换热器管程组合转子强化传热研究与结构改进
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管壳换热器广泛应用于过程工业众多领域,而其自身的结垢问题一直没能得到有效地解决,从而造成能源的巨大浪费。管程组合转子强化技术具有强化传热与在线自动清洗功能,其灵活的结构和材料设计能够满足各种管壳换热器的工况及装配要求,为管壳式换热设备污垢问题的解决提供了方案。因此,对管程组合转子的性能、作用机理和结构改进展开研究,具有重要的工程应用价值。本文借助实验手段,研究管程组合转子的扰流特性、传热及阻力特性,进而分析其作用机理并提出结构改进方案。
     通过可视化实验、转子转速测试和PIV流场测试,对管程组合转子扰流的冷态流场特性进行了从定性到定量地分析。理论推导出转子转速公式,认为影响转子转速的因素包括几何、质量属性(流体和转子的密度)和粘性因素。提出在管程存在无旋流,并通过PIV测试结果得到了初步验证。进而分析认为,管程的轴向速度分布与转子旋转相结合,决定了流体的流动状态分布,如径向混流、湍流强度、涡量等。将相邻两组转子之间的空隙定为滞流区,并对滞流区的流动特性进行了详细分析。总结冷态实验,可得出如下结论:(1)管程组合转子对流体造成不同程度、甚至不同方向的旋流,从而强化了流体层间剪切效应,促进流体的径向混合和边界层剪切变薄;(2)滞流区的流动状态复杂无序,湍流强度更大;(3)管程局部有纵向涡产生。管程组合转子扰流的流动特性有利于传热强化。
     通过传热及阻力实验,对特征长度的选取原则进行了讨论和验证。结合各无量纲特征数的物理意义和实验数据,认为对于管程动态扰流技术,应选取换热管内径进行实验数据的处理和计算,得到的结果能更准确地表征其实际传热强化程度及综合性能。基于这一原则,对管程组合转子的传热及阻力特性进行实验研究。以油为工质的实验表明:在Re=500-8000的层流区和转捩区,管程组合转子可不同程度地提高传热性能,同时也不可避免地增大阻力损失;增大转子外径对传热强化的贡献微弱,阻力系数却明显增大;增大转子螺旋角度对传热强化的贡献显著,同时阻力也有较大增长;螺旋角度最大的一种转子实验数据出现断层,分析是转子运动状态突变所致;其它4种规格的转子实验数据没有出现断层,很可能是由于其导程较大,转子一直处于停转状态;性能综合评价表明,导程最小的转子具有最佳综合性能。可见,强化层流对流传热,主要是要增强管程流体的径向混合。以水为工质的实验表明:在Re=10~4-10~5的旺盛湍流区,管程组合转子可不同程度地提高传热性能,同时也不可避免地增加阻力损失;增大转子外径对传热强化的贡献明显,而阻力系数略有增大;增大转子螺旋角度对传热强化的贡献微弱,却造成阻力的较大增长;性能综合评价表明,导程较大、外径较大的转子具有最佳综合性能。可见,强化湍流对流传热,主要是要加强对管程流体流动边界层和热边界层的扰动。因此,应根据流体的流动状态(层流、过渡流或湍流)选择转子的结构参数。对于火力发电厂的凝汽器,其流动多处于旺盛湍流区,在安装条件允许的情况下,应尽可能选择外径较大、螺旋角度较小的转子。
     针对传统结构的转子在阻垢性能、扰流特性、传热及阻力特性方面存在的一些问题,提出镂空型转子、转片式转子和边界层剪切型转子三种结构改进方案。对前两种方案进行了可视化实验和以水为工质的传热及阻力实验验证。可视化实验表明:镂空型转子的硬质颗粒污垢抵抗能力有很大程度提高,但仍不能满足颗粒浓度大或长时间运行的工况要求;转片式转子独特的结构设计,彻底避免了硬质颗粒污垢堵塞,可满足阻垢性能要求。传热及阻力实验表明:镂空型结构虽然可以一定程度降低阻力,但其传热性能也由于流体向镂空中心的汇聚效应而下降,其综合性能甚至不如传统结构转子;转片式转子在降低阻力的同时,保持传热性能不下降,因此其综合性能得到显著提升。可见,强化湍流对流传热,最重要的仍是扰动和减薄边界层。中心流体的径向混合对传热强化的贡献不大,反而徒增阻力。因此,提出边界层剪切型转子,其结构能够将流体中心区的能量向边缘传递,造成对边界层的剪切扰动。
Shell-and-tube heat exchangers are widely used in many process industry fields and pronouncing tremendous waste of energy for remaining unresolved fouling problem.Tube side assembled rotors(TSAR) can achieve heat transfer enhancement and online cleaning,with flexible design of structures and materials to meet technical requirements of various shell-and-tube exchangers, lighting up the hope for conquering scale formation.Therefore,it is of great importance to study the performance,mechanism and structure modification of tube side assembled rotors.In this paper,many experimental methods were employed to investigate the disturbed flow characteristics,heat transfer and friction loss of TSAR to analyze its mechanism.Moreover,modified structures were put forward aiming for better performance.
     Visualization experiment,rotate speed measurement and PIV test gave an exhibition of disturbed flow field by TSAR from qualitatively to quantitatively. Rotate speed of rotors was theoretically deduced,considering geometrical, mass and viscous factors.A non-rotating flow velocity was believed to exist somewhere in the tube,which was primarily proved by PIV test.Axial flow velocity distribution of tube side combined with rotation of rotors,determined the flow state,such as radial mixing,turbulent intensity and vorticity.The interspace between two adjacent groups of rotors was named stagnant sect, flow characteristics in which were discussed in detail.To sum up the cold test of TSAR,several conclusions are reasonable as follows:(1) TSAR created swirl flow with different extent and even different direction,which intensified radial mixing and shear effect between fluid layers,attenuating the boundary layer.