两种轨道扣件弹条失效分析及有限元模拟分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扣件是连接钢轨和轨枕使之形成轨排的部件,对保证轨道稳定性、可靠性起到重要作用,对铁路运输的安全起着重要影响。Ⅲ型扣件是一种为高速重载铁路设计的新型无螺栓无挡肩扣件,由弹条、预埋铁座、绝缘挡块和钢轨缓冲垫组成。SK115型扣件是高速铁路用的一种扣件,具有高弹程等优点。扣件在实际使用中,由于弹条与预埋铁座或螺栓接触界面之间的摩擦磨损及材料性能等的影响,导致受力接触面积变化,造成弹条在其使用寿命周期内发生松动或断裂失效问题,使扣件系统扣压力变小,即弹条发生失效。
     本论文以失效的弹条为研究对象,结合显微硬度仪、光学显微镜(OM)、体式显微镜、扫描电子显微镜(SEM)等分析弹条的失效机理;并运用Solidworks和ABAQUS软件模拟分析弹条扣件的安装过程,分析扣件系统在不同工况下的响应,与实验结果相互印证,并提出一些相关建议和预防措施,得到结论如下:
     1.根据本研究结果表明:弹条与其他部件接触界面间存在严重的磨损;断裂失效的原因为表面缺陷、材料疏松和应力集中促进了裂纹的萌生和发展,导致弹条的断裂。建议弹条钢加工工艺过程中应当尽量避免材料内部气孔的产生,表面应尽量保证平滑,弹条使用时应注意防锈防腐蚀。
     2.建立了弹条Ⅲ型扣件三维实体模型,分析弹条上应力分布,结果表明:在弹条大圆弧处存在应力集中,此处剪应力最大促进微裂纹的形成,拉应力最大利于裂纹的扩展,此位置与实际结果断裂位置一致。
     3.研究分析了弹条与预埋铁座间的接触摩擦系数、法向位移载荷对弹条Miese应力、剪应力、Y向正应力和扣压力的影响。结果表明:随着摩擦系数的增加,弹条大圆弧处应力逐渐增加,更加有利于弹条在此处的裂纹萌生和扩展;扣压力逐渐降低,减弱扣件对轨道的作用;当法向位移载荷大于14mm时,弹条大圆弧的Mises应力会达到其屈服极限,迅速导致裂纹的萌生和扩展。
The fastener which connect rails and sleepers to form the track panel it plays an important role to ensure the reliability and stability of the track, and has an important impact on the safety of the railway transport. The type III spring fastener is a new fastener which designed for the high-speed and heavy rail without bolts and shoulder block, it combined with the spring, the embedded iron socket, the insulating stopper and the rail cushion. The SKL15elastic fastener is a high-speed railway fastener with the advantage of high-elastic process. In actual use, as the influence of the friction and wear of the contact interface between the embedded iron seat or bolt and the spring, material properties and so on, the contact area in the force changes, resulting in the spring appears the problem of loosening or fracture failure in its life cycle, the pressure of the fastener system gets smaller, so that the spring becomes failure.
     This paper makes the failure of the spring as the object of the study, combined with micro hardness tester, optical microscopy (OM), stereo microscope, scanning electron microscope(SEM)and so on, it analysis the failure mechanisms of the spring, and use Solid works and ABAQUS software to simulate and analysis the installation process of the spring fastener, it analysis the response of the fastening system under different work conditions compared with the experimental results, and give some suggestions and preventive measures, The main results were as follows:
     1. According to the results of this study it show that the heavy wear exists in the contact interface between the spring and the other components; the result offracture failure is surface defects, loose material and stress concentration which promote crack initiation and development, resulting in the fracture of the spring. The machining process of the spring steel should try to avoid the generation of holes inside the material, the surface should try to ensure the smooth, and the use of the spring should pay attention to rust and corrosion.
     2.The three-dimensional solid model of the type III spring fastener is established to analysis the stress distribution of the spring, the results showed that:the stress concentration existsin the big arc of the spring where the shear stress is the maximum to promote the formation of micro cracks, the max tensile stress conducive to crack propagation, this position is consistent with the actual results to fracture location.
