面向起火点认定的罐区火灾数值分析及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
罐区火灾事故危害大,扑灭较困难,常造成严重的财产损失和人员伤亡。当前对起火部位的认定较大程度上仍依靠调查人员的经验。现有的物证技术应用于罐区火灾起火点认定,需要以罐区火灾扩展过程中高温、辐射等灾害特性的分布特点为依据。若进行全尺度罐区火灾模拟实验,其成本过高,周期较长,实施难度太大。因而运用数值模拟技术,获得火灾事故扩展过程中的灾害特性,推断出事故现场可能的物证特点,对指导罐区火灾事故扩展过程及起火部位的认定具有重要意义。
     本文在储罐油池火模拟实验的基础上,研究CFD技术在储罐油池火灾数值模拟方面的适用性,并用该方法对典型的罐区火灾扩展类型进行了分析,推断事故现场的物证特点。主要分为以下四个方面:
     (1)储罐油池火灾害特性及其影响因素分析。通过建立储罐油池火模拟实验平台,研究储罐油池火燃烧过程特性,对火焰的发展过程、几何形状、温度、辐射等灾害特性进行分析。并对不同充装率对火焰灾害特性的影响进行研究,分析储罐火灾事故中的火焰灾害特性规律。为研究CFD技术在储罐油池火模拟方面的应用提供对比。
     (2)钢材受火后力学性能变化研究。通过实验研究金属试样在储罐油池火中不同位置(对应不同温度)、不同时间后力学性能变化情况,探讨金属材料在承受不同火焰强度和时间下力学性能的变化特点,分析面向起火点认定的金属物证规律。
     (3)研究CFD技术在储罐油池火数值模拟方面的应用。针对模拟实验,选用PDF非预混燃烧模拟方法和带浮力修正的CFD湍流模型对储罐油池火特性进行分析,对火焰重要几何参数、火场温度、辐射分布规律进行数值研究。通过与实验的对比,检验该方法在储罐油池火数值模拟方面的合理性。
     (4)应用CFD技术推断罐区火灾扩展过程及起火点位置认定的物证依据。以某罐区为例,运用上述CFD数值模拟方法分析罐区火灾事故中典型扩展类型的灾害特点,结合钢材灾后力学性能变化的规律,推断事故现场关键位置的物证特点,为事故扩展过程和起火点的分析提供科学指导。
Oil tank fires always result in severe damage to people and property, reasoning the characteristic of harms and the difficult-to-put out. It used to depend on the experience of dispatcher to identify the fire source location when fire accidents are investigated. In addition to material evidence techniques, the investigation of fire source location should have the character and rule of high-temperature and radiation as guide. Furthermore, because of high cost and risk, it is impossible to carry out full-scale tests of oil tank fires. Therefore, applications of CFD Technology to get the characteristics of disaster are of great significance during the investigation of the fire point.
     Based on the results of the experiment of oil tank fires, the application of CFD numerical stimulation in oil tank fires was analyzed. The numerical stimulation method was used to infer the physical evidences of the fire process and analysis of original point of fire. It was carried out from the following aspects:
     (1) Analysis of combustion characters and the influence factors of oil tank fires. The research of oil tank fires was carried out through the platform for fire experiment of storage tanks. The characters of the fire audient, such as evolution, geometry, temperature and radiation, were analyzed. The experiment conditions, such as whether the tank has a subcrust of water or not, the different thickness of oil in tank and the different filling ratio, were changed regularly. The effects of the variation of these conditions to the characters of oil tank fires were analyzed. And in order to verify the availability of the numerical method, the results were used to make a contrast with the numerical results.
     (2) Research of Mechanical properties changes of metallic materials after fire disaster. By experimental studies of metal samples in different locations in fire (corresponding to different temperatures) and different time to fire, mechanical properties characteristics of metal change in the fire was studied, which help to recognize the rules of fire source location identification.