(2) A complicated flow state existed in the stagnant sect,inducing stronger turbulent intensity.(3) Longitudinal vortexes sometimes occurred in tube side.It is exciting that all these features are good for heat transfer enhancement.
     Principle for selecting characteristic length was advanced and validated based on heat transfer and friction loss experiment.Considering the physical significance of each characteristic number combined with experiment data,it was made concise that the inner diameter of the tube should be used in data deduction for dynamic tube side flow disturbing technique.Experimental results calculated in this way revealed actual heat transfer performance much better.Thus,experimental investigations were carried out to evaluate the heat transfer and friction loss performance of TSAR.The oil experiment indicated: In the laminar and transition region with Re=500-8000,TSAR augmented heat transfer and inevitably increased friction loss;Bigger rotor diameter hardly contributed to heat transfer enhancement but lead to much more friction loss; Greater rotor pitch angle brought about more remarkable heat transfer enhancement and also more friction loss;Experiment data concerned with rotors with biggest pitch angle displayed a dislocation,which was assumed due to kinestate mutation of rotors;Experiment data concerned with other four types of rotors were continuous,which might imply that these rotors were always at stationary state for their smaller pitch angle;Performance evaluation indicated that rotors with biggest pitch angle behaved best.It can be concluded that radial mixing of fluid should be the principal choice for enhancing laminar convective heat transfer.The water experiment indicated:In the turbulent region with Re=10~4-10~5,TSAR augmented heat transfer and inevitably increased friction loss;Bigger rotor diameter obviously contributed to heat transfer enhancement and lead to not much friction loss;Greater rotor pitch angle brought about almost nothing for heat transfer enhancement but gained more friction loss;Performance evaluation indicated that rotors with biggest diameter and smallest pitch angle behaved best.It can be concluded that attenuation of boundary layer should be the principal choice for enhancing turbulent convective heat transfer.Therefore,structure parameters of rotors should be determined according to the flow region of fluid(laminar,transition or turbulent).With regard to condensers of power plants,rotors with bigger diameter and smaller pitch angle are preferred providing installation condition permits,because the tube side flow was under fully developed turbulence.
