 邵贝贝著.单片机嵌入式应用的在线开发方法.北京:清华大学出版社,2004
    [47] 刘光斌,刘冬,姚志成.单片机系统使用抗干扰技术[M].北京:人民邮电出版社.2003.
    [48] ARM DUI 0065D. ARM Developer Suite(Version 1.2)-CodeWarrior IDE Guide[D]. ARM Limited, 2001.
    [49] 谭浩强.C程序设计.北京:清华大学出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700