多股螺旋弹簧绕制成形的若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多股螺旋弹簧(简称多股簧)通常是由2~7股0.5~3mm的碳素弹簧钢丝拧成钢索冷绕卷制而成,分为有中心股和无中心股两种结构形式,其中压缩弹簧的钢索的旋向与弹簧的旋向相反,拉伸弹簧的旋向与弹簧的旋向相同。和普通单股弹簧相比,多股螺旋弹簧具有刚度强度好、吸振减振效果好等独特性能,在汽车仪器仪表减振系统、武器发射系统以及航空发动机等多个领域中都具有重要的应用价值。
     到目前为止,已有文献对多股螺旋弹簧的静态响应特性进行了相关研究,而多股螺旋弹簧的优越性能在于弹簧变形时股中钢丝之间和股间钢丝之间的接触摩擦所产生的阻尼效果,这在很大程度上取决于多股螺旋弹簧的成形质量,但还未有针对此方面的研究工作。本文旨在通过对多股螺旋弹簧成形方法的研究,深入多股螺旋弹簧的相关理论研究基础,重点在于多股螺旋弹簧卸载回弹的理论基础、绕制试验和数值模拟的研究,以此指导弹簧的工艺生产,提高弹簧产品的成品质量。
     本文主要从以下五个方面对多股螺旋弹簧的成形方法进行了深入、细致的研究和探讨工作:
     首先,多股螺旋弹簧的各股钢丝在空间结构上皆为二次螺旋形式,通过空间坐标变换的方法,针对压缩螺旋弹簧和拉伸螺旋弹簧两种类型的弹簧,建立了钢索中各股钢丝中心线和弹簧中各股钢丝中心线的空间曲线数学模型,给出了钢丝螺旋倍数的定义,并用两种方法进行推导,为多股螺旋弹簧的几何微分理论研究建立了数学基础。
     其次,现有文献是将多股螺旋弹簧简化为多股普通圆柱螺旋弹簧的并联作用和叠加效果进行研究,而在多股螺旋弹簧在成形过程中,各股钢丝承受了二次弯曲和扭转的复合作用,普通圆柱螺旋弹簧的成形只承受一次弯曲和扭转的复合作用,因此,多股螺旋弹簧的现有简化分析方法不够精确。因此,本文在单股钢丝中心曲线数学模型的研究基础上,基于空间曲线的微分几何理论,建立了钢丝中心线的曲率、挠率等微分表达式,给出与普通圆柱螺旋弹簧的微分参数的分析比较结果。
     第三,多股螺旋弹簧的动态性能是研究的热点。基于微分几何原理,推导出了多股螺旋弹簧单股钢丝的曲率和挠率的表达式,分析了压缩和拉伸两种类型的弹簧承受应力的情况。通过有限元仿真分析了多股压缩弹簧承受速度载荷时的簧圈变形情况,股间载荷的分布情况等。在此基础上,分析了单股弹簧和单股钢丝在承载时变形特性,为多股螺旋弹簧的特性分析提供研究基础。
     第四,针对三股螺旋弹簧和内层三股外层九股的三种弹簧的绕制成形过程进行了大量的试验,实验过程主要考虑了钢丝加载张力、弹簧螺距、钢索螺距、加载速度和钢丝直径对卸载后弹簧回弹量的影响。对于回弹量的分析主要分为轴向和径向两个方面。
     第五,针对螺旋弹簧的绕制试验,采用基于ABAQUS准静态分析模式对弹簧的绕制成形和卸载回弹进行模拟分析。通过钢丝截面和接触下钢丝表面的应力变化情况表面应力情况的仿真分析,研究了钢丝材料的弹塑性变化情况。通过有限元的数值模拟结果与螺旋弹簧的绕制试验结果进行对比表明了有限元方法的有效性。
Stranded wire helical springs (multi-strand spring for short) is a cylindrically helical spring rolled by cable wire, which usually consists of 2 to 7 carbon steel wires of 0.4 to 3 mm in radius. It has two kinds of structures in accordance with whether it has central wire or not. The helix of strand is opposite in direction to that of the coils of helical compressing spring, while trenching spring and the coil spring have the same helical direction. Compared with the conventional single spring, the multi-stranded coil spring has strong rigidity and good effect of absorbing vibration, and therefore it has significant applying perspective in vibration-absorbing systems of the automobile instrumentations, discharge systems of weapons, aero-engine and other fields.