     According to some insufficiencies of traditional rotors detected in anti-fouling performance,flow disturbing characteristic,heat transfer and friction loss performance,through-carved rotor,rotary-vane rotor and boundary layer shearing rotor were invented to fix the problem.Visualization experiment together with heat transfer and friction loss experiment with water as working fluid were launched to examine through-carved rotor and rotary-vane rotor.Visualization experiment indicated:Through-carved rotors provided better resistance against hard particle fouling than traditional rotors, but still stepped far behind the requirement of high concentration and long running;rotary-vane rotors avoided blockage of hard particle fouling successfully due to particular structure design.Heat transfer and friction loss experiment indicated:Through-carved structure reduced friction loss to some extent,but also weakened heat transfer performance for the influx of fluid to through-carved void,with an over-all property even inferior to traditional ones; rotary-vane rotors reduced friction loss while maintaining constant heat transfer performance,thus achieving much better over-all property.It can be concluded that attenuation of boundary layer should be the principal choice for enhancing turbulent convective heat transfer.For turbulent convective heat transfer,radial mixing of fluid hardly contributes to heat transfer augmentation but increases friction loss to no purpose.Consequently,boundary layer shearing rotor was promoted to settle the conflict.It was designed with a particular configuration which can transfer the kinetic energy of central fluid to the edge and margin,shearing,disturbing and attenuating boundary layer.
引文
[1]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359
    [2]联合国政府间气候变化专门委员会(IPCC).关于气候变化的第4次评估报告[R].2007
    [3]Hansen J,Sato M,Ruedy R,et al.Global temperature Change[J].PNAS,2006,103:14288-14293
    [4]Taborek.J.et al.Fouling-The Major Unresolved Problem in Heat Transfer[J].Chemical Engineering Progress,1972,68(7):69-78
    [5]M.Abu-Zaid,A Fouling Evaluation System for Industrial Heat Transfer Equipment Subject to Fouling[J].Int.Comm.Heat Mass Transfer,2000,27(6):815-824
    [6]张仲彬等.表面特性和流动特性对结垢诱导期影响的实验研究[J].工程热物理学报,2009,30(1):144-146
    [7]毕月虹等.微粒污垢沉积率的理沦分析与实验研究[J].热科学与技术,2007,6(3):246-251
    [8]徐志明等.微粒和析晶混合污垢模型[J].工程热物理学报,2006,27(suppl.2):81-84
    [9]张仲彬,徐志明.混合污垢特性的试验研究[J].化工机械,2005,32(5):263-266
    [10]徐志明等.析晶与颗粒混合污垢的实验研究[J].工程热物理学报,2005,26(5):853-855
    [11]昝成等.温度及流速对板式换热器内城镇二级出水结垢特性的影响[J].清华大学学报(自然科学版),2009,49(2):240-243
    [12]QUAN Zhenhua et al.Experimental Study of Fouling on Heat Transfer Surface During Forced Convective Heat Transfer[J].Chinese Journal of Chemical Engineering,2008,16(4):535-540
    [13]David Butterworth.Design of shell-and-tube heat exchangers when the fouling depends on local temperature and velocity[J].Applied Thermal Engineering,2002,22:789-801
    [14]Q.Zhao et al.Effect of surface free energy on the adhesion of biofouling and crystalline fouling[J].Chemical Engineering Science,2005,60:4858-4865
    [15]David J.Kukulka,Mohan Devgun.Fluid temperature and velocity effect on fouling[J].Applied Thermal Engineering,2007,27:2732-2744
