LPG储罐火灾爆炸危害性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LPG具有易燃易爆的特性,在其生产、储存和使用过程中极易引起火灾、爆炸事故,尤其在液化石油气储罐区,一旦发生事故,可能造成大量的财产损失和人员伤亡,因此,对LPG储罐火灾爆炸故事危害性进行研究,建立相应的数学模型和物理模型,借助计算机仿真技术进行模拟,这将对预测、预防、控制事故的发生、保障生产的安全运行具有重要的理论价值和现实意义。论文的具体工作包括:
     (1)对LPG储罐区的火灾爆炸危险性进行分析。运用三类危险源理论对LPG储罐区进行危险源辨识,总结了LPG储罐区内三类危险源的形式、产生原因和相互作用关系。分析结果为,第一类危险源是液化石油气;第二类危险源是LPG泄漏后达到可燃浓度和存在点火源;第三类危险源是管理缺陷。分析了LPG储罐区常见的火灾爆炸事故后果模式。
     (2)对LPG池火灾热辐射进行数值模拟研究。分析了池火灾的燃烧特征、关系模型和热辐射破坏准则;在总结前人研究工作的基础上,对池火灾火焰形状进行理论分析,建立了物理模型和几何模型,提出合理假设,然后选择合适的辐射模型,确定初始和边界条件,应用Fluent软件模拟液池直径为12m时LPG池火灾热辐射对周围环境的影响,得出火焰周围入射热流密度分布图;模拟结果显示池火灾热辐射强度随着目标点到火焰中心距离的增加而迅速减小;结合热辐射破坏准则,可以确定池火灾的伤害范围,分别为死亡半径21m,二度烧伤半径35m,安全临界半径55m;分析液池大小、风速因素对热辐射的影响表明:火焰长度和各种伤害半径随着液池直径的增大近似线形增加;受风的影响一般下风向辐射热量增大,而上风向辐射热量减小,危害区域向下风向发生偏移。
     (3)对LPG爆炸性气体危险区域进行分析。LPG发生泄漏后与空气混合形成爆炸性气体,当遇到火源就可能发生爆炸事故。运用数值计算方法,基于Fluent软件对爆炸性气体扩散进行研究,得出在不同风速条件和初始条件下爆炸性气体的扩散规律;结合LPG爆炸极限,量化爆炸范围;运用Fluent软件中的图形显示功能,使危险区域的范围更加直观具体,从而为LPG储罐区安全评估和制定事故应急救援预案提供有价值的参考数据。
     本论文的研究是CFD方法用于易燃气体危害性研究的有效尝试,可以为罐区其它形式的灾害提供一种分析思路和方法。
LPG has flammable and explosive characteristics. Fire and explosion can easily be caused in the process of LPG production,stockpiling and use. Especially in the LPG storage tank area, severe property damage and human casualties may be induced in case of an accident. Therefore,it is very necessary to study the hazardous consequences of fire and explosion of LPG tank. Setting up relevant physicals models and mathematical models and modeling by computer imitate technique which will predict, prevent and control accidents and ensure the production safety are of great theoretical value and practical significance. The detail research contents are as follows:
     (1)The fire and explosion hazards of LPG tank area were analyzed. According to the three types of hazards theory, hazards were identified in LPG storage tank area. The forms,causes and interaction of three types of hazards in the LPG tank area were summarized. The main dangerous substance was LPG which was the lst class hazard; LPG reaches to a flammable concentration was the 2nd class hazard; management bug was the 3rd class hazard. The common modes of fire and explosion consequences in LPG storage tank area were analyzed.