     So far, research findings on properties of multi-strand coil spring have been made in static stress strain. However, researches seldom cover the damping effect generated by frictions of strand and wire when the coil spring deforms, which is largely dependent on the number of shares in the formation of coil spring. With widely studies on formation methods and other relative research findings of multi-strand coil spring, the present thesis tentatively concentrates on theory of rebounce by unloaded multi-strand coil spring, helical experiment and numerical simulation, which is expected to guide the production of springs and improve the quality of the finished products.
     The present thesis makes efforts to detailed studies on formation of multi-strand coil spring from the following aspects:
     Firstly, steel wires of multi-strand coil spring are all in second helical form. Through transformation of space coordinates, mathematical model of curve has been established to explore the space of central line of steel wires in cable and in spring concerning compressing coil spring and trenching coil spring. It also defines multiples of steel wire helix, and applies two deductive methods to establish mathematical foundations for theoretical study of differential geometry of multi-strand coil spring.
     Secondly, the existing theory often simplifies multi-stranded coil spring as the parallel and overlay effects of ordinary cylindrical coil spring. Actually, multi-strand coil spring takes a second helix in its formation, while the ordinary cylindrical coil spring only takes one helical rotation. Therefore, the exiting simplified study method is not sufficiently precise. Based on studies of mathematical model of curve for center line of single steel wire and differential geometry of space curve theory, the present thesis gives expressions of curvature and helical ratio of the central line of steel wire as well as differential parameters for comparison with ordinary cylindrical coil spring.
     Thirdly, the dynamic performance of multi-strand coil spring is hot issue for study. Based on the principle of differential geometry, the present thesis deduces the expressions of curvature and helical ratio of multi-strand coil spring, and analyzes the stress strains to loads by compressing and trenching springs. It also analyzes deformation of multi-strand coil spring under speed load by finite element simulation method, and distribution of load on strands, etc. On this basis, deformation of loaded single-strand spring and steel wire is studied to provide research foundation for multi-strand coil spring.
     Fourthly, a large number of experiments have been made on winding formation of three-strand coil spring and multi-strand coil spring with three-strand interior and nine-strand exterior. Experiments mainly take into consideration elements such as the tension of steel wire, rotation moment of spring and cable, loading speed and wire diameter which have influence on the springback after unloading the spring. The analysis of springback is after axial and radial direction.
     Fifthly, the present thesis makes simulative analysis on winding formation and on springback after unloading of coil spring on basis of ABAQUS quasi-static pattern. It studies elastic-plasticity of steel wire through simulative analysis of performance of cross-section and surface loaded. It is proved to be effective by comparison of finite element numerical simulation with experiment result of coil spring winding experiment.
引文
[1]张英会,刘辉航,王德成.弹簧手册[M].北京:机械工业出版社,1999.
    [2]殷仁龙编著.机械弹簧设计理论及应用[M].北京:兵器工业出版社,1993.
    [3] Harold Carlson,P E.Spring Manufacturing Handbook[M].1982.
    [4]罗辉主编.机械弹簧制造技术[M].北京:机械工业出版社,1987.
    [5]成大先.机械设计手册[M].北京:化学工业出版社,2004.
    [6]谭惠民等译.机械弹簧[M].北京:国防工业出版社,1981.
    [7]闵建军.多股螺旋弹簧动态参数分析研究[D].重庆大学,2007.
    [8] Clark H H.Stranded wire helical spring-spring design and application[J].New York:McGrao-Hill Book Company,1961:92-96.
    [9] Philips J W,Costello G A.General axial response of stranded wire helical springs[J].Int. J. Non-Linear Mechanics.Vol.14:247-257.
    [10] Costello G A,Philips J W.A more exact theory for twisted wire cables[J].J. Engineering, Mech.Div. (ASCE) 100 (EM5),1974:1096.