    [16]A.Herz,M.R.Malayeri,H.M(u|¨)ller-Steinhagen.Fouling of roughened stainless steel surfaces during convective heat transfer to aqueous solutions[J].Energy Conversion and Management,2008,49:3381-3386
    [17]A.Helalizadeh,H.M(u|¨)ller-Steinhagen,M.Jamialahmadi.Mixed salt crystallisation fouling[J].Chemical Engineering and Processing,2000,39:29-43
    [18]E.Nebot et al.Model for fouling deposition on power plant steam condensers cooled with seawater-Effect of water velocity and tube material[J].International Journal of Heat and Mass Transfer,2007,50:3351-3358
    [19]Z.Y.GUO et al.A novel concept for convective heat transfer enhancement[J].International Journal of Heat and Mass Transfer,1998,41(14):2221-2225
    [20]过增元.对流换热的物理机制及其控制:速度场与热流场的协同[J].科学通报,2000,45(19):2118-2122
    [21]Wen-Quan Tao,Zeng-Yuan Guo,Bu-Xuan Wang.Field synergy principle for enhancing convective heat transfer-its extension and numerical verifications[J].International Journal of Heat and Mass Transfer,2002,45:3849-3856
    [22]W.Q.Tao et al.A unified analysis on enhancing single phase convective heat transfer with field synergy principle[J].International Journal of Heat and Mass Transfer,2002,45:4871-4879
    [23]Z.Y.Guo,W.Q.Tao,R.K.Shah.The field synergy(coordination) principle and its applications in enhancing single phase convective heat transfer[J].International Journal of Heat and Mass Transfer,2005,48:1797-1807
    [24]王松平等.强化对流传热场协同唯象机制及其控制[J].工程热物理学报,2004,25(1):97-99
    [25]孟继安等.管内对流换热的场协同分析及换热强化[J].工程热物理学报,2003,24(4):652-654
    [26]Qun Chen,Jianxun Ren,Ji-an Meng.Field synergy equation for turbulent heat transfer and its application[J].International Journal of Heat and Mass Transfer,2007,50:5334-5339
    [27]孔松涛,董其伍,刘敏珊.热量运输机理及在管内螺带强化传热的应用[J].机械工程学报,2007,43(4):83-87
    [28]顾国锋,郭平生.运动流体强化传热的实现条件[J].广西物理,2006,27(1):12-15
    [29]A.-R.A.Khaled,K.Vafai.Heat transfer enhancement through control of thermal dispersion effects[J].International Journal of Heat and Mass Transfer,2005,48:2172-2185
    [30]Ji-An Meng,Xin-Gang Liang,Zhi-Xin Li.Field synergy optimization and enhanced heat transfer by multi-longitudinal vortexes flow in tube[J].International Journal of Heat and Mass Transfer,2005,48:3331-3337
    [31]Ruixian Cai,Chenhua Gou.Discussion on the convective heat transfer and field synergy principle[J].International Journal of Heat and Mass Transfer,2007,50:5168-5176
    [32]Liang-Dong Ma,Zeng-Yao Li,Wen-Quan Tao.Experimental verification of the field synergy principle[J].International Communications in Heat and Mass Transfer,2007,34:269-276
    [33]邵天成.几种强化管的传热特性及污垢特性的实验研究[D].吉林:东北电力大学能源与机械工程学院,2007
    [34]翟丽华.内置微型液轮机换热管工作特性研究[D].南宁:广西大学,2004
    [35]K.Bakirci,K.Bilen.Visualization of heat transfer for impinging swirl flow[J].Experimental Thermal and Fluid Science,2007,32:182-191
    [36]张琳.内置旋转扭带强化传热机理及清洗动力学研究[D].南京:南京理工大学动力工程学院,2006
    [37]S.C.Tzeng.Accurate prediction of friction factor and heat transfer coefficients of mixed convection in circular tubes-a simple linear algebraic model[J].International Communications in Heat and Mass Transfer,2003,30(4):553-564
