高含硫天然气田集气站火灾事故应急响应技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前国内外正在广泛开发高含硫气田,然而天然气中高浓度的H2S对气田的钻井设备、集输管线等有强烈的腐蚀作用,易导致泄漏从而引发火灾爆炸事故,造成人员伤亡和重大财产损失。集气站是天然气集输系统的重要组成部分,站内设备林立,管道密集,研究站内关键设备火灾事故的发生、发展规律,预测其危险性,提出针对高含硫集气站火灾事故的应急响应技术具有重要意义。本文结合国家科技重大专项——大型油气田及煤层气开发(项目编号2008ZX05017)“高含硫气田集输工艺与安全控制技术”课题的部分相关内容进行研究。
     通过详细调研我国川东某气田集输工艺流程及设备装置,分析得出该气田集气站存在的主要危险为站内卧式气液分离器、生产汇管泄漏引发的火灾事故。基于大涡模拟(Large Eddy Simulation)数值方法,针对站内分离器、生产汇管内介质成分、相态等参数特殊性,采用火灾动力学模拟软件FDS分别建立集气站卧式气液分离器、生产汇管的喷射火模型,对其典型泄漏孔径下的喷射火进行数值仿真,研究其火焰几何特性、火场温度分布及热辐射变化规律;模拟结果表明分离器及生产汇管的喷射火对乙二醇柱塞泵、生产汇管上方管架以及甲醇撬块具有较大的危险性;同时根据数值模拟结果对集气站火灾探测器优化布置,将集气站工艺装置区划分为5个火灾探测区域并根据设备、管道的构造及内容介质特性合理布置感温探测器;模拟站内消防联动系统的干预效果,在生产汇管雨淋系统及撬块水幕系统保护下,火灾最高温度下降约500℃,甲醇撬块的安全性提高。建立集气站应急资源储备方案,主要为消防联动系统的设计及集气站移动灭火器的配置;提出高含硫集气站灭火技术,并依据事故仿真结果确定消防救援人员的安全距离、估算事故时间及采取的相应措施;根据ESD设计原则设置集气站应急关断系统级别。
Currently, the high sulfide natural gas fields are broadly exploited both domestically and abroad. However, H2S in natural gas with high concertration cause strong corrosion to the drilling equipments and gathering pipelines. Besides, the flamability and exposibility of the natural gas can easily lead to accidents of jet fire, which can cause serious damage. Gas station is an important part of the natutal gas gathering system in where plenty of equipments and pipelines are exsited. It’s significant to study the occurring and developping rules of the conflagration, evaluate the accident risk and propose the emergency response techniques purposely for high sulfide natural gas station. This dissertation also combined with the sub-topics“Gathering process and safety control techniques in high sulfide gas field”of national science and technology special project“Exploitation in Large-scale oil & gas fields and coal bed gas”(No. 2008ZX05017).
     After specific indentification for the natural gas property, gathering process and equipments of CHUANDONG natural gas filed, the main risks of the gas station are jet fires of the horizontal gas-liquid separator and production pipelines. Based on Large Eddy Simulation, taking specific characteristics of parameters into consideration such as media components and phase state in separator and production pipelines, jet fire models of a horizontal gas-liquid separator and production pipeline were established by Fire Dynamics Simulator (FDS). A mixture fraction model is used to account for the evolution of the fuel gas from its surface of origin through the combustion process. The numerical simulations of jet fire with 0.1016m orifice diameter was conducted, then flame geometric dimensions, flame temperature properties and behavior of thermal radiation were analyzed. Calculation results show that jet fires of separator and production pipeline have great risk to the glycol pump, the support of production pipelines and methanol set. Meanwhile, according to the simulation results, the fire detection system was optimized that the equipments zone in natural gas station was divided to be 5 detection zones and the temperature detectors were properly arranged. Considering the intervene effect of fire automatic control system, under the protection of sprinkling system of production pipelines and water curtain system of equipment sets, the highest temperature of flame decreased by 500℃and the safety coefficient of methanol set was improved. The emergency resourse storage scheme was set up mainly foucusing on the designation of fire automatic control system and collocation of portable fire extinguishers. Fire-extinguished techniques of high sulfide natural gas in natual gas station were proposed. Rely on the numeric simulation results, the safety distance between the firemen and the afire equipments was identified. According to ESD designing rules, the emergency shut down system level in natural gas station was identified and coresponding measures for accident prevention were summarized.