     (2)Numerical simulation for the thermal radiation of LPG pool fire was studied. Combustion characteristics, relational model and radiation damage criteria of pool fire were introduced. Based on the previous study, the flame shape of pool fire was theoretically analyzed; physical and geometrical models were established according to the reasonable assumption. Appropriate radiation models were selected and the initial and boundary conditions were determined; the thermal radiation to environment from the pool fire (D=12m)was numerically simulated using Fluent software and the contour of incident heat flux around the flame was obtained. Simulation results showed that the pool fire heat radiation decreased rapidly along with increase of the distance from the target point to the flame center. The damage range of pool fire was calculated combining with radiation damage criteria: death radius21m, second degree burn radius35m, critical safety radius55m. The thermal radiation affected by pool size and wind was analysed which showed that: flame length and radius of the injuries increased approximatel linearly as the pool diameter increases. Because of the influence of wind, the heat radiation of downwind direction increased while reducing against the wind direction, hazard areas moved to the downwind direction.
     (3)LPG hazardous areas of explosive gas were analyzed. After LPG diffusing into the atmosphere,mixing with air and forming explosive gas,it is likely to initiate explosion if meeting ignition sources. Explosive gas diffusion was studied using numerical simulation method based on Fluent software; the diffusion laws of explosive gas were simulated under different wind conditions and initial conditions; the scope of explosion was calculated combining with LPG explosion limit; the range of hazardous area was more intuitive and specific using the graphical display capability of Fluent software so as to provide valuable reference data for LPG tank area safety assessment and emergency plans.
     The study in the paper was a valid attempt to study the danger of flammable gas using CFD method,which offered a new thought way to study the other style disaster about storage tank.
引文
[1]孙炳常.论液化石油气蒸汽云和火球爆燃事故的危害[J].城市煤气,1989,(7):18-24
    [2]淮秀兰,俞昌铭.高温环境下容器内液化气的热响应分析[J].河北理工学院学报,1996,18(1):24-29
    [3] Petersen C.M.. Analysis of the LPG Disaster in Mexieo City[J]. Hazardous Materials,1988,(20):85-107
    [4]周鸿.浅谈火灾爆炸的预防[J].化工劳动保护,1999(4):31-33
    [5]陆朝荣,张永国.西安市液化气爆炸事故的过程及分析[J].油气储运,1999,18(10):47-49
    [6]安全文化网. http://www.anquan.com.cn/News/News/China/201001/138587.html ,2010.1.9
    [7]黄金印,傅智敏.烃类池火灾火焰温度分布[J].消防技术与产品信息,2000,(11):42-46
    [8]王铭珍.液化石油气储罐火灾及其预防[J].安全,1991,(3):47-48
    [9] Crocker W.P.,Napier D.H.. Assessment of Mathematical Models for Fire and Explosion Hazards of Liquefied Petroleum Gas [J]. Hazardous Materials,1988,(20):109-135