    [38]L.Redjem-Saad,M.Ould-Rouiss,G.Lauriat.Direct numerical simulation of turbulent heat transfer in pipe flows:Effect of Prandtl number[J].International Journal of Heat and Fluid Flow,2007,28:847-861
    [39]Wolfgang Rodi.DNS and LES of some engineering flows[J].Fluid Dynamic Research,2006,38:145-173
    [40]Toshio Kobayashi.Large Eddy simulation for engineering applications[J].Fluid Dynamic Research,2006,38:84-107
    [41]Arthur E.Bergles.ExHFT for fourth generation heat transfer technology[J].Experimental Thermal and Fluid Science,2002,26:335-344
    [42]肖金花,钱才富,黄志新.波纹管传热强化效果与机理研究[J].化学工程,2007,35(1):12-15
    [43]李晓伟等.不连续双斜向内肋管纵向涡流动显示[J].工程热物理学报,2006,27(suppl.2):119-121
    [44]李晓伟等.不连续双斜内肋管的管外换热性能[J].工程热物理学报,2008,29(2):327-330
    [45]Xiao-wei Li,Ji-an Meng,Zeng-yuan Guo.Turbulent flow and heat transfer in discrete double inclined ribs tube[J].International Journal of Heat and Mass Transfer,2009,52:962-970
    [46]Gregory J.Zdaniuk,Louay M.Chamra,Pedro J.Mago.Experimental determination of heat transfer and friction in helically-finned tubes[J].Experimental Thermal and Fluid Science,2008,32:761-775
    [47]S.W.Chang et al.Heat transfer and pressure drop in rectangular channel with compound roughness of V-shaped ribs and deepened scales[J].International Journal of Heat and Mass Transfer,2008,51:457-468
    [48]孟继安.基于场协同理论的纵向涡强化换热技术及其应用[D].北京:清华大学工程力学系,2003
    [49]Ralph L.Webb,Wei Li.Fouling in enhanced tubes using cooling tower water Part Ⅰ:long-term fouling data[J].International Journal of Heat and Mass Transfer,2000,43:3567-3578
    [50]万珍平等.强化传热管表面结构制造技术研究现状与进展[J].工具技术,2009,43(1):9-12
    [51]肖宏亮,朱冬生,谭盈科.管内在线防垢及强化传热的实验研究[J].热能动力工程,1997,12(4):275-278
    [52]CENGIZ YILDIZ,YASAR BICER,DURSUN PEHLIVAN.Heat transfer and pressure drop in a heat exchanger with a helical pipe containing inside springs[J].Energy Conversion and Management,1997,38(6):619-624
    [53]张锁龙,张琳.内置螺旋弹簧换热管的换热研究[J].石油机械,2002,30(7):5-8
    [54]Paisarn Naphon.Effect of coil-wire insert on heat transfer enhancement and pressure drop of the horizontal concentric tubes[J].International Communications in Heat and Mass Transfer,2006,33:753-763
    [55]Alberto Garcia.Enhancement of laminar and transitional flow heat transfer in tubes by means of wire coil inserts[J].International Journal of Heat and Mass Transfer,2007,50:3176-3189
    [56]A.Garcia et al.Flow pattern assessment in tubes with wire coil inserts in laminar and transition regimes[J].International Journal of Heat and Fluid Flow,2007,28:516-525
    [57]Alberto Garcia,Pedro G.Vicente,Antonio Viedma.Experimental study of heat transfer enhancement with wire coil inserts in laminar-transition-turbulent regimes at different Prandtl numbers[J].International Journal of Heat and Mass Transfer,2005,48:4640-4651
    [58]H.Pahlavanzadeh,M.R.Jafari Nasr,S.H.Mozaffari.Experimental study of thermo-hydraulic and fouling performance of enhanced heat exchangers[J].International Communications in Heat and Mass Transfer,2007,34:907-916
    [59]Pongjet Promvonge.Thermal performance in circular tube fitted with coiled square wires[J].Energy Conversion and Management,2008,49:980-987
    [60]Pongjet Promvonge.Thermal enhancement in a round tube with snail entry and coiled-wire inserts[J].International Communications in Heat and Mass Transfer,2008,35:623-629
