新型板式换热器内高粘性流体传热与流动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
板式换热器是近年来发展很快的热交换设备,但相对其他型式的热交换设备,由于阻力较大一直影响其在高粘性介质换热领域中的应用。在分析影响对流换热关键因素的基础上,研究了高粘性流体在一新型板式换热器内换热时的传热与阻力特性,并应用场协同的基本原则对其换热特性进行了分析。最后从热力学
     (Exergy)损角度分析了不同换热条件下流道形状(长宽比)对板式换热器内流动与换热过程中热力学性能的影响。
     通过分析Reynolds及Prandtl关于对流换热的经典假设,认识到表面传热系数取决于壁面法线方向上流体的质量输运。使用Blasius解等成熟的理论成果分析大平板上的层流对流换热,结果表明:无限大平板上的局部表面传热系数正比于当地热边界层内壁面法线方向上的平均速度。对文中得到的表面传热系数与流体在边界层内壁面法向上平均速度的正比关系,同边界层能量积分方程中得到的对流换热关系作了比较和鉴别。
     通过对边界层内对流换热过程热阻的分析,计算了Prandtl模型的导热层厚度。随着Pr数的增加,导热热阻逐渐减小,纯对流热阻逐渐增加。在边界层发展过程中,其导热热阻和纯对流热阻之比保持不变,该比值随着Pr数的增加逐渐减小并在Pr数>10后基本趋于稳定。
     对复合波纹板式换热器进行了水水换热和水油换热实验测试,得到了复合波纹板式换热器在雷诺数范围2000<Re<20000和较低雷诺数范围50<Re<360内换热特性和阻力特性的实验关联式。并将实验结果与文献报道的研究结果进行了比较,证实在低Re数下复合波纹板式换热器的传热-阻力综合性能优于传统人字型板式换热器。
     选取与实验板片完全相同的波纹几何参数及对流换热条件,建立数值计算物理模型,得到的数值计算结果与实验结果一致性较好,说明在复合波纹板片形成的复杂通道内利用数值方法研究其换热和流动规律是可靠的。通过分别建立不同波纹几何参数模型的数值研究方法,分析得到了每个波纹几何参数对复合波纹板式换热器换热和流动特性的影响规律,讨论了介质粘性以及粘性受温度影响时换热和流动特性随波纹几何参数改变时的规律。
     归纳得到了研究Re数范围内包含波纹几何参数影响的复合波纹板片换热准则关联式和阻力关联式,可作为该板型换热器设计计算和参数优化的依据。
     应用场协同原理,分析了壁面法向矢量与流动速度矢量间的协同程度对表面传热系数的影响。通过在平板、人字型波纹板以及复合波纹板上壁面法向速度影响表面传热系数的趋势分析,阐述了fluent数值模拟软件取到的数据与h-v正比关系的差异及出现差异的原因。
     对比研究了同为波纹倾角60°的复合波纹板片和人字型波纹板片,结果表明复合波纹板片具有更显著的强化换热作用,从传热壁面法向同速度的夹角余弦场与速度场间良好匹配可以强化换热的角度阐释了上述结果。
     最后从热力学(火用)损角度,数值分析了不同流量下板片宽长比对传热和流动产生比(火用)损的影响。通过板片宽长比对恒热流、恒壁温及等质量逆流时比(火用)损影响的分析,发现上述三类条件下取得最小比总(火用)损时,比热(火用)损大于比流(火用)损,且占据总(火用)损中的多数份额。且随流量的增加,三类条件下取得最小比(火用)损时板片的宽长比增大;随流量的增加,恒热流换热时最小比(火用)损出现先增加而后减小的趋势,主要由于换热温度及换热温差共同作用导致。随流量的增加,恒壁温及等质量逆流时的最小比(火用)损增大,主要由于传热温差增大导致。相同流量时,恒热流,恒壁温及等质量逆流条件下,波高的增加均导致最佳宽长比γ_g减小。相同流量时,恒壁温及两侧介质等质量逆流条件下,波高的增加导致最佳宽长比时的比总(火用)损呈现增加的趋势。
As a type of thermal power mechanical apparatus, plate heat exchangers are developing rapidly in recent years. Comapred with other types of thermal power apparatus, it is fewly used in heat transfer of high viscosity fluid for its disadvantage in flow resistance. The heat transfer and flow resistance properties of high viscos media in PHE are researched, which is based on the analys in critical factor of influencing heat transfer. The principles of synergism theory are applying in heat transfer properties analysis of new type PHE. Finally, thermol dynamical properties of plate heat exchangers in differential channel shape and mass flux using exergy.