    [11] Clark H H.Stranded wire helical springs for machine guns[J].Product Engng,1946,17(7):154-160.
    [12] Wittrick W H.On elastic wave propagation in helical spring.International[J].Journal of Mechanical Science,1966,(18):25-47.
    [13] [美]沃尔A M著.机械弹簧[M].谭惠民等译.北京:国防工业出版社,1981.
    [14]孙建芳.钢丝绳捻制成形数值模拟与制品力学强度分析[D].华中科技大学,2004.
    [15]阮煦寰,沈建军.钢丝绳生产[M].北京:北京钢铁学院,1988.
    [16]李前桂.钢丝绳生产[M].北京:冶金工业出版社,1959.
    [17]赵瑞敏.钢丝绳几何结构CAD与力学分析[D].华中科技大学,2003.
    [18]徐洪林.线接触钢丝绳捻股设备[J].金属制品,1994,21(2):21-23.
    [19]缑庆林.编制防扭钢丝绳的技术开发[J].金属制品,1998,24(1):7-9.
    [20]赵忠海.矿用钢丝绳的新结构[J].金属制品,1997,23(4):24-27.
    [21]常亚峰,魏朝晖.面接触钢丝绳生产的新方法[J].金属制品,2001,24(1):11-14.
    [22]邹林森.光纤与光缆[M].武汉:武汉工业大学出版社,2000.
    [23]秦大甲.国外航空航天用光缆发展动态[J].光纤与电缆及其应用技术,1997,3:3-9.
    [24]周银山.中心管式ADSS光缆一步法生产技术的研究[J].光纤与电缆及其应用技术,2001,1:28-30.
    [25]吴建伟.ADSS光缆的设计与制造[J].光纤与电缆及其应用技术,2001,3:39-42.
    [26]许定.中心管式防蚁非金属光缆的研制[J].光纤与电缆及其应用技术,2000,2:39-42.
    [27]朱燕杰,苏立国,付松年等.新型光纤的技术发展及应用[J].光机电信息,2001,5:1-5.
    [28] Suchir E.Fiber optics structural mechanics[C].Proceedings of the Electronic Components and Technology conference.IEEE,Piscataway,NJ,USA,95CH35820.1995:937-948.
    [29] Roshan M,McClure G and Farzaneh M.Application of ADINA to stress an optical ground wire[J].Computers and Structures,2000,72:301-316.
    [30] Lee W K,Casey N F.Helix geometry in wire rope[J].Wire Industry,1987,8:461-468.
    [31] Lee W K.An insight into wire rope geometry[J].International Journal of Solids and Structures,1991,28(4):471-490.
    [32] Richard C W,Anthony J M,William M M.Model for the structure of round strand wire ropes[R].Report of investigation,1998:1-32.
    [33] Hruska F H.Wire and Wire Products[M].1951,9.
    [34] Hruska F H.Wire and Wire Products[M].1952,5.
    [35] Utting W S,Jones N.The response of wire rope strands to axial tensile loads:partI[J].International Journal of Mechanical Science,1987,29(9):605-619.
    [36] Utting W S,Jones N.The response of wire rope strands to axial tensile loads:part II[J].International Journal of Mechanical Science,1987,29(9): 621-636.
    [37] Carlson D,Kasper R G.A structural analysis of multi-conductor cable[J].Applied Mechanics Reviews,1997,50:1-14.
    [38] Cutchins M A,Cochran J E,Guest S.et al.An investigation of the damping phenomena of wire rope isolators[C].Proceeding of the 1987 ASME Design Technology Conference,Boston,Massachusettes,1987:197-204.
    [39] Chiang Y J.Characterizing simple stranded wire cables under axial loading[J].Finite Element inAnalysis and Design,1996,24:49-66.
    [40] Machida S,Dureclli A J.Response of a strand to axial and torsional displacements[J].Journal of Mechanical Engineering Science,1973,15:241-251.
    [41] Costello G A.Theory of wire rope[M].Berlin:Spring,1990.
    [42] Phillips J W,Costello G A.Contact Stresses in twisted wire cables[J].Journal of the Engineering Mechanics Division,ASCE1974,100:1096-1099.