    [61]Paisarn Naphon,Parkpoom Sriromruln.Single-phase heat transfer and pressure drop in the micro-fin tubes with coiled wire insert[J].International Communications in Heat and Mass Transfer,2006,33:176-183
    [62]Pongjet Promvonge.Thermal augmentation in circular tube with twisted tape and wire coil turbulators[J].Energy Conversion and Management,2008,49:2949-2955
    [63]林榕端等.换热管内微型液轮机研究[J].机械工程学报,2001,37(7):41-43
    [64]P.Sivashanmugam,S.Suresh.Experimental studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with helical screw-tape inserts[J].Applied Thermal Engineering,2006,26:1990-1997
    [65]P.Sivashanmugam,S.Suresh.Experimental studies on heat transfer and friction factor characteristics of turbulent flow through a circular tube fitted with helical screw-tape inserts[J].Chemical Engineering and Processing,2007,46:1292-1298
    [66]P.Sivashanmugam,S.Suresh.Experimental studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with regularly spaced helical screw-tape inserts[J].Experimental Thermal and Fluid Science,2007,31:301-308
    [67]P.Sivashanmugam,S.Suresh.Experimental studies on heat transfer and friction factor characteristics of turbulent flow through a circular tube fitted with regularly spaced helical screw-tape inserts[J].Applied Thermal Engineering,2007,27:1311-1319
    [68]Smith Eiamsa-ard,Pongjet Promvonge.Heat transfer characteristics in a tube fitted with helical screw-tape with-without core-rod inserts[J].International Communications in Heat and Mass Transfer,2007,34:176-185
    [69]高翔等.螺旋肋片形成非衰减性旋流的强化传热性能[J].化工学报,2003,54(9):1205-1208
    [70]洪蒙纳等.缩放管内间隔插入旋流片的复合强化传热[J].华南理工大学学报(自然科学版),2008,36(3):16-20
    [71]Bet(u|¨)l Ayhan Sarac,Tulin Bali.An experimental study on heat transfer and pressure drop characteristics of decaying swirl flow through a circular pipe with a vortex generator[J].Experimental Thermal and Fluid Science,2007,32:158-165
    [72]H.G(u|¨)l,D.Evin.Heat transfer enhancement in circular tubes using helical swirl generator insert at the entrance[J].International Journal of Thermal Science,2007,46:1297-1303
    [73]Smith Eiamsa-ard,Sarawut Rattanawong,Pongjet Promvonge.Turbulent convection in round tube equipped with propeller type swirl generators[J].International Communications in Heat and Mass Transfer,2009,36:357-364
    [74]王崧.纤毛状肋和插入物的传热强化研究[D].北京:清华大学工程力学系,1999
    [75]程林等.流体诱导振动复合强化传热的理论分析[J].工程热物理学报,2002,23(3):330-332
    [76]程林等.流体诱导振动复合强化传热的实验研究[J].工程热物理学报,2002,23(4):485-487
    [77]傅俊萍等.超声波除垢与强化传热实验研究[J].热能动力工程,2006,21(4):355-358
    [78]E.Dalas.The effect of ultrasonic field on calcium carbonate scale formation[J].Journal of Crystal Growth,2001,222:287-292
    [79]Abdullah Shahryari,Mahmood,Pakshir.Influence of a modulated electromagnetic field on fouling in a double-pipe heat exchanger[J].Journal of Materials Processing Technology,2008,203:389-395
    [80]Xing Xiaokai.Research on the electromagnetic anti-fouling technology for heat transfer enhancement[J].Applied Thermal Engineering,2008,28:889-894
    [81]R.Sch(o|¨)neberg,H.Ernst.Dynamic behaviour of a water-cooled boiling channel with twisted tapes[J].Nuclear Engineering and Design,1970,12(2):249-258
    [82]张琳等.自转螺旋扭带管内湍流特性研究[J].高校化学工程学报,2005,19(1):17-21