     (3) Research of CFD numerical simulation of tank fire in application. On the basis of the experiment, PDF non-premixed combustion method and CFD turbulence model with a buoyant source were chosen to analyze the characteristics of oil tank fires, the important geometrical parameters of flame, fire temperature, the distribution of radiation was studied. Comparison with the experiment, the numerical simulation method was proved to have certain accuracy.
     (4) Application research of CFD technology to tank fire developing process analysis and fire point identification. Took a certain tank zone as an example. The typical characteristics of developing types of fire were studied by CFD numerical simulation. Rules of physical evidence of the key location of the accident scene were forecasted. Basis of the typical developing type and the fire source location identification was studied, which could be guidance of fire point identification and cause analysis of the accident.
引文
[1] Planas-Cuchi E, Montiel H, Casal J. A Survey of the Origin, Type and Consequences of Fire Accidents in Process Plants and in the Transportation of Hazardous Materials[J]. Process Safety and Environmental Protection. 1997, 51(1): 77-92.
    [2]关文玲,蒋军成.我国化工企业火灾爆炸事故统计分析及事故表征物探讨[J].中国安全科学学报. 2008, 18(3): 103-107.
    [3]张颖.近年罐区火灾事故原因分析及安全预防[J].安全、健康和环境. 2002, 2(11): 28-30.
    [4] Landucci G, Gubinelli G, Antonioni G, et al. The assessment of the damage probability of storage tanks in domino events triggered by fire[J]. Accident Analysis & Prevention. 2009, 41(6): 1206-1215.
    [5]陈岩.消防知识专题讲座第3讲石油化工火灾及预防[J].安全. 2000, 21(3): 39-44.
    [6]周鸿.浅谈火灾爆炸的预防[J].化工劳动保护. 1999(4): 31-33.
    [7]魏利军,关磊,吴宗之.重大危险源安全监控系统运行模式分析与探讨[J].中国安全生产科学技术. 2006, 2(5): 37-40.
    [8]中国新闻网http://www.chinanews.com/gn/2010/07-23/2422706.shtml,2010-7-23.
    [9]中国新闻网http://www.chinanews.com/sh/2010/10-24/2608322.shtml,2010-10-24.
    [10]张玲.化工储存装置火灾事故分析物证技术研究[D].广州:华南理工大学硕士学位论文, 2010.
    [11]谈讯,杨培中,任中.面向事故调查的某民居火灾数值模拟研究[J].消防科学与技术. 2008, 27(7): 542-544.
    [12]刘茂,陈红盛,师立晨,等.装置内罐区池火灾后果的定量评价[J].石油化工安全技术. 2002(1): 16-20.
    [13] Venkatesh S, Ito A, Saito K, et al. Flame Base Structure of Small-Scale Pool Fires[J]. Combustion Science and Technology. 1996, 26(1): 1437-1443.
    [14] Heskestad G. Engineering Relations for Fire Plumes[J]. Fire Safety Journal. 1984, 7(1): 25-32.
    [15] Rasbash D J. Explosion Hazards and Evaluation[J]. Fire Safety Journal. 1984, 7(2):203-204.
    [16] Thomas P H. The Size of Flames from Natural Fires[J]. Symposium (International) on Combustion. 1963, 9(1): 844-859.
    [17] Eulàlia P, Joaquim C. Flame temperature distribution in a pool-fire[J]. Journal of Hazardous Materials. 1998, 30(3): 251-268.
    [18]傅苏红,曹广军,李继锋,等.油池火灾温度模拟计算及实际试验研究[J].工程热物理学报. 2010(8): 1411-1414.
    [19] Muqoz M, Arnaldos J, Casal J, et al. Analysis of the geometric and radiative characteristics of hydrocarbon pool fires[J]. Combustion and Flame. 2004, 139(3): 263-277.
    [20]杨立中,周晓冬,廖光煊,等.碳氢燃料泄漏火灾火焰热辐射强度估算[J].中国安全科学学报. 1999, 09(1): 35-38.