    [43] Costello G A,Phillips J W.Effective modulus of twisted wire cables[J].J. Engng Mech. Div.Proc. Am. Soc. Civil Engrs,1976,102:171-181.
    [44] Costello G A.Stress in multilayered cables[J].J. Energy Res. Tech,1983,105:337-340.
    [45] Phillips J W , Costello G A . Analysis of wire ropes with internal wire-rope cores[J].International Journal of Mechanical Sciences,1985,52:510-516.
    [46] Jiang W G,Yao M S,Walton J M.Modeling of rope strand under axial and torsionalloads by finite element method[C].Proceedings of the Application of Endurance Prediction for WireRopes’97,17-35.
    [47] Jiang W G , Henshall J L . The development and application of the helically symmetricboundary conditions in finite element analysis[J].Communications in Numeric al Methods in Engineering,1999,15(6):435-444.
    [48] Jiang W G.The development of the helically symmetric boundary condition in finite elementanalysis and its applications to spiral strands[D].Brunel University,UK,1999.
    [49] Jiang W G,Yao M S,Walton J M.A concise finite element model for simple straight wire rope strand[J].International Journal of Mechanical Sciences,1999,41:143-161.
    [50] Jiang W G,Henshall J L.A novel finite element model for helical springs[J].Finite Elements in Analysis and Design,2000,35:367-377.
    [51] Imanishi E , Nanjo T , Kobayashi T . Dynamic Simulation of Wire Rope With Contact[J].Journal of Mechanical Science and Technology,2009,23(4):1083-1088.
    [52] Sun J F,Wang G L,Zhang H O.Elasto-plastic Contact Problem of Laying Wire Rope Using FE Analysis[J].International Journal of Advanced Manufacturing Technology,2005,26(1-2):17-22.
    [53] Sun J F,Wang G L,Zhang H O.FE Analysis on The Laying Process of Wire Rope Based on Parametric Design[J].Wire Journal International,2005,38(6):60-64.
    [54] Wang G L,Sun J F,Zhang H O.FE Analysis of Frictional Contact Effect for Laying Wire Rope[J].Journal of Materials Processing Technology,2008,202(1-3):170-178.
    [55]王桂兰,孙建芳,张海鸥.钢丝绳捻制成形的空间几何模型与有限元分析[J].应用力学学报,2007,20(3):82-86.
    [56]孙建芳,王桂兰,张海鸥.考虑接触摩擦的金属捻线捻制成形过程的计算机模拟[J] .系统仿真学报, 2005,17(7):1746-1750.
    [57]相泽龙彦,王桂兰,木原淳二.钢丝绳成形过程模拟的弹塑性有限元法研究[C].日本塑加春讲会论文集,1998:488-493.
    [58]王桂兰,张海鸥.钢丝绳成形过程共转坐标系弹塑性有限元分析[J].华中科技大学学报,2001,29(8):65-67.
    [59]王桂兰,张海鸥.金属捻线成形过程的弹塑性有限元模拟[J].中国机械工程,2001,12(增刊):7-10.
    [44] Costello G A.Stress in multilayered cables[J].J. Energy Res. Tech,1983,105:337-340.
    [45] Phillips J W , Costello G A . Analysis of wire ropes with internal wire-rope cores[J].International Journal of Mechanical Sciences,1985,52:510-516.
    [46] Jiang W G,Yao M S,Walton J M.Modeling of rope strand under axial and torsionalloads by finite element method[C].Proceedings of the Application of Endurance Prediction for WireRopes’97,17-35.
    [47] Jiang W G , Henshall J L . The development and application of the helically symmetricboundary conditions in finite element analysis[J].Communications in Numeric al Methods in Engineering,1999,15(6):435-444.
    [48] Jiang W G.The development of the helically symmetric boundary condition in finite elementanalysis and its applications to spiral strands[D].Brunel University,UK,1999.
    [49] Jiang W G,Yao M S,Walton J M.A concise finite element model for simple straight wire rope strand[J].International Journal of Mechanical Sciences,1999,41:143-161.
    [50] Jiang W G,Henshall J L.A novel finite element model for helical springs[J].Finite Elements in Analysis and Design,2000,35:367-377.