    [83]张琳等.自转螺旋扭带管内湍流特性研究[J].高校化学工程学报,2005,19(1):17-21
    [84]Paisarn Naphon.Heat transfer and pressure drop in the horizontal double pipes with and without twisted tape insert[J].International Communications in Heat and Mass Transfer,2006,33:166-175
    [85]S.Al-Fahed,L.M.Chamra,W.Chakroun.Pressure drop and heat transfer comparison for both microfin tube and twisted-tape inserts in laminar flow[J].Experimental Thermal and Fluid Science,1999,18:323-333
    [86]Shyy Woei Chang,Yih Jena Jan,Jin Shuen Liou.Turbulent heat transfer and pressure drop in tube fitted with serrated twisted tape[J].International Journal of Thermal Science,2007,46:506-518
    [87]Masoud Rahimia,Sayed Reza Shabaniana,Ammar Abdulaziz Alsairafi.Experimental and CFD studies on heat transfer and friction factor characteristics of a tube equipped with modified twisted tape inserts[J].Chemical Engineering and Processing,2009,48:762-770
    [88]Shyy Woei Chang,Tsun Lirng Yang,Jin Shuen Liou.Heat transfer and pressure drop in tube with broken twisted tape insert[J].Experimental Thermal and Fluid Science,2007,32:489-501
    [89]Siva Rama Krishna,Govardhan Pathipaka,P.Sivashanmugam.Heat transfer and pressure drop studies in a circular tube fitted with straight full twist[J].Experimental Thermal and Fluid Science,2009,33:431-438
    [90]Smith Eiamsa-ard,Chinaruk Thianpong,Pongjet Promvonge.Experimental investigation of heat transfer and flow friction in a circular tube fitted with regularly spaced twisted tape elements[J].International Communications in Heat and Mass Transfer,2006,33:1225-1233
    [91]S.K.Saha,A.Dutta,S.K.Dhal.Friction and heat transfer characteristics of laminar swirl flow through a circular tube fitted with regularly spaced twisted-tape elements[J].International Journal of Heat and Mass Transfer,2001,44:4211-4223
    [92]Smith Eiamsa-ard et al.Convective heat transfer in a circular tube with short-length twisted tape insert[J].International Communications in Heat and Mass Transfer,2009,36:365-371
    [93]Q.Liao,M.D.Xin.Augmentation of convective heat transfer inside tubes with three-dimensional internal extended surfaces and twisted-tape inserts[J].Chemical Engineering Journal,2000,78:95-105
    [94]HONG Mengna et al.Compound Heat Transfer Enhancement of a Converging-Diverging Tube with Evenly Spaced Twisted-tapes[J].Chinese Journal of Chemical Engineering, 2007,15(6):814-820
    [95]Ventsislav Zimparov.Enhancement of heat transfer by a combination of a single-start spirally corrugated tubes with a twisted tape[J].Experimental Thermal and Fluid Science,2002,25:535-546
    [96]Ventsislav Zimparov.Enhancement of heat transfer by a combination of three-start spirally corrugated tubes with a twisted tape[J].International Journal of Heat and Mass Transfer,2001,44:551-574
    [97]P.Bharadwaj,A.D.Khondge,A.W,Date.Heat transfer and pressure drop in a spirally grooved tube with twisted tape insert[J].International Journal of Heat and Mass Transfer,2009,52:1938-1944
    [98]P.Promvonge,S.Eiamsa-ard.Heat transfer behaviors in a tube with combined conical-ring and twisted-tape insert[J].International Communications in Heat and Mass Transfer,2007,34:849-859