     3. The influence of friction andnormal displacement load on Miese stresses of the spring, shear stress, the normal stress of Y direction and buckle pressure. The results showed that:With the increase in the coefficient of friction, the stress in the arc of the spring gradually increased, more conducive to the crack initiation and propagation; buckle pressure gradually reduced, weakened the role of the fastener to track; when the displacement load greater than14mm, the Mises stress of the big arc of spring reaches its yield limit, quickly lead to crack initiation and propagation.
引文
[1]于春华.铁路钢轨扣件发展综述.铁道标准设计.2006,S1:188-191.
    [2]盛伟,付传锋.高速铁路扣件系统的类型与应用.金属加工,2010,7:31-35.
    [3]Lubrication (Tribology) Education and Research-A Report on the Present Position and Industry's Needs. Her Majesty's Stationery Office, London:1966.
    [4]刘维民,薛群基.摩擦学研究及发展趋势.中国机械工程.2000,11(Z1):77-80.
    [5]薛群基.中国摩擦学研究和应用的重要进展.科技导报.2008,(23):3.
    [6]张嗣伟.我国摩擦学工业应用的节约潜力巨大——谈我国摩擦学工业应用现状的调查.中国表面工程.2008,21(2):50-52.
    [7]黎明,雷源忠.摩擦学—前沿领域的探索.中国矿业大学学报.1999,28:117-118.
    [8]朱旻昊.径向与复合微动的运行和损伤机理研究.西南交通大学博士论文.2001.
    [9]蔡振兵.扭动微动机理研究.西南交通大学博士论文.2009.
    [10]Y.Tian,N.Pesika,H.B.Zeng,et al. Adhesion and friction in gecko toe attachment and detachment. Proceedings of the National Academy of Sciences of the United States of America,2006,103(51):19320-19325.
    [11]陈晓传.疲劳与断裂.武汉:华中科技大学出版社.2002.
    [12]才庆魁,秦振华,刘常升译.疲劳断裂与疲劳预防.辽宁科学技术出版社.1991.
    [13]刘新灵,张铮,陶春虎.疲劳端口定量分析.北京:国防工业出版社.2010.
    [14]Ewing J A,Humfrey J C.The fracture of metals under rapid alterations of stress.Philosophical Transactions of the Royal Society, London,1903,A200:241-250.
    [15]尚德广,王德俊.多轴疲劳强度.科学出版社.2007.
    [16]R.B.WATERHOUSE微动磨损与微动疲劳.周仲荣,金雪岩,朱旻昊等译.成都:西南交通大学出版社.1999.
    [17]M.H.Zhu,Z.R.Zhou,Ph.Kapsa,L.Vincent. Radial fretting fatigue damage of surface coatings.Wear 250 (2001) 650-657.
    [18]M.H.Zhu,H.Y.Yu,Z.B.Cai,Z.R.Zhou.Radial fretting behaviours of dental feldspathic ceramics against different counterbodies. Wear.2005,259(7-12):996-1004.
    [19]Z.B.Cai,M.H.Zhu,X.Z.Lin.Friction and wear of 7075 aluminum alloy induced by torsional fretting. Transactions of Nonferrous Metals Society of China.2010,20(3):371-376.
    [20]M. H. Zhu, Z. R. Zhou. On the mechanisms of various fretting wear modes. Tribology International,44(2011)1378-1388.
    [21]M.H.Zhu,Z.R.Zhou.Dual-motion fretting wear behaviour of 7075 aluminium alloy. Wear. 2003,255(1-6):269-275.
    [22]沈明学,彭金方,郑健峰,宋川,莫继良,朱旻昊.微动疲劳研究进展.材料工程,2010,12:86-91.
    [23]卢祖文.我国的铁路钢轨扣件.中国铁路,2005(7):25-27.