     Heat transfer coefficient is determined on mass transport of the direction nomal to wall while tracking the idea of Reynolds and Prandtl in depicting heat convection. The heat convection can be analysis by using the ripe Blasius Resolution on unlimited plate. The result indicate that local heat transfer coefficient direct ratio to average velocity which direct upright to wall in thermal boundary layer. And compare that with the intergral energy equation in boundary layer. The synergism parameters are the velocity vector and the wall normal vector if the heat transfer coefficient is considered, and the parameters are the velocity vector and temperature field if the heat flux is considered.
     Thermal resistance in boundary layer is researched base on prandtl model and thickness thermal viscous layer in Prandtl Model are calculated. The propotion of conduction resistance increase and the propotion of convection resistance decrease with increase of Prandtl number. The ration between conduction ressistance and convection resistance unchanged with the development of boundary layer, and the ration decrease step with Prandtl Number increase. The ration touch a fix value after Pr>10.
     Heat transfer and flow resistance properties of compound corrugate PHE are tested on their experimental unit. The experimental correlated equation of heat transfer and flow resistance are achieved in the range of 2000     Physical and numerical models is constructed as same as the experimental PHE. Numerical simulation result shows that it is accord with experiment almostly. That indicates it is reliable to simulating heat convection in such complex channels as compound corrugated plates. The simulation has advantages in economization for time and expense obviously, which can be used in researching new PHE for several corrugate parameters in heat transfer and flow properties. The relational discipline of each corrugate parameter is analysised in heat transfer and flow resistance properties, which including consideration of visocity and viscosity various in temperature.
     The relations between heat transfer /flow resistance and Reynolds number, which contains corrugate parameter, are conclude in the range of Reynolds number that researched. It can sustain the designing or optimize compound for corrugated PHE. The numerical results are analysis using synergism theory. Difference between fluent data and h-v relation is induced by thei data acquire types.
     The compound corrugated type is distinct advance over inclined corrugated type with the same obliquity (60°). The conclusion is interpreted with synergism performance and synergism matching performance.
     The Exergy dissipation of common inclined corrugation is researched from aspect of specific exergy dissipation that derivating from heat transfer and flow resistance. The relation between specific exergy dissipation and width-length-ratio /flux is analysised and summarized. The minum specific dissaption of constand heat flux are as same as that of constant wall temperature and converse flow with equal flux. The result is that the specific heat dissipation is farly larger than flow dissipation while the minimum dissapition are achieved.
     The width-length-ratio(WLR) are increased while minimum specific dissipation with the increase of flux. The minimum specific dissipation of constant heat flux is first increase and then decrease with the increase of flux, which are induced by temperature and temperature diffrerence. The minimum specific dissipation of constant temperature and converse flow are increase with the flux increase, which is induced by the increase of temperature difference. The optimazed WLR reduce while corrugation depth increase in same flux for constant wall temperature, constant wall heat flux and counter flow. The specific exergy dissipation on optimize WLR are increase while corrugation depth increase in same flux for constant wall temperatue and counter flow.
引文
[1]荆海鸥.慎用运动粘性系数比较流体的粘性大小[J].山东机械,2003,(05):28-29.
    [2]顾维藻等.强化传热[M].北京:科学出版社,1990.