引文
[1]边云燕,郭成华.高含硫气田地面集输工艺技术的新发展[J].天然气与石油, 2006, 24(5): 28-31
    [2]潘红丽,杨强,宋飞等.高含硫天然气集输管网的技术经济研究[J].油气储运, 2003, 22(11) 32-35
    [3]聂仕荣.高含硫气田集输与处理技术[J].油气田地面工程, 2008, 27(6): 45-46
    [4]徐志胜,邓芸芸,姜学鹏.城市天然气管道泄漏的危害分析[J].工业安全与环保, 2006, 32(9): 47-48
    [5]廖昌建.采气管线及集气站内设备腐蚀机理研究及安全评价[D].西北大学硕士学位论文, 2009
    [6]付建民,陈国明.高含硫天然气集气工艺生产汇管泄放安全分析[J].油气田地面工程, 2009, 28(11): 30-31
    [7]郝志强.高含H2S气田集气站和集输管道岗位操作员工气防应急要诀[J].安全、健康和环境, 2009, 10(1): 23-26
    [8] YANG Zhi-gang, ZHANG Ning-sheng, WU Xin-min. The Mechanism and Influencing Factors of Corrosion in a Gas Heating-Furnace[J]. International Journal of Plant Engineering and Management, 2005, 10(3): 28-34
    [9]曾自强,张育芳主编.天然气集输工程[M].北京:石油工业出版社, 2001.11
    [10]刘扬,张艳,李广良.天然气输气站场的风险管理[J].大庆石油学院学报, 2007, 31(1): 64-67
    [11]吴赟,赵云胜,刘祖德.输气站场风险分析[J].安全与环境工程, 2007, 14(2): 113-116
    [12]侯晓犇,张鹏,陈利琼.基于模糊综合法的加气站风险评价研究[J].天然气与石油, 2009, 27(5): 14-18
    [13]刘正伟,吴清宇,史传坤等.油气集输站场防爆区域的划分与电气设备的选用[J].中国安全生产科学技术, 2009, 5(5): 106-110
    [14]洪志群,粟兵.川东气田天然气集输系统甲烷泄漏现状调查[J].石油与天然气化工, 2000, 29(2): 100-101
    [15]龙凤乐,周思柱.油田生产设施安全影响评价[J].石油天然气学报, 2005, 27(1): 114-115
    [16]滕莉梅,王云. SAFETI风险分析软件的应用[J].石油化工安全技术, 2003, 19(6): 11-13
    [17]刘慧,胡均志.榆林气田集气站ESD的研究与应用[J].石油化工自动化, 2009, 4(2): 79-80
    [18]郑洁,刘学庆,徐刚.四川输气站场安全评价[J].天然气与石油, 2001, 19(3): 10-14
    [19]何晓琼.天然气长输管道事故及应对措施[J].山西冶金, 2007, 6(6): 44-46
    [20]罗东晓.城市天然气事故应急供气系统的研究[J].天然气工业, 2008, 28(7): 109-111
    [21]刘祖德,赵云胜.天然气集输站泄漏监控系统研究[J].安全与环境学报, 2007, 7(2): 130-132
    [22]刘正伟,蒋燕,史传坤,闫胜奎.陆上油田油气集输站场安全现状评价探讨[J].中国安全生产科学技术, 2009, 15(2): 169-173
    [23]刘扬,张艳,张丹.天然气输气站场的风险评价技术研究[J].管道技术与设备, 2007, 3(3): 4-9
    [24]施林圆,郑洁,李晶.四川输气站场风险评价研究[J].天然气工业, 2004, 24(11): 135-138
    [25]宋东昱,严大凡.集气站可靠性计算[J].石油规划设计, 1998, 4(1): 9-12
    [26]梁瑞,张春燕,姜峰等.天然气管道火灾危害范围定量评价模型分析[J].石油机械, 2008, 36(4): 62-64
    [27]王曰燕,罗金恒,赵新伟.天然气输送管道火灾事故危险分析[J].天然气与石油, 2005, 23(3): 34-37
    [28]詹淑民.天然气管线及站场事故应急预案的编制[J].煤气与热力, 2008, 28(4): 39-42
    [29]刘传宏,芦艳.油气集输关键装置要害部位实施风险分析的必要性[J].石油化工安全技术, 2005,21(5): 36-37