    [51] Imanishi E , Nanjo T , Kobayashi T . Dynamic Simulation of Wire Rope With Contact[J].Journal of Mechanical Science and Technology,2009,23(4):1083-1088.
    [52] Sun J F,Wang G L,Zhang H O.Elasto-plastic Contact Problem of Laying Wire Rope Using FE Analysis[J].International Journal of Advanced Manufacturing Technology,2005,26(1-2):17-22.
    [53] Sun J F,Wang G L,Zhang H O.FE Analysis on The Laying Process of Wire Rope Based on Parametric Design[J].Wire Journal International,2005,38(6):60-64.
    [54] Wang G L,Sun J F,Zhang H O.FE Analysis of Frictional Contact Effect for Laying Wire Rope[J].Journal of Materials Processing Technology,2008,202(1-3):170-178.
    [55]王桂兰,孙建芳,张海鸥.钢丝绳捻制成形的空间几何模型与有限元分析[J].应用力学学报,2007,20(3):82-86.
    [56]孙建芳,王桂兰,张海鸥.考虑接触摩擦的金属捻线捻制成形过程的计算机模拟[J] .系统仿真学报, 2005,17(7):1746-1750.
    [57]相泽龙彦,王桂兰,木原淳二.钢丝绳成形过程模拟的弹塑性有限元法研究[C].日本塑加春讲会论文集,1998:488-493.
    [58]王桂兰,张海鸥.钢丝绳成形过程共转坐标系弹塑性有限元分析[J].华中科技大学学报,2001,29(8):65-67.
    [59]王桂兰,张海鸥.金属捻线成形过程的弹塑性有限元模拟[J].中国机械工程,2001,12(增刊):7-10.
    [79]王茂林.具有多中心的多股螺旋压缩弹簧的分析计算[J].兵工学报,1995(1):60-65.
    [80]闵建军,王时龙.多股螺旋弹簧动态计算分析[J].机械工程学报,2007,43(3):199-203.
    [81]闵建军,王时龙.多股螺旋弹簧动态设计方法[J].中国机械工程,2007,18(8):895-899.
    [82]闵建军,王时龙,周杰.新型多股簧钢丝动态张力控制系统研究[J].液压与气动,2007,(9):26-29.
    [83]王时龙,萧红,周杰等.多股螺旋弹簧的微分几何研究[J].中国机械工程,2009,20(17):2089-2099.
    [84]王时龙,周杰,康玲.多股螺旋弹簧绕制中的动态张力[J].机械工程学报,2008,44(6):36-42.
    [85]洪茂成,王时龙,任伟军等.多股螺旋弹簧三维接触摩擦研究[J].机械设计与制造,2008,(1):55-57.
    [86]杨建锁,王时龙,周杰等.多股螺旋弹簧加工机床数控系统的研究[J].组合机床与自动化加工技术,2007,(6):46-52.
    [87]王时龙,任伟军,周杰等.多股螺旋弹簧的空间曲线模型研究[J].中国机械工程,2007,18(11):1269-1272.
    [88]任平弟.钢材料微动腐蚀行为研究[D].西南交通大学,2005.
    [89] Eden E M,Rose W N,Cunningham F L.The endurance of metals[C].Proceedings of the Institution of Mechanical Engineers.1991,4:839-974.
    [90] Tomlison G A.The rusting of steel surface in contact[C].Proceeding of the Royal Society.1 927,A11 5:472-483.
    [91] Warlow-Davies E J.Fretting corrosion and fatigue strength:brief results of preliminary experiments[C].Proceedings ofthe hlstitution ofMechanical Engineers.1941,1(146): 32—38.
    [92] Mindlin R D.Compliance of elastic bodies in contact[J].ASME Journal of Applied Mechanics,1949,16:259-268.
    [93] Waterhouse R B.Fretting Wear[M].ASM Handbook,V01.18,Friction,Lubrication,and Wear Technology,ASM Intemation,USA,1992.
    [94] Berthier Y,Vincent L,Godet M.Velocity accommodation in fi'etting[J].Wear,1988,125:25-38.