    [3]Shah R K,London A L.Laminar flow forced convection in ducts[C].In:Hartnett J P,Irvine T F,eds.Advances in heat transfer,supplement 1.New York:Academic Press,1978:78-84
    [4]戴有为.对流传热分析[M].北京:高等教育出版社,1989.
    [5]Lundberg,R.E.,W.C.Reynolds,and W.M.Kays,NASA TN D-1972.1963.
    [6]Reynolds,W.C.[J]Trans ASME,Ser.C,V 82,1960:108.
    [7]Shah,R.K.,and A.L.London:[J].J.Heat Transfer.1974,96:45-54
    [8]杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社,1998.
    [9]Blasius,H.:Z(Angew.).[J]Math.Phys.1908,56.
    [10]Langhaar,H.L.:[J].J.Appl.Mech.1942,9.
    [11]V.S.阿巴兹,P.S.拉森,对流换热[M],1992.
    [12]史良文,查正清,李卫东.高粘度物料的强化传热技术[J].矿冶,1997,6(2):17-20.
    [13]张伟.电站冷油器的运行分析与强化传热研究[J].山东电力技术,2003,(5):7-9
    [14]Rethumadhavan R,Rao M R.Turbulent flow heat transfer and fluid friction in helical-wire-coil-inserted tubes[J].Int.J.Heat Mass Transfer,1983,26(12):1 833-1 845.
    [15]陈礼,江求固,雷军民.螺旋丝径对内插螺旋线圈圆管油类介质强迫对流的影响[J].重庆大学学报,1993,16(3)
    [16]张至英,戴干策.管内插入螺旋线圈强化传热的研究[J].化工装备技术),1991,12(4):10-15.
    [17]刘晓华,李淞平,沈自求,祁胜杰.螺旋线圈强化管内单相流体传热的研究[J].石油化工高等学校学报.2001,14(3):57-59
    [18]蔡锡琮,徐传福.目前电站燃油加热器的应用与分析[J].电站辅机.1994,(2/3):52-53
    [19]张世涌.管式冷油器结构型式的探讨[J].电站辅机.1994,(2/3):45-49
    [20]马晓茜.重油加热器强化传热方式的选择[J].电站辅机,1995.(4):45-47
    [21]Hong S W,Bergles A E.Augmentation of laminar flow heat transfer in tubes by means of twisted-tape inserts[J].Journal of heat transfer.1976,98(2):251-256
    [22]Drizhyus M R M,Shkema R K,Shanchyauskas.heat transfer in twisted strean of water in a tube[J].Int.Chem.Eng.,1980,20(3):486-489
    [23]王锁芳,高胜勇.低Re数管内强化对流传热实验研究[J].南京航空航天大学学报,1996,28(1):137-140
    [24]崔乃瑛,陆应生.管内插入物强化单相流体传热的研究[J].化工学报,1983,(1):427-439
    [25]吴双应,辛明道.扭带管内油的受迫对流换热实验[J].重庆大学学报(自然科学版),1995,18(1):113-117.
    [26]钱伯章.无相变液-液换热设备的优化设计和强化技术(Ⅱ),化工机械,1996,23(3)[J]:45-50.
    [27]朱慎林等.Kenics型静态混合器用于强化管道传热的研究[J],化学工程,1987,(3):15-22.
    [28]杜吉宾等.新型强化换热器的性能分析与对比[J],压力容器,1995,12(1):52-55.
    [29]徐天华.用管内插入物强化液体传热[J].化工炼油机械,1984,(6)
    [30]徐天华,崔乃瑛,谭盈科.管内插入物强化高粘流体传热[J],化学工程,1988,16(6):7-15
    [31]朱冬生.插入物强化管壳式换热器管内高粘度流体的传热[J].石油炼制与化工,1998,29(7):39-41
    [32]Fernandez J.L,Robert.Poulter.Heat transfer enhancement by means of flag-type insert in tubes[J].Int.J.Heat Mass Transfer,1987,130:2603-2608
    [33]宋东辉.后掠梯形-旗形动态插入件对管内紊流强化换热的实验研究[C],中国工程热物理学会传热传质学术会议论文集,烟台,1991:165-172
    [34]向东,陈礼,陈清华.管内旗形件后掠角对油类介质对流换热的影响[J].重庆大学学报(自然科学版),1995,18(2).