    [21]杨君涛.油罐火灾的数值模拟与实验研究[D].天津:天津大学硕士学位论文, 2005.
    [22]易亮,霍然,张靖岩,等.柴油油池火功率特性[J].燃烧科学与技术. 2006, 12(2): 164-168.
    [23]庄磊.航空煤油池火热辐射特性及热传递研究[D].合肥:中国科学技术大学博士学位论文, 2008.
    [24]弋明涛.池火与喷射火联合作用下液化气储罐的热及力学响应研究分析[D].郑州:郑州大学硕士学位论文, 2007.
    [25]熊庭.振动环境下液化气容器内热力过程数值模拟研究[D].武汉:武汉理工大学硕士学位论文, 2007.
    [26] Cleavera P, Johnsona M, Ho B. A summary of some experimental data on LNG safety[J]. Journal of Hazardous Materials. 2007, 140(3): 429-438.
    [27]邢志祥.火灾环境下液化气储罐热响应动力过程的研究[D].南京:南京工业大学博士学位论文, 2004.
    [28]蔡丽辉.池火灾沸溢早期特性数值模拟研究[D].南京:南京工业大学硕士学位论文, 2006.
    [29]王志荣,周超,贾羲,等.油罐沸溢火灾前期特性的实验研究[J].消防科学与技术. 2010, 29(1): 21-25.
    [30]朱明华.火灾原因调查方法及应用[J].武警学院学报. 2007, 23(4): 67-69.
    [31]刘义祥.火灾痕迹物证[M].廊坊:中国人民武装警察部队学院, 2007.
    [32]金河龙.火灾原因认定手册[M].长春:吉林科学技术出版, 1993.
    [33] Sklet S. Comparison of some selected methods for accident investigation[J]. Journal of Hazardous Materials. 2004, 111(1-3): 29-37.
    [34] Sinai Y L. Exploratory CFD modelling of pool fire instabilities without cross-wind[J]. Fire Safety Journal. 2000, 24(1): 1-34.
    [35] Sinai Y L, Owens M P. Validation of CFD modelling of unconfined pool fires with cross-wind: Flame geometry[J]. Fire Safety Journal. 1995, 24(1): 1-34.
    [36] Wen J X, Kang K, Donchev T, et al. Validation of FDS for the prediction of medium-scale pool fires[J]. Fire Safety Journal. 2007, 42(2): 127-138.
    [37] Ferng Y M, Lin C H. Investigation of appropriate mesh size and solid angle number for CFD simulating the characteristics of pool fires_with experiments assessment[J]. Nuclear Engineering and Design. 2010, 240(4): 816-822.
    [38]汪箭,陈贤富,Ristu Dobashi,等.油池火焰前锋的数值研究[J].计算物理. 2001, 18(6): 523-526.
    [39]李丽霞.储罐区池火灾状态下防火间距的理论基础研究[D].南京:南京工业大学硕士学位论文, 2004.
    [40]刘霞,葛新锋. FLUENT软件及其在我国的应用[J].能源研究与利用. 2003, 15(2): 36-38.
    [41]王晓宁,李丽霞,王明贤.有风情况下池火灾的数值模拟[J].江苏大学学报(自然科学版). 2006, 27(4): 328-331.
    [42]开方明,马夏康,尹谢平,等.油罐区泄漏及火灾危险危害评价[J].安全与环境学报. 2004, 04(3): 3-6.
    [43] Shen T, Huang Y, Chien S. Using ?re dynamic simulation (FDS) to reconstruct an arson ?re scene[J]. Building and Environment. 2008, 43(6): 1036-1045.
    [44] Madrzykowski D, Forney G P, Walton W D. Simulation of the Dynamics of a Fire in a Two-Story Duplex -Iowa, December 22, 1999. Building and Fire Research Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8661.
    [45] Kefalas D A, Christolis M N, Nivolianitou Z, et al. Consequence analysis of an open fire incident in a pesticide storage plant[J]. Journal of Loss Prevention in the Process Industries. 2006, 16(4): 753-759.