    [95] Godet M.Third-bodies in tribelogy[J].Wear,1990,136:29-45.
    [96]郭强.高分子材料耐磨机理与金属绳缆微动损伤防护研究[D].清华大学精密仪器系,1996.
    [97]张德坤,葛世荣.钢丝微动磨损的评定参数及理论模型研究[J].摩擦学学报,2005,25(1):50-53.
    [98]蔡振兵,朱旻昊,张强.钢-钢接触的扭动微动磨损氧化行为研究[J].西安交通大学学报,2009,43(9):86-90.
    [100]石心余,刘启跃.表面粗糙度对微动摩擦特性的影响[J].机械,2001,28(5):26-28.
    [101]铁摩辛柯著.徐芝纶译.弹性理论[M].北京:人民教育出版社,1978.
    [102] Galin L A.Contact problems in the theory of elasticity[J].North Carolina State College,1961.
    [103] Gladwell G M L . Contact Problems in the Classical Theory of Elasticity [M]. Nehtherlands:Sijthoff & Noordhoff Intl Pub,1980.
    [104] (加) Gladwell G M L著.范天佑译.经典弹性理论中的接触问题[M].北京:北京理工大学出版社,1991.
    [105] (英) JohosonK L著.接触力学[M].北京:高等教育出版社,1992.
    [106] Oden J T,Pires E B.Non-local and nonlinear friction laws and variational principles for contact problems in elasticity[J].Transaction of the ASME Journal of Applied Mechanics,1983, 50:67-76.
    [107] Oden J T,Pires E B.Algorithms and numerical results for finite element approximations of contact problems with non-classical friction laws[J].Computers & Structures,1994,19 (1 - 2):137-147.
    [108] J J卡尔克著.李自力译.三维弹性体的滚动接触[M].成都:西南交通大学出版社,1993.
    [109]彭克俭,王德平.固体力学接触问题综述[J].沈阳航空工业学院学报,1989,1:95-101.
    [110]温卫东,高德平.接触问题数值分析方法的研究现状与发展[J].南京航空航天大学学报,1994,26(5):664-675.
    [111] Michalowski R,Mroz Z.Associated and non- associated sliding rules in contact friction problem[J].Arch.Mech,1978,30:259-276.
    [112]陈万吉,胡志强.三维摩擦接触问题算法精度和收敛性研究[J].大连理工大学学报,2003,43(5):541-546.
    [113]欧垣安,李润方.三维冲击-动力接触问题的有限元混合算法[J].重庆大学学报,1994,17(2):52-56.
    [114]李文平.弯曲回弹变分原理及其数值模拟研究[D].燕山大学,2006.
    [115]朱东波,孙琨,李涤尘等.板料成型回弹问题研究新进展[J].塑性工程学报,2002,7(1):11-17.
    [116] Gardiner F J.The Springback of Metals[J].Transactions of ASME,1957,79:1-9.
    [117] Ldomiaty A,Shabaik A H.Bending of work-hardening metals under the influence of axial load[J].Jounral of mechanical working technology,1984,10:57-66.
    [100] Buranathiti T,Cao J.An effective analytical model for springback prediction in straight flanging processes[J].International journal of material and product technology,2004,21:137-153.
    [101]余同希,张亮炽.塑性弯曲理论及其应用[M].北京:科学出版社,1992.
    [102] Hill R.The Mathematical Theory of Plasticity[M].London:Oxford,1950.
    [103] Wenner M L.On Work Hardening and Springback in Plane Stain Draw Forming[J].A merican Society for Metal,1983,2(4) :277-287.
    [104] Yuen W Y D.Springback in theSrtetch-bending of Sheet Metal with Non-uniform deformation[J].Journal of Materials Processing Technology,1990,22:1-20.
    [105] Kuwabara T.2-D Springback Analysis for Srtetch-bending Process Based on Total Strain Theory[J].SAE950691:1-10.
    [106] Zhang L C . A Mechanics Model for Sheet-metal Stamping Using Deformable Die[J].Journal of Materials Processing Technology,1995,53:798-810.
    [107] Morestin F.Elast-oplastic Formulation Using a Kinematical Hardening Model for Springback Analysis in Sheet Metal Forming[J] . Journal of Materials Processing Technology,l996,56 :619-630.