    [35]张卫军,张岩,金珠梅.粘性流体管内复合强化传热的实验研究[J].物理测试,1998,(1):31-33
    [36]Hiromoto Usui and Yuji Sano,et.al.Heat transfer enhancement effects by combined use of internally grooved rough surface and twisted tapes[J].Heat transfer Japanese Research,1985,3(4):19-32
    [37]沈慧,周强泰.螺纹管插入扭带复合强化传热实验研究[C],中国工程热物理学会传热传质分会论文集,1987.
    [38]吴双应,辛明道.油在加扭带的三维肋管内的流动阻力和传热性能[J].工程热物理学报.1996,17(1):131-134
    [39]廖强,辛明道.三维内肋管内插入螺旋扭带的强化传热实验[J].工程热物理学报.1994,15(2):200-204
    [40]朱志林.液压机换热器改造及效果分析[J].中国设备工程.2004,(7):17-18.
    [41]Anonymous.PLATE HEAT EXCHANGER IMPROVES BEARING OIL COOLING PERFORMANCE[J].Power Engineering.2004,108(10):71-71
    [42]F.S.K.Warnakulasuriya,W.M.Worek.Heat transfer and pressure drop properties of high viscous solutions in plate heat exchangers[J].International Journal of Heat and Mass Transfer.2008,51:52-67
    [43]R.M.MANGLIK and J.DING.Laminar flow heat transfer to viscous power law fluids in double-sine ducts[J].lnt.J.Heat Mass Transfer.1997,40(6):1379-1390
    [44](苏联)A.M.马斯洛夫,高粘度液体传热设备,1990,9:118-137
    [45]Raju K.S.N,and Bansal J.C.Plate Heat Exchangers and Their Performance in low Reynolds Number Flow Heat Exchanger[C].S.kakac et al.,eds,Hemisphere Publishing,Washington.1983,4:899-912
    [46]Shah,R.K,Focke W.W.Plate Heat Exchangers and Their Design Theory in Heat Transfer Equipment Design[C].R.K.Shah et al.,eds,Hemisphere Publishing.Washington.1988:4.149-4.176
    [47]Lawry F.J.Versatile,Flexible and Easy-to-Operate Plate Type Heat Exchangers Give Increased Heat Flux[J].Chemical Engineering.1959,66(13):89-94
    [48]Cooper A.Recover More Heat with Plate Heat Exchangers[J].Chemical Engineering.1974,285:280-285
    [49]Polar S,Manglik R.M.,and Wilkins,R.L.Forced Convective Boiling of a Non-Newtonian Liquid in a Multipass Plate Heat Exchanger[C].AIChE Symposium Series.1993,89:230-235
    [50]Kumar H.Evaporation in Plate Heat Exchangers[C].AIChE Symposium Series,1993,89:211-222
    [51]Jonsson I.Plate Heat Exchangers as Evaporators and Condensers for Refrigerants[J].Air Conditioning and Heating,1985,39(9):30-35
    [52]Sjogren S,Gruerio W.Applying Plate Heat Exchangers in Hydrocarbon Processing[J].Hydrocarbon Processing.1983,62(9):133-136
    [53]Gillham M.W.H.New Composite Material for Plate Heat Exchangers[J].Materials & Design.1988,9(4):192-194
    [54]Panchal C.B.Condensation Heat Transfer in Plate Heat exchangers[J].Two-Phase Heat Exchanger Symposium.1985,44:45-52
    [55]Wagner,R.L,Sjogren,S.Optimizing Heat Exchanger Design for Crude Oil Stabilization[J].Chemical Engineering,1985,1:46-51
    [56]杨崇麟.板式换热器工程设计手册[S].北京:机械工业出版社,1994
    [57]安英华.板式换热器在集中供热系统中的应用问题[J].区域供热,1989,(3):29-31
    [58]Focke W.W.The Effect of the corrugation inclination angle on the thermo hydraulic performance of plate heat exchangers[J].Heat Mass Transfer.1985,28(8)