    [46]李一涵,邱榕,蒋勇.数值模拟方法在壁面烧损痕迹的应用[J].火灾科学. 2006, 15(2): 102-110.
    [47]姜蓬,邱榕,蒋勇.基于数值模拟的某大厦特大火灾过程调查[J].燃烧科学与技术. 2007, 13(1): 76-80.
    [48]杨君涛,魏东,李思成,等.基于油罐火灾数值模拟的模型选取与分析[J].中国安全科学学报. 2004, 14(1): 28-33.
    [49]刘晖,陈国华.红外热像检测技术在石化工业中的应用[J].石油化工设备. 2010, 39(1): 47-53.
    [50]王喜世,伍小平,秦俊,等.用红外热成像方法测量火焰温度的实验研究[J].激光与红外. 2001, 31(3): 169-172.
    [51]杨浩林,赵黛青,杨卫斌.非接触红外测温在火焰加热系统中的应用及局限性[J].工业加热. 2007(1): 5-10.
    [52]李梅,段晨东,韩旻,等.基于ADAM模块的恒温恒湿空调监控系统[J].仪表技术与传感器. 2008(2): 74-75.
    [53]陈忠祥.乙醇—柴油乳化燃料的实验性研究[D].武汉:武汉理工大学硕士学位论文, 2005.
    [54]蒋德明.内燃机燃烧与排放学[M].西安:西安交通大学出版社, 2001.
    [55]汪翔,苏万华.空化过程对柴油喷嘴内流特性的影响[J].内燃机学报. 2007(6): 481-487.
    [56]朱丽丹,聂宇宏. G4135柴油机燃烧过程数值模拟的研究[J].江苏科技大学学报(自然科学版). 2007(1): 70-74.
    [57]王黎明,王述洋.柴油机燃用生物油/柴油乳化燃料的性能试验[J].农机化研究. 2010(10).
    [58]谭家磊,宗若雯,赵祥迪.小尺度油品扬沸火灾火行为的实验研究[J].安全与环境学报. 2007(6): 92-96.
    [59] Fay J A. Model of large pool ?res[J]. Journal of Hazardous Materials. 2006, 136(2): 219-232.
    [60]姚强,李水清,王宇译著.燃烧学导论:概念与应用(第2版)[M].北京:清华大学出版社, 2009.
    [61]任中.面向事故调查的火灾数值再现方法研究及应用[D].上海:上海交通大学, 2009.
    [62] Delimont O, Martin J C. Application of Computational Fluid Dynamics modelling in the process of forensic fire investigation: Problems and solutions[J]. Forensic ScienceInternational. 2007, 211(1): 127-137.
    [63]李慧.工业罐区池火灾灾害过程的数值模拟研究[D].南京:南京工业大学, 2005.
    [64]李进良,李承曦,胡仁喜,等.精通FLUENT6.3流场分析[M].北京:化学工业出版社, 2009.
    [65] Batchelor G K. An Introduction to Fluid Dynamics[M]. Cambridge: Cambridge Univ. Press, 1967.
    [66]温正,石良辰,任毅如编著. Fluent流体计算应用教程[M].北京:清华大学出版社, 2009.
    [67] Sivathanu Y R, Faeth G M. Generalized State Relationships for Scalar Properties in Non-Premixed Hydrocarbon/Air Flames[J]. 1990, 82(Combustion and Flame): 211-230.
    [68] Fluent I. Fluent6.3 User's Guide[M]. 2006.
    [69] Chatris J M, Quintela J, Folch J, et al. Experimental study of burning rate in hydrocarbon pool fires[J]. Combustion and Flame. 2001, 126(1-2): 1373-1383.
    [70]潘旭海,蒋军成.事故泄漏源模型研究与分析[J].南京工业大学学报(自然科学版). 2002, 24(1): 105-110.
    [71]中华人民共和国公安部.建筑构件耐火试验方法[S]. 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700