    [10] Vemkatesh S.,Ito A.,Saito K.. Flmae Base Strueture of Small-Seale Pool Fires[J]. Combustion Science and Technology,1994,11(3):37-62
    [11] Rew P. J.,W. G. Hulbert,D. M. Deaves. Modeling of Thermal Radiation from External Hydrocarbon Pool Fires[J]. Trans I Chem E,Vol 75,Part B,May1997:81-89
    [12] J.X. Wen,L.Y. Huang. CFD Modeling of Confined Jet Fires under Ventilation-Controlled Conditions[J]. Fire Safety Journal,2000,(34):1-24
    [13]范维澄.火灾学简明教程[M].武汉:湖北科技出版社,1995
    [14] Brotz W.,Schonbucher A.,Schable R.. Statistical Investigations of Pool Flames[J]. Loss Prevention,1977,(5):112-116
    [15] Mudan K.S..Fire Hazard Calculation Impacts for Large Open Hydrocarbon Fires[J]. In the SFPE Handbook of Fire Protection Engineering,1988:22-26
    [16] Moorhouse J.. Scaling Criteria for Pool Fires Derived from Large Scale Experiments[J].Elsevier,1982,(6):16-22
    [17] Lowe smith,Anderson J. Safety Guided Design of LNG Terminal[J]. OIL GAS,1989,18(6):93-96
    [18] Baker W.E.,Cox P.A..Westine P.S.. Explosion Hazards and Evaluation[J]. Elsevier,1983,(6):22-28
    [19] Heskestad G.. Engineering Relations for Fire Plumes[J]. Fire Safety,1987,(7):25-32
    [20] Nedelka,B. Bauer. The Montoir 35m Diameter LNG Pool Fire Experiments[J]. Fire Safety Journal,1993,20(3):241-255
    [21] Rew P.J.,Deaves D.M..Validation and Application of Pool Fire Models[J]. SERA-Safety Engineering and Risk Analysis,1995,(4):57-65
    [22] Schncider V,Hofmann J.. An Advanced Engineering Approach to Fire Simulation and Consequence Evaluation[J]. Elsevier,1993:499-500
    [23] Eulalia Plannas Cuchi,Joaquim Casal. Modeling Temperature Evaluation in Equipment Engulfed in Pool Fire[J]. Fire Safety Journal,1998,(30):251-268
    [24] Sinai Y.L.,Owens M.P.. Validation of CFD Modeling of Unconfined Pool Fires with Cross-Wind:Flame Geometry[J]. Fire Safety,1995,(24):1-34
    [25] Y.L.Sinai. Exploratory CFD Modeling of Pool Fire Instabilities Without Cross-Wind[J]. Fire Safety Journal,2000,(35):51-61
    [26] J.A. Fay. Model of large pool fires[J]. Journal of Hazardous Materials,2006,B136:219-232
    [27] Hyunjoo Chuna,Klaus Dieter,Wehrstedtb. Thermal Radiation of Di-Tert-Butyl Peroxide Pool Fires-Experimental Investigation and CFD Simulation[J]. Journal of Hazardous Materials ,2009,(167):105-113
    [28] Y.M. Fernga,C.H. Lin. Investigation of Appropriate Mesh Size and Solid Angle Number for CFD Simulating the Characteristics of Pool Fires with Experiments Assessment[J]. Nuclear Engineering and Design,2010,(240):816-822
    [29]谭家磊,宗若雯,赵祥迪.小尺度油品扬沸火灾火行为的实验研究[J].安全与环境学报,2007(6):92-95
    [30]陈国华,张瑞华,张晖. LPG储罐事故危险特性动态模拟评价方法及软件开发[J].计算机与应用化学,2006,(12):1193-1198
    [31]邢志祥,蒋军成.喷射火焰对容器表面的热辐射计算[J].安全与环境工程,2003,(10):71-73
    [32]杨君涛,魏东.着火油罐燃烧过程预测的通用模型[J].工程热物理学报,2005,(2):336-338
    [33]杨君涛,魏东.基于油罐火灾数值模拟的模型选取与分析[J].中国安全科学学报,2004,(7):29-33
    [34]章涛林,方延勇.火灾模拟有限元软件综述[J].中国公共安全,2009,(1):90-96
    [35] Munday G. Unconfinded Vapor Cloud Explosions[J]. Chemical Engineer,1976,308(4):179