    [24]韩志强.弹条扣件的发展及高速铁路的扣件选择.山西建筑.2005,31(7):131-133.
    [25]Jaroslav Smutny.Measurement and analysis of dynamic and acoustic parameters of rail fastening.NDT&E International.2004,37:119-129.
    [26]D.J.Thompson and J.W.Verheij.The Dynamic Behaviour of Rail Fasteners at High Frequencies. Applied Acpusfics,1997,52(1):1-17.
    [27]武青海,陈厚嫦,周虹伟,朱勇更.应用非线性接触理论分析弹条III型扣件中弹条的应力和变形.中国铁道科学.2003,24(1):69-73.
    [28]李伟强.城市轨道交通中单趾弹条扣件的弹条强度分析.交通科技.2012,2:78-84.
    [29]胡晓辉60Si2Mn弹条断裂失效分析.理化检验-物理分册.2001,37(11):498-499.
    [30]张继红,高国庆60Si2Mn弹条断裂分析.2004,31(10):56-57.
    [31]易汉平.铁路用II型弹条断裂的原因及改进措施.广西铁道.2009,1:12-13.
    [32]郭和平,李彪,李玉生60Si2MnA弹条断裂分析.失效分析与预防.2011,6(2):90-123.
    [33]董哲仁.钢筋混凝土非线性有限元法原理及应用.北京:中国铁道出版,1993.
    [34]蒋春松.316L 不锈钢弯曲微动疲劳特性的数值模拟研究.西南交通大学,硕士论文,2012
    [35]吴富民.结构疲劳强度.西南:西北工业大学出版社,1985.
    [36]王德俊,何雪法.现代机械强度理论及应用.北京:科学出版社,2003.
    [37]黄学增.高镇同.弯扭符合疲劳强度准则.机械强度.1983(3):36-41.
    [38]罗晓勇.Ⅲ型弹条扣压力的研究及应用.铁道标准设计.2002(6):15-16.
    [39]徐冠宇,王志响60Si2MnT铁路Ⅲ型弹条用钢的生产实践.鄂钢科技.2007,4:1-3.
    [40]曾召林.Ⅲ型弹条变形强化的研究及实践.轨道工程学报.2001,3:132-134.
    [41]于向东,曾召林.Ⅲ型弹条变形强化的研究及实践.长沙铁道学院学报.2001,19(3):95-99.
    [42]赵建生.断裂力学及断裂物理.华中科技大学出版社.2003.
    [43]翟正龙,李丰功,杜显彬,等.铁路弹条用水淬弹簧钢38Si7的开发及应用.钢铁研究.2001,(4):29-41.
    [44]蒋江明,朱水珍.客运专线道岔铁垫板断裂分析.失效分析与预防.2009,4(4):205-208.
    [45]Gough H J.The fatigue of metals.london:Benn,1926.
    [46]Froustey C,Lataillade J L.Influence of the microstructure of aluminium alloys on their residual impact properties after a fatigue loading program.Materials Science and Engineering A.2009,500(1):155-163.
    [47]钟群鹏.材料失效诊断、预测和预防.中南大学出版社.2009.
    [48]J.A.Pape,R.W.Neu.Subsurface damage development during fretting fatigue of high strength steel.Tribology International 40(2007)1111-1119.
    [49]邓凡平.ANSYS10.0有限元分析自学手册.北京:人民邮电出版社,2007.
    [50]刘展.ABAQUS6.6基础教程与实例详解.北京:中国水利水电出版社,2008.
    [51]铁道部科学研究院金属及化学研究所.铁路常用材料P-S-N曲线及Good man图手册.北京:铁道部科学研究院金属及化学研究所,1999.
    [52]中华人民共和国铁道行业标准TB/T2329.弹条Ⅰ型、Ⅱ型扣件弹条疲劳试验方法.2002.
    [53]铁道科学研究院.京沪高速铁路扣件技术条件.2004.
    [54]Derek Hull著.李晓刚,董超芳,杜翠薇,高瑾,卢琳译.断口形貌学.科学出版社.2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700