    [30]叶建国,赵建波.天然气站场危险性评价及安全保障体系的建立[J].煤气与热力, 2007, 27(11): 23-25
    [31]姜玉曦,任玉新,刘秋生.高阶精度格式在火灾模拟中的应用[J].清华大学学报(自然科学版), 2006, 46(2): 32-35
    [32]李显祥,任玉新.分离涡模拟k-ε湍流模式及在火灾模拟中的应用[J].清华大学学报(自然科学版), 2004, 44(8): 31-37
    [33]杨炜平,张健.受浮力作用的湍流扩散火焰的数值模拟[J].燃烧科学与技术, 2004, 10(5): 405-410
    [34]吴炜煜,高佐人,任爱珠.基于FDS的火场空间物理建模器研究[J].系统仿真学报, 2005, 17(8): 1800-1802
    [35]丛北华,廖光煊,韦亚星.计算机模拟在火灾科学与工程研究中的应用[J].防灾减灾工程学报, 2003, 23(2): 63-38
    [36]谭家磊,宗若雯,支有冉.油罐扬沸火灾热辐射危害研究[J].安全与环境学报, 2009, 9(1): 130-134
    [37]林霖,房玉东,翁韬等.细水雾与火灾烟气相互作用的实验和数值模拟研究[J].中国工程科学, 2008, 10(10): 72-75
    [38]张村峰,李元洲,霍然.水喷淋作用下烟气层稳定性的判据研究[J].中国科学技术大学学报, 2006, 36(12): 1325-1330
    [39]刘军,刘敏,智会强等. FDS火灾模拟基本理论探析与应用技巧[J].安全, 2006, 1(1): 6-9
    [40]邓玲. FDS场模拟计算中的网格分析[J].消防科学与技术, 2006, 25(2): 207-209
    [41]岳海玲,李树刚,王成武.基于火灾模拟的地下商业街安全疏散评价[J].消防科学与技术, 2006, 25(2): 210-212
    [42]殷德山,柳敬献,邓云峰.单室燃气火灾后果模拟研究[J].中国安全生产科学技术, 2006, 2(1): 16-20
    [43]徐幼平,周彪,张腾. FDS在工业火灾中的应用[J].工业安全与环保, 2008, 34(5): 60-63
    [44]薛伟,张光俊. FDS火灾模拟与应用[J].吉林林业科技, 2006, 35(6): 18-21
    [45]杨君涛,魏东,李思成等.基于油罐火灾数值模拟的模型选取与分析[J].中国安全科学学报, 2004, 14(1): 28-33
    [46]刘晓平,周德闯,李振华.大型建筑内部火灾温度场的数值模拟[J].火灾科学, 2005, 15(2): 121-124
    [47]黄珏倩,李国强,杜咏.大空间火灾中火焰辐射对钢构件升温的影响[J].自然灾害学报, 2008, 17(5): 87-92
    [48]开方明,马夏康,尹谢平等.油罐区泄漏及火灾危险危害评价[J].安全与环境学报, 2004, 4(3): 3-6
    [49]刘万福,田亮,薛岗.着火油罐辐射热传递过程实验研究[J].工程热物理学报, 2004, 25(2): 271-274
    [50]陈文江,陈国华.基于虚拟现实技术的喷射火事故三维动态仿真及应用[J].中国安全科学学报, 2009, 19(3): 32-37
    [51]王其华,李占稳,雷文章等.基于CFD的井喷失控喷射火温度场和辐射场模拟仿真[J].火灾科学, 2009, 18(1): 34-38
    [52]张焕芝.国际大石油公司油气田开发关键技术研究[D].中国石油大学硕士学位论文, 2008
    [53]沈郁,于风清.石油化工企业事故应急救援预案现状及改进建议[J].中国安全科学学报, 2004, 14(10): 99-104
    [54] Young Do Jo, Daniel A. Crowl. Individual risk analysis of high-pressure natural gas pipelines[J]. Journal of Loss Prevention in the Process Industries, 2008, 21(6): 589-595
    [55] Pablo G. Fazzini, Jose Luis Otegui. Self-ignition of natural gas inside pipes at a regulation station[J]. Engineering Failure Analysis, 2009, 16(1): 187-199