    [36] Van den Berg A.,Cetal. Guidance for the Application of the Multi-Energy Method[C]. The 2th International Specialist Meeting on Fuel-Air Explosions,Bergen,NORWAY,1996
    [37] Van Wingerden C.J. Experimental Investigation into the Strength of Blast Waves Generated by Vapor Cloud Explosions in Congested Areas[C]. 6th Inter Symp.Loss Prev and Safety Promotion in the Process Industry,Oslo-Norway,1998
    [38]汪佩兰,李伟. LNG储罐蒸气云火灾爆炸数值模拟[J].北京理工大学学报,2003,(23):307-311
    [39]冯志华,聂百胜.危险气体泄漏扩散的实验方法研究[J].中国安全科学学报,2006,16(7):18-23
    [40]潘旭海,蒋军成.化学危险性气体泄漏扩散模拟及其影响因素[J].南京化工大学学报,2001,23(l):19-22
    [41]姜传胜,丁辉,刘国梁.重气连续泄漏扩散的风洞模拟实验与数值模拟结果对比分析[J].中国安全科学学报,2003,13(2):8-13
    [42]肖建兰,吕保和,王明贤等.气体管道泄漏模型研究进展[J].煤气与热力,2006,26(2):7-9
    [43]李又绿,姚安林,李永杰.天然气管道泄漏扩散模型研究[J].天然气工业,2004,24(8):102-104
    [44] R Ohba,A. Kouchi. Validation of Heavy and Light Gas Dispersion Models for the Safety Analysis of LNG Tank[J]. Journal of Loss Prevention in the Process Industries,2004,(17):325-337
    [45]陶文拴.数值传热学[M].西安:西安交通大学出版社,2001
    [46]吴宗之.重大危险源控制技术研究现状及若干问题探讨[J].中国安全科学学报,1994,(2):9-12
    [47]田水承.第三类危险源辨识与控制研究[D].北京:北京理工大学博士学位论文,2001:35
    [48] GB18218-2009《危险化学品重大危险源辨识》[S],2009
    [49]孙文栋,方江敏. LPG储罐火灾爆炸事故后果模拟方法研究[J].工业安全与环保,2009,35(12):44-45
    [50]李骁骅,王晶禹. LPG储罐的失效原因分析[J].工业安全与环保,2007,33(6):44-46
    [51]苗香溢.可燃气体火灾成灾机制与危险性控制技术研究[D].天津:天津理工大学硕士学位论文,2008:54
    [52]安全文化网:http://bbs.anquan.com.cn/forumdisplay.php?fid=38,2009.5.8
    [53]王瑞金,张凯,王刚. Fluent技术基础与应用实例[M].北京:清华大学出版社,2007:35
    [54] Raithby G.D.,Chui E.H.. Finite-Volume Method of Predicting a Radiant Heat Transfer in Enclosures with Participating Media[J]. Heat Transfer,1990,(112):415-423
    [55] Chui E.H..,Raithby G.D. Computation of Radiant Heat Transfer on a Non-Orthogonal Mesh Using the Finite-Volume Method[J]. Numerical Heat Transfer,1993,23:269-288
    [56]温正,石良辰,任毅如. Fluent流体计算应用教程[M].北京:清华大学出版社,2009: 60
    [57] Fluent6.2 User's Guide Volume 11-12 [M]. Cavendish:Fluent Incorporated,2005
    [58] SFPE Handbook of Fire Protection Engineering [M]. Society of Fire Protection Engineers,2002:272-291
    [59]刘诗飞,詹予忠.重大危险源辨识及危害后果分析[M].北京:化学工业出版社,2004:86-89
    [60] P.H.Thomas. The Size of Flames from Natural Fires. Ninth Symposium(International) on Combustion[C]. Pittsburgh,Combustion Institute,1962:844-859
    [61] Tunc M. Incident Radiation from an Engulfing Pool Fire to a Horizontal Cylinder-Partl[J]. Fire safety,1984,(8):81-87
    [62]马小明,吴晓曦. LNG储罐火灾后果分析[J].中山大学学报论丛,2007,27(2):105-106
    [63]宇德明,冯长根,曾庆轩等.热辐射的破坏准则和池火灾的破坏半径[J].中国安全科学学报,1996,(2):27-29
    [64] Grosshandler W.L.RADCAL. A Narrow-Band Model for Radiation Calculations in A Combustion Environment[J]. NISP Technical Nate,1993
    [65]庄磊.航空煤油池火热辐射特性及热传递研究[D].合肥:中国科学技术大学博士学位论文,2008:92-94
    [66]江昀,汪佩兰.蒸气云火灾爆炸破坏作用预测方法的研究[J].兵工安全技术,2000: 29-33
    [67]丹尼尔A.,克劳尔,约瑟夫F.化工过程安全理论及应用[M].北京:化学工业出版社,2006:125-132
    [68]刘沛清.自由紊动射流理论[M].北京:航空航天大学出版社,2008:23-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700