管道复杂焊缝扫查器的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,管道焊缝全自动超声检测系统技术在国内外业内得到公认,逐步取代传统人工检测技术,成为管道焊缝检测技术发展的趋势。随着我国管道结构应用量的增大,研制出具有自主知识产权的管道焊缝自动检测系统对管道工业的应用和发展具有十分重要的意义。本论文的开展基于国家“863”项目课题——“深水海管水下回接技术及AUT检验设备国产化技术研究”,针对环焊缝、螺旋焊缝和相贯焊缝这三种复杂焊缝具有不同的检测要求,进行相应的管道扫查器系统的研究,并进行机械装置的模块化设计。
     论文根据不同的复杂焊缝几何特点及实际工作要求,设计出多种扫查器机械装置模块,以应用于不同工作路径的检测工作。扫查器主要由爬行机构和探头调整机构两部分组成,则模块化设计主要包括这两部分的具体设计方案。根据扫查器模块的不同工作特点,在模块间进行组装,得到可适用于不同的复杂焊缝检测的扫查器。其中,环行链式爬行机构模块和螺旋链式爬行机构模块采用链连接结构,分别适用于对中小型管道中的环焊缝和螺旋焊缝检测的装置中;可伸缩探头调整机构模块与环行链式爬行机构装配,组成相贯焊缝链式扫查器,适用于对相贯焊缝的跟踪检测。
     本文重点对相贯焊缝链式扫查器进行具体结构设计和研究分析。该装置的静力学分析中,首先根据重力分量分析扫查器在环行工作中的各种失稳情况,然后建立箍紧力在克服各种失稳情况下随管道倾角和姿态角变化的函数模型,利用MATLAB进行结果分析。静力学分析对研究扫查器克服失稳情况,选材以及结构布置等方面起到指导作用。
     在研究相贯焊缝链式扫查器的运动学问题时,采用D-H法建立扫查器末端执行机构的运动学方程,并采用递推法求出运动学逆解。利用MATLAB对正、逆运动学模型进行结果分析,求出末端执行器的仿真轨迹曲线,验证了运动学方程建立的正确性,并求出扫查器各关节变量变化曲线图,验证了逆解建立的正确性和逆解的唯一性。
     本文以递阶式分层控制体系为指导思想,提出了相贯焊缝链式扫查器控制系统总体方案,并对以DSP为核心的控制系统硬件电路实施方案进行了简要的设计。
     研制了弹性导轨式管道环焊缝扫查器系统,对样机做了爬行试验和超声探伤试验分析。其中爬行实验结果表明该扫查器运行稳定,速度误差在控制范围内,验证了该扫查器满足功能方案的要求。基于RcurDyn软件对相贯焊缝链式扫查器进行虚拟样机仿真分析,验证了该扫查器运动学模型建立的正确性以及该装置设计的合理性。
Use of mechanical ultrasonic inspection systems has now become a common occurrence in nondestructive testing, and gradually replaces the traditional manual inspection techniques. With the increase of pipeline structural applications in our country, the developing of automatic ultrasonic testing equipment for weld inspection with independent intellectual property rights is of great significance for the application and development of pipeline industry. This paper is based on the national "863" project- "Underwater reflow soldering technology for pipe in deep-sea and the localization technology research of AUT testing equipment", researching of the scanning of girth weld, spiral weld and intersected weld and designing the corresponding pipe scanner. The paper focus on the research of intersected weld scanner device, including concrete structure design, static analysis, forward and inverse kinematics analysis, control system design and simulation analysis.
     Based on geometric features of different complex weld and actual working requirement, the design gives a variety of mechanical device modules adapted to working in different path. Modular design mainly includes the schemes of crawling institution and probe adjusting mechanism. According to the different working characteristics of the modules, it can get scanner devices through the assembly of those modules, which used in different complex weld detecting. Two of the crawling institution modules are circled chain crawling institution and spiral chain crawling institutions, which both use chain link, respectively applicable to the weld defects testing of small and medium-sized pipes' girth and spiral weld. Retractable probe adjusting mechanism, using synchronous belt, screw nut and worm and worm wheel, can be assembled with circled chain crawling mechanism for the composition of Intersected Weld Chain Scanner, which applicable to intersected weld's tracing testing.
     This paper focuses on the analysis of the Intersected Weld Chain Scanner and the concrete structure design. The statics analysis on the scanner is carried out as the followed: first, researching on all kinds of instability of scanner in the circling, caused by gravity component; then, building up the function relation between the Elastic tightening force and the pipe inclination angle and driven car's attitude angle; using MATLAB analyze the change of the Elastic tightening force. The statics analysis has theoretical significance in the analysis of scanning device overcoming instability, the choice of the crawling institution's materials and the structural layout.