    [108] Len D K.A Simplified Approach for Evaluating Bend Ability and Springback in Plastic Bending of Anisortopic Sheet Metal[J] . Journal of Materials Processing Technology,1997,66 :9-17.
    [109] Xue P,Yu T X,Chu E.An Energy Approach for Predicting Springback of Metal Sheets after Double curvature Forming,PartI :A xisymmertic Stamping[J].In tenrational Journal of Mechanical Sciences,2001,43 :1893-1914.
    [110] Xue P,Yu T X,Chu E.An Energy Approach for Predicting Springback of Metal Sheets after Double curvature Forming , PartII : Unequal Double-curvature Forming[J].International Journal of Mechanical Sciences,200,43 :1915-1924.
    [111] EI-Megharbel A,EI-Domiauy A,Shaker M.Springback and residual stresses after stretch beading of work-hardening sheet metal[J] . Journal of materials proceeding technology,1990,24 :191-200.
    [112] Wang C T,Kinzel C,Altan T.Mathematical modeling of plane-strain bending of sheet and plate[J].Journal of maerials proceeding technology,1993,39 :279-304.
    [113] Wang C T,Kinzel C,Altan T.Process simulation and springback contron plane strain sheetbeading[C].SAE Technical paper No.930280,1993.
    [114] Zhang Z T,Lee D.Development of A New Model for Plane Strain Bending and Springback Analysis[J].Journal of Materials Engineering and Performance,1995,4(3) :291-300.
    [115] Zhang Z T,Hu S J.Srtess and Residual Srtess Distributionsin Plane Strain Bending[J].International Journal of Mechanical Sciences,1998,40(6) :53-543.
    [116] Tseng A A,Milller J,Hahn Y H.Mechanical and Bending Characteristics of Invar Sheets[J].Materials and Design,1996,17(2) :89-96.
    [117] Gau J T,Kinzel G L.A New Model for Springback Prediction in which the Bauschinger Efect is Considered[J].International Journal of Mechanical Sciences,2001,43 :1813-1832.
    [118] Inamdar M V,Date P P,Sabnis S V.On the Efects of Geomertic Parameters on Springback in Sheets of Five Materials Subjected to Air Vee Bending[J].Jounral of Materials Processing Technology,2002,123 :459-463.
    [119] Tan Z.An Empiric Model for Conrtol Spingback in V–die Bending of Sheet Metals[J].Journal of Materials Processing Technology,1992,34 :449-455.
    [120] Carden W D , Geng L M , Matlock D K , et al . Measurement of Springback[J].International Jounral of Mechanical Sciences,2002,44 :79-101.
    [121] Ueda M,Ueno M,Kobayashi M.A Study of Springback in the Srtetch Bending of Channels[J].Journal of Mechanics Working Technology,1981,5 :163-179.
    [122] Hino R,Goto Y,Shirashi M.Springback of Sheet Metal Laminates Subjected to Stretch Bending and the Subsequent Unbending[J] . A dvanced Technology of Plasticity,1999,11 :1077-108.
    [123] Bachter N, et al.Three dimensional extension of non-linear shell for mulation based on the enhance dassumed srtain concept[J].Intenrational Jounral for Numeircal Methods in Engineeirng,1994,7 :2551-2568.
    [124] Sansour C.A Theory and Finite Element Formulation of Shells at Finite Deformation Involving Thickness Change[J].Archive of Applied Mechanics,1995,65 :194-216.
    [125] Hauptmann R,Schweizerhof K.A Systematic Development of 'solid-shel' Element for Mulations for Linear and Non-linear Analyses Employing only Displacement Degrees of Freedom[J] . Intenrational Jounral for Numerical Methods in Engineering,1998,42 :49-69.
    [126] Fontes Valente R A.Developments on Shell and Solid-shell Finite Elements Technology in Nonlinear Continuum Mechanics[D].University of Porto,2004.
    [127] Huh H,Han S S.Modified Membrane Finite Element Formulation Consider Bending Efects in Sheet Metal Forming Analysis[J].Int.J.Mech.Engg,1994,136(7) :659-671.