    [99]R.L.Web.Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design[J].International Journal of Heat and Mass Transfer,1981,24:715-726
    [100]Bejan A.The concept of irreversibility in heat exchanger design:counter flow heat exchanger for gas to gas application[J].J Heat Transfer,Trans.ASME,1977,99(3):374-380
    [101]徐志明,杨善让,甘云华.传热过程中的不可逆性与能量贬值[J].工程热物理学报,2002,23(suppl):41-43
    [102]吴晶等.层流对流换热中的势容耗散极值与最小熵产[J].工程热物理学报,2006,27(1):100-102
    [103]陈群,吴晶,任建勋.对流换热过程的热力学优化与传热优化[J].工程热物理学报,2008,29(2):271-274
    [104]Shuang-Ying Wu et al.Exergy transfer characteristics of forced convective heat transfer through a duct with constant wall heat flux[J].Energy,2007,32:686-696
    [105]Shuang-Ying Wu et al.Exergy transfer characteristics of forced convective heat transfer through a duct with constant wall temperature[J].Energy,2007,32:2385-2395
    [106]J.F.Fan et al.A performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving[J].International Journal of Heat and Mass Transfer,2009,52:33-44
    [107]Ventsislav Zimparov.Extended performance evaluation criteria for enhanced heat transfer surfaces:heat transfer through ducts with constant wall temperature[J].International Journal of Heat and Mass Transfer,2000,43:3137-3155
    [108]Ventsislav Zimparov.Extended performance evaluation criteria for enhanced heat transfer surfaces:heat transfer through ducts with constant heat flux[J].International Journal of Heat and Mass Transfer,2001,44:169-180
    [109]F.Balkan.Application of EoEP principle with variable heat transfer coefficient in minimizing entropy production in heat exchangers[J].Energy Conversion and Management,2005,46:2134-2144
    [110]N.Sahiti,F.Durst,A.Dewan.Strategy for selection of elements for heat transfer enhancement[J].International Journal of Heat and Mass Transfer,2006,49:3392-3400
    [111]杨卫民,丁玉梅,耿立波,黄伟.转子式自清洁强化传热装置[P].中国专利,ZL200520127121.9
    [112]陈俊.模具对制品精度的影响及典型制品模具浇注系统的CAE分析[D].北京:北京化工大学机电工程学院,2008
    [113]邱翔等.稳定分层湍流的PIV实验研究[J].实验流体力学,2008,22(2):1-9
    [114]林清宇等.管内自旋扭带转速的研究[J].中国机械工程,2007,18(16):1970-1973
    [115]潘春妹.双层桨搅拌槽内流动场的PIV研究[D].北京:北京化工大学化学工程学院,2008
    [116]张超杰等.应用折射率匹配技术测量复杂形状通道内的液体流场[J].西安交通大学学报,2002,36(11):1125-1128
    [117]F.Hendriks,A.Aviram.Use of zinc iodide solutions in flow research[J].Rev.Sci.Instrum.,1982,53(1):75-78
    [118]T.L.Narrow,M.Yoda,S.I.Abdel-Khalik.A simple model for the refractive index of sodium iodide aqueous solutions[J].Experiments in Fluids,2000,28:282-283
    [119]O.Uzol,Y.C.Chow,J.Katz,C.Meneveau.Unobstructed PIV measurements within an axial turbo-pump using liquid and blades with matched refractive indices[A].4th International Symposium on Particle Image Velocimetry,G(o|¨)ttingen,Germany,September 17-19,2001
    [120]Yassin A.Hassan,E.E.Dominguez-Ontiveros.Flow visualization in a pebble bed reactor experiment using PIV and refractive index matching techniques[J].Nuclear Engineering and Design,2008,238:3080-3085
    [121]谷君.大转折角弯曲扩压叶栅旋涡结构PIV研究[D].哈尔滨:哈尔滨工业大学能源科学与工程学院,2007
    [122]Michael G.Olsena,Ronald J.Adrian.Brownian motion and correlation in particle image velocimetry[J].Optics & Laser Technology,2000,32:621-627
    [123]周森泉.换热器温差场均匀性原则及其应用[D].北京:清华大学工程力学系,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700