     In order to research on the kinematical problem of the Intersected Weld Chain Scanner, the D-H method is applied in establishing the end actuator's kinematics model, and the recursion algorithm is used in finding the inverse kinematic resolution. Use MATLAB analyze the result of the positive and inverse kinematics model, and work out the end of actuator's tracing curve and each joint-variables'changing curves to proving the correctness of the kinematics model and the uniqueness of inverse kinematic resolution.
     The paper using hierarchical layered control architecture as the guiding ideology, carries out the design of hardware and software implementation scheme of the control system, especially for the Intersected Weld Chain Scanner, and carries out the brief design of the DSP-based control system hardware circuit implementation programme.
     The prototype experiments of Elastic Rail-type Pipeline Girth Weld Scanner includes the crawling test and ultrasonic flaw detection test. The crawling test proves that the auto-inspection scanner system works stable and velocity error is in the control range. Then, the system meets the function scheme's requirement. The virtual prototype simulation analysis of Intersected Weld Chain Scanner based on RecurDyn simulation analysis software, verifies the kinematics model is correct, and the design of the device is reasonable.
引文
[1]沈乃勋,吕恬生,夏信东.管道内部行走与检测机器人的发展现状与展望[J].机械设计与研究,1993,(03):42-44页
    [2]Y. Kawaguchi, I. Yoshida, H. Kurumatani, T. Kikuta, Y. Yamada. Internal pipe inspection robot [C]. Proceedings of IEEE International Conference on Robotics and Automation.1995:857-862P
    [3]曹健.全自动相控阵超声检测技术在环焊缝检测中的应用[J].无损检测,2003,(04):201-203页
    [4]郑中兴.天然气长输管道对接环焊缝相控阵超声波全自动检测系统[J].无损探伤,2002,(04):29-30页
    [5]曹先伟.管道环焊缝扫查机器人研究[D].哈尔滨工程大学硕士学位论文,2009:3,61页
    [6]E.A.Ginzel. Mechanised Ultrasonic Inspections of Pipeline Girth Welds. http://www.mri.on.ca
    [7]肖雄.相控阵全自动超声波检测技术在西气东输工程中的应用[J].无损探伤,2004,(05):5-8,14页
    [8]薛振奎,白世武,詹华,等.国内长输管道对接环焊缝相控阵全自动超声检测装置的研制[J].焊管,2006,(04):44-48,94页
    [9]詹湘琳.超声相控阵油气管道环焊缝缺陷检测技术的研究[D].天津大学博士学位论文,2007:3,14页
    [10]http://www.olympus-ims.com/zh/pipewizard/
    [11]http://www.geinspectiontechnologies.cn/
    [12]郭瑞.弹性导轨式管道环焊缝扫查器研究[D].哈尔滨工程大学硕士学位论文,2010:7,31页
    [13]Murayama R., Makiyama S., Kodama M., et al. Development of an ultrasonic inspection robot using an electromagnetic acoustic transducer for a Lamb wave and SH-plate wave [J]. Ultrasonic.2004.42:825-829
    [14]鄢波.插接管道焊缝检测机器人扫查轨迹规划及控制研究[D].上海交通大学博士学位论文,2005:3-5,12,16,30页
    [15]http://www.force.dk
    [16]付西光.管道焊缝缺陷扫查机器人轨迹规划与运动分析及其超声检测关键技术研究[D].上海交通大学博士学位论文,2005:4-6,14-15页
    [17]Force.P-scan based System for Ultrasonic Inspection of Complex Geometry Objects. http://www.force.dk/gb/default.htm
    [18]Greig A., Rivas S., et al. Welding automation in space frame bridge construction [J]. Computer-Aided Civil and Infrastructure Engineering.2001.16(3):188-199P
    [19]Blackman S.A., Rivas S., Greig A., et al. Automated FACW for tubular structures [C]. Proceedings of the International Conference on Advances in Welding Technology. Orlando.2000:269-278P
    [20]马香玲.管道对接焊缝超声检测机器人研究[D].西安科技大学硕士学位论文,2008:3-4,19-20页