    [128] Pourboghrat F,Karabin M E,Becker R C,et al.A Hybrid Membrane(shell) Method for Calculating Springback of Anisortopic Sheet Metals Undergoing A xisymmetric Loading[J].International Journal of Plasticity,2000,16 :677-700.
    [129] Yoon J W,Pourboghrat F,Chung K,et al.Springback Perdiction for Sheet Metal Forming Process Using a 3D Hybrid[J].Intenrational Journal of Mechanical Sciencesc,2002,44 :2133-2153.
    [130]叶又澎,颖红,阮雪榆.板料成形数值模拟的关键技术及难点[J].塑性工程学报,1997,4(2) :19-23.
    [131]柳玉启.板料成形塑性流动理论及起皱回弹的数值模拟研究[D].吉林工业大学,1996.
    [132]王晓林.蒙皮拉形过程有限元数值模拟研究[D].北京航空航天大学,1999.
    [133]李雪春.弯曲成形中材料性能参数在线实时识别及精度预测研究[D].哈尔滨工业大学,2001.
    [134]张彬,李东升,周贤宾.基于人工神经网络的拉形回弹预测技术研究[J].塑性工程学报,2003,10(2) :28 -31.
    [135]黄智,李光耀,钟志华.自适应模糊神经网络在板料弯曲回弹预测中的应用[J].计算机仿真,2003,20( 11 ) :58-60.
    [136]刁法玺,张凯锋.板料V形弯曲回弹的动力显式有限元分析[J].材料科学与工艺,2002, 10(2):170-174.
    [137]刘艳芳,施法中.板料冲压成形回弹的有限元数值模拟研究[J].塑性工程学报,2004, (4) :36-39.
    [138] Toi Y,Lee J B,Taya M.Finite element analysis of superelastic,large deformation behavior of shape memory alloy helical springs[J].Computers and Structures,2004,82 :685–1693.
    [139] Fakhreddine D,Mohamed T,Said A,et al.Finite element method for the stress analysis of isotropic cylindrical helical spring[J].European Journalof Mechanics A/Solids,2005,24 :1068–1078.
    [140] Gurgoze M ,Cakar O,Zeren S.On the frequency equation of a combined system consisting of asimply supported beam and in-span helical spring–mass with mass of the helical spring considered[J].Journal of Sound and Vibration,2006,295:436-449.
    [141] Gau J T,Kinzel G L.An experimental inverstigations of the influence of the Bauschinger efect on springback predictions[J].Journal of Materials ProcessingTechnology,2001,108 :369-375.
    [142]邹定伟.中国弹簧行业现状、差距和展望[J].弹簧工程.2003,12(1):2-5.
    [143]冯鹏志.我国近三年弹簧产品进出口统计及简析[J].弹簧工程,2003,12(1):44.
    [144]夏美霞.我国装备制造业的现状和发展方向[J].机械制造,2004,16(2):22-24.
    [145]苏波.加快发展装备制造业是我国经济结构调整的战略选择[J].中国机电工业,2001,14(2):22-23.
    [146]邹定伟.我国弹簧业总体技术水平落后30年[N].中国工业报,2003年10月30日.
    [147]刘延柱.弹性细杆的非线性力学—DNA力学模型的理论基础[M].北京:清华大学出版社,2006.
    [148]杨文茂,李全英.空解析几何[M].武汉:武汉大学出版社,2004:160-165.
    [149]毕继红,王晖.工程弹塑性力学[M].天津:天津大学出版社,2003.
    [150]丁大钧,单炳梓,马军.工程塑性力学[M].南京:东南大学出版社,2007.
    [151]谢水生,李雷.金属塑性成形的有限元模拟技术及应用[M].北京:科学出版社,2008.
    [152]李硕本等.冲压工艺理论与新技术[M].北京:机械工业出版社,2002.
    [153]王勖成.有限单元法[M].北京:清华大学出版社,2005.
    [154]赵腾伦.ABAQUS6.6在机械工程中的应用[M].北京:中国水利水电出版社,2007.
    [155]庄茁,由小川,廖剑晖等.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700