    [59]Jian Wen,Yanzhong Li,Aimin Zhou,Ke Zhang.An experimental and numerical investigation of flow patterns in the entrance of plate-fin heat exchanger[J].International Journal of Heat and Mass Transfer.2006,49:1667-1668
    [60]Jian Wen,Yanzhong Li,Aimin Zhou,Ke Zhang.PIV Investigations of Flow Patterns in the Entrance Configuration of Plate-fin Heat Exchange[J]r.Chinese Journal of Chemical Engeering.2006,14(1):15-23
    [61]Jian Wen,Yanzhong Li,Aimin Zhou,Ke Zhang.PIV experimental investigation of entrance configuration on flow distribution in plate-fin heat exchanger[J].Cryogenics,2006,46(1):37-48
    [62]赵镇南.板式换热器人字波纹倾角对阻力及传热性能的影响[J].石油化工设备,2001,S1:6-8
    [63]王中铮,赵镇南.新板型板式换然器的研究[R].天津:天津市科委,1990
    [64]Muley,A,Manglik,P.M.Experimental Study of Turbulent Flow Transfer and Pressure Drop in a plate Heat Exchanger with Chevron Plates[J].Journal of Heat Transfer.1999,121(1):110-117
    [65]Kwan-Soo Lee~*,Woo-Seung Kim,Jong-Min Si.Optimal shape and arrangement of staggered pins in the channel of a plate heat exchanger[J].International Journal of Heat and Mass Transfer.2001,44:3223-3231
    [66]Mir-Akbar Hessami.Thermo-hydraulic Performance of Cross-corrugated Plate Heat Exchangers[J].Department of Mechanical Engineering.1996,6:116-123
    [67]王中铮,吕静.一种高效强化传热新技术[J].节能.2001,1:12-14
    [68]H.M.Metwally,R.M.Manglik.Enhanced heat transfer due to curvature-induced lateral vortices in laminar flows in sinusoidal corrugated-plate channels[J].International Journal of Heat and Mass Transfer.2004,47:2283-2292
    [69]Muley.Heat transfer and pressure drop in plate heat exchangers[D].Doctor of philosophy in Department of Mechanical,Industrial and Nuclear Engineering of the College of Engineering in University of Cincinnati
    [70]许淑惠,周明连.板式换热器进出口流道内的压力分布、流阻及流型显示的实验研究[J].节能.1996,8:12-15
    [71]Yasar Islamoglu,Cem Parmaksizoglu.The effect of channel height on the enhanced heat transfer characteristics in a corrugated heat exchanger channel[J].Applied Thermal Engineering.2003,23(1):979-987
    [72]Koen Grijspeerdt,Birinchi Hazarka,Dean Vucinic.Application of computational fluid dynamic to model the hydrodynamics of plate heat exchangers for milk processing[J].Journal of Food Engineering 2003,57:237-242
    [73]Flavio C.C.Galeazzo,Raquel Y Miura,Jorge A.W.Gut.Experimental and numerical heat transfer in a plate heat exchanger[J].Classical Engineering Science 2006,61:7133-7138
    [74]Ciofalo,M.,Di Piazza,I.,Stasiek,J.A.Investigation of flow and heat transfer in corrugated-undulated plate heat exchangers[J].Heat and Mass Transfer.2000,36(5):449-462
    [75]杨勇.数值传热学在波纹式换热器上的应用[J].华北电力技术,1999,1(10):29-31
    [76]巫江虹.板翅式换热器导流片空气流场分布数值计算及实验验证[J].西安交通大学学报,1997,31(4):51-55
    [77]任承钦,张国强.一种新型板式换热器的设计及其传热特性的模拟研究[J].暖通空调.2003,33(5):111-114
    [78]E.-U.Schl u nder,Analogy between heat and momentum transfer[J],Chemical Engineering and Processing.1998,37:103-107.