    [21]长输管道全自动相控阵检测系统研制.中国油气管网.http://www.cpps.com.cn
    [22]朱延功,刘嵩,高学山,徐殿国,王炎.螺旋焊管焊缝自动超声探伤系统[J].黑龙江自动化技术与应用,1999,(04)
    [23]刘志远,裴润,王玲,刘志林.一种焊缝缺陷自动超声检测系统[J].焊接学报,2002,(03):1,71-74页
    [24]Ting Yao, Yuxian Gai, Huiying Liu. Development of a Robot System for Pipe Welding [C]. Harbin Institute of Technology Weihai, China.2010 International Conference on Measuring Technology and Mechatronics Automation
    [25]http://baike.baidu.com/view/1269517.htm
    [26]李衍.超声相控阵技术第二部分扫查模式和图像显示[J].无损探伤.2007,31(6)
    [27]马德志,申献辉,段斌.T、K、Y管节点相贯焊缝超声波探伤工艺的研究[C].2003
    [28]张成飞.TKY管节点焊缝的超声波检验[J].中国造船,2004,45(z1)
    [29]张立勋,董玉红.机电系统仿真与设计[M].哈尔滨工程大学出版社,2006:132-133页
    [30]什么是无损检测.天工无损检测网,2004年5月23日
    [31]邵泽波.无损检测技术[M].北京:化学工业出版社,2003
    [32]罗华权,巨西民,吕郑,等.油气输送管道对接环焊缝检测现状与研究进展[J].焊管,2008,(01):40-44,98页
    [33]Micheal Moles, Simon labbe. Special Phased Array Applications for Pipeline Girth Weld Inspections [C]. Proceedings of 3rd MENDT-Middle East Nondestructive Testing Conference & Exhibition-27-30 Nov 2005 Bahrain, Manama
    [34]Malik, M.A.,Saniie, J.. Performance comparison of time-frequency distributions for ultrasonic nondestructive testing [C]. Proceedings of IEEE of Ultrasonics symposium. 1996:701-704P
    [35]孔立峰,李树学,罗光华,等.TOFD检测技术的应用[J].河北工业科技,2009,(03):168-171页
    [36]Yinghui Li; Harrold, S.O; Yeung, L.F.; Experimental Study on Ultrasonic Signal Transmission Within the Water-filled Pipes [C]. Proceedings of Fourth Annual Conference on Mechatronics and Machine Vision in Practice.1997
    [37]张培仁,张志坚,等编著.基于16/32位DSP机器人控制系统设计与实现[M].北京:清华大学出版社,2006:12-18,69-76页
    [38]李彦明,马培荪,高雪官,鲁守银.承压管道外检测机器人行走机构设计[J].机械设计与制造,2002,(06):50-52页
    [39]濮良贵,纪名刚著.机械设计[M].第七版.北京:高等教育出版社,2001:90-91,160-161页
    [40]刘坤.管道焊缝超声检测扫查器机械装置研究[D].武汉理工大学硕士学位论文.2006:22-26页
    [41]黄忠霖编著.控制系统MATLAB计算与仿真[M].第二版.北京:国防工业出版社,2004
    [42]http://baike.baidu.com/view/10598.htm
    [43]John J. Craig克莱格著.负超,等译.机器人学导论[M].北京:机械工业出版社2006.6:26-28,57-59页
    [44]李团结.机器人技术[M].北京电子工业出版社,2009.10:44-46,53-66页
    [45]蔡自兴.机器人学[M].北京:清华大学出版社,2000
    [46]张铁,谢存禧.机器人学[M].华南理工大学出版社,2001:74-84页
    [47]Arshad, M.; Khan, T.M.; Choudhry, M.A.; Solution of forward kinematics model of six degrees of freedom parallel robot manipulator [C]. Proceedings of the IEEE Symposium on Emerging Technologies.2005:393-398P
    [48]付西光,苏中义.相贯曲线插接焊缝冗余扫查机器人运动学分析[J].上海电机学院学报,2005,(06):4-7页
    [49]刘文萍.多管、板相贯的相贯线数学建模[J].科技信息,2010,(12):513-514页
    [50]熊有伦.机器人技术基础[M].武汉:华中理工大学出版社,1996:43-45页
    [51]Guangping Gao, Zongquan Deng. Path Planning of Scanning Robot for Tubular Joint [C]. Proceedings of the 6th World Congress on Intelligent Control and Automation, June 21-23,2006, Dalian, China
    [52]赵新华,彭商贤,张伟军,李春书.一种分析并联机器人位置正解的高效算法[J].天津大学学报,2000,(02):134-137页
    [53]张云生,王彬,王川,杨业.分级递阶控制结构的状态描述和实时实现[J].计算机工程与应用,2002,(20):241-243,246页
    [54]TMS320LF/LC240Xa DSP Controllers System and Peripherals. Texas Instruments. 2001
    [55]马潮,詹卫前,耿德根.ATmega8原理及应用手册.北京:清华大学出版社,2003
    [56]凌杰.数码复印机进纸机构的研究[D].南京林业大学硕士学位论文.2009:38-40页
    [57]http://baike.baidu.com/view/883410.htm
    [58]李晓辉,汪苏.骑座相贯线焊接机器人运动学分析及仿真[J].北京航空航天大学学报,2008,(08):964-968页
    [59]毛立民,于海涛.基于RecurDyn的四履带足机器人运动学仿真[J].微计算机信息,2009,(35):185-186,205页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700