    [56] Stephen Defriend, Mark Dejmek, Leisa Porter, et al. A risk-based approach to flammable gas detector spacing[J]. Journal of Hazardous Meterials, 2008, 159(1): 142-151
    [57] Sam Mannan. Lees’loss prevention in the process industries[M]. Burlington: Heinemann Publications, 2004
    [58]李苗.石化企业火灾危险性分析方法的研究[D].天津大学硕士学位论文, 2006
    [59]郑端文,刘海辰主编.消防安全技术[M].北京:化学工业出版社, 2004.4
    [60] Kevin B. McGrattan, Howard R. Baum, Ronald G. Rehm et al. Fire Dynamics Simulator (Version 5) Technical Reference Guide[P]. National Institute of Standards and Technology Gaithersburg, 2007
    [61] Drysdale D. An Introduction to fire Dynamics (Second Edition)[M]. UK, John Wiley & Sons, 1998
    [62]范维澄,万跃鹏.流动及燃烧的模型与计算[M].合肥:中国科学技术大学出版社, 1994
    [63] Bilger R.W. Computation Field Models in Fire Research and Engineering[J]. Fire Safety Science, 1995(13): 95-110
    [64]丹尼尔A.克劳尔,约瑟夫F.卢瓦尔著,蒋军成,潘旭海译.化工过程安全理论及应用[M].北京:化学工业出版社, 2006.1
    [65]冯叔初,郭揆常等.油气集输与矿场加工[M].东营:中国石油大学出版社, 2006.5
    [66] American Petroleum Institute. Risk-based Inspection[M]. Washington D. C.: API Publishing Services, 2005
    [67] Kevin McGrattan, Bryan Klein, Simo Hostikka. et al. Fire Dynamics Simulator(Version 5) User’s Guide[P]. National Institute of Standards and Technology Gaithersburg, 2007
    [68]易贤仁.火灾情况下钢结构性能分析[J].武汉科技大学学报, 2005, 27(1): 54-57
    [69]李苗.石化企业火灾危险性分析方法的研究[D].天津大学硕士学位论文, 2006.12
    [70]魏东,杨君涛,董希琳.着火油罐稳定燃烧时的辐射热分布[J].热科学与技术, 2005, 4(3): 241-244
    [71]朱建华,褚家成.池火特性参数计算及其热辐射危害评价[J].中国安全科学学报, 2003, 13(6): 25-28
    [72]白永忠,党文义,刘昌华.特大型石油化工装置间安全距离[J].大庆石油学院学报, 2008, 32(6): 71-72
    [73] National Fire Protection Association. NFPA 10: Standard for Portable Fire Extinguishers (2007 Edition)[S]. Batterymarch Park: Quincy, 2007
    [74]何英勇,葛华,贾静.天然气集输井站安全系统设置[J].天然气工业, 2008, 28(10): 105-106
    [75]方忠清.扑救低温储罐区液化气泄漏火灾的战术探讨[J].消防科学与技术, 2003, 22(6): 533-535
    [76]郭俊,周晖.天然气集输管道工程的消防研究方向[J].天然气与石油, 2008, 26 (6): 35-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700