    [79]杨世铭,陶文铨编著.传热学(第二版)M].北京,高等教育出版社.1998:155
    [80]John H.Lienhard,A Heat Transfer HandBook[M].:296
    [81]杨世铭,陶文铨.传热学(第二版)[M],北京:高等教育出版社:148
    [82]D.皮茨,L.西索姆.葛新石译.传热学[M].北京:科学出版社.2002:115
    [83]吴望一.流体力学.北京大学出版社[M]:296,
    [84]吴望一.流体力学.北京大学出版社[M]:310
    [85]杨世铭.传热学(第二版)[M].北京:高等教育出版社.174
    [86]杨世铭.传热学(第二版)[M].北京:高等教育出版社.173
    [87]傅立编著.灰色系统理论及其应用[M].科学技术文献出版社,1992.188
    [88]过增元.换热器中的场协同原则及其应用[J],机械工程学报.2003,39(12):5-13
    [89]过增元等.换热器强化的场协同原则[J].科学通报.2003.148(22):28-31
    [90]冷学礼.振动圆管外的对流换热机理与污垢生长过程研究[D],山东大学博士学位论文,2007:16-24.
    [91]张冠敏.复合波纹板式换热器强化传热机理及传热特性研究.山东大学博士学位论文,2006.
    [92]史美中,王中铮.热交换器原理与设计[M].南京:东南大学出版社.1996.
    [93]欧阳新萍,陶乐仁.等雷诺数法在板式换热器传热实验中的应用[J];热能动力工程.1998,13(1):41-42
    [94]涂颉编.热工实验基础[M].北京:高等教育出版社.1986.
    [95]欧阳新萍等.等流速法在板式换热器传热实验中的应用[J].动力工程,2001,21(3):77-79
    [96]孔珑.流体力学(Ⅱ)[M].高等教育出版社.2003.
    [97]Bent Sunden.Enhancement of Convective Heat Transfer Characteristics in Rib-roaghened Rectangular Ducts[J],Enhanced Heat Transfer,1999,6:89-103
    [98]钱颂文.换热器设计手册[M].北京:化学工业出版社.2002.
    [99]陶文铨.数值传热学[M].西安:西安交通大学出版社.2001:508-509
    [100]陈义良.湍流计算模型[M].合肥:中国科学技术大学出版社.1991
    [101]王松平等.流体粘性对优化设计对流换热管的影响[J].青岛化工学院学报.1999,20(4).
    [102]Aydin Durmus.Heat Transfer and Exergy Loss in a Concentric Heat Exchanger with Snail Entrance[J],Int.Comm.Heat Mass Transfer.2002,29(3):303-312
    [103]H.Gul,Ebru Kavak Akpinar.Investigation of heat transfer and exergy loss in oscillation circular pipes[J].Inter.Comm in Heat and Mass Transfer.2007,34:93-102.
    [104]吴双应,牟志才等.换热器热力学性能的火用 经济评价[J].热能动力工程.1999,48(14).
    [105]陈维汉.一种考虑综合性能优化的换热器热设计方法(一)[J].化工装备技术.2006,27(4).
    [106]Yunus A.Gengel,Michael A.Boles.Thermodynamics An Engineering Approach(Four Edition)[M].北京:清华大学出版社.2002:408.
    [107]Yunus A.Gengel,Michael A.Boles.Thermodynamics An Engineering Approach(Four Edition)[M].北京:清华大学出版社.2002:405.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700