矩形管束换热器的传热与流阻研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管壳式换热器具有机械密封性好、承压能力强的特点,已被广泛应用于石油、化工等领域,但由于传热管的管壁较厚(2~3.5mm),金属消耗量大,随着金属原材料价格的上涨,设备的材料成本会越来越高;而板式换热器可采用薄的金属板(0.5~1mm)作为传热元件,金属消耗量较少,但密封性差,易泄漏,使用范围受到限制。结合管壳式换热器和板式换热器的优点,本文提出的矩形管束换热器可以较好地解决这一问题。
     矩形管束换热器内部结构主要由矩形缩放管和旋流片构成。矩形缩放管管壁较薄(0.8~1mm),旋流片既插入矩形管管内,又支撑矩形管管束,因此对管程和壳程都起到强化传热作用。本文采用实验和数值模拟的方法对矩形缩放管内插入旋流片的局部传热与流阻性能进行了研究,结果表明:随着旋流片下游距离的增大,局部努塞尔( Nu )数和阻力系数逐渐减小;其传热综合性能要优于光滑矩形管和矩形缩放管,具有很好的强化传热性能;以场协同理论为指导,分析了流道内速度场与热流场的分布情况,发现旋流片能够使流体产生螺旋运动,改善了流道内速度场与热流场的协同程度,强化传热效果明显。
     虽然矩形管束换热器具有良好的传热性能,但实验发现,当管外流体压力增大时,矩形管的板面易发生变形,为增强板面的抗压性,可采用带自支撑结构的矩形传热管,壳程管束间采用旋流片或扭带支撑。通过对自支撑矩形管束换热器进行的换热器整体传热与流阻性能研究,得到了管程和壳程Nu数关联式。采用正交试验和数值模拟的方法对自支撑矩形管内旋流片支撑结构进行了优化,结果表明,增大旋流片旋转角和减小旋流片间距有利于提高强化传热综合性能,管内插入连续扭带的传热综合效果要优于插入旋流片时的效果。
     比较分析自支撑矩形管内不同插入物的热阻和湍流度分布与传热综合性能的关系,本文提出了一种新的提高强化传热能力的途径。运用热阻分析和湍流度分析方法,对自支撑矩形通道内无插入物、插入扭带和旋流片三种通道内层流粘性底层、过渡区和湍流中心区的热阻分布以及局部湍流度分布进行比较,结果表明与无插入物相比,插入扭带的热阻分布在粘性底层的热阻比例明显下降,并且三个区的热阻比例分配更均匀。流道内插入旋流片的热阻分布与无插入物时基本相同,粘性底层为控制热阻区域。在湍流度分布方面,扭带和旋流片的局部湍流度分布变化都比较平缓,避免了通道内无内插物时局部湍流度出现过大或过小的局面。根据自支撑矩形管道内不同支撑结构的热阻和局部湍流度分布分析结果与传热综合性能的关系可以得到:当流道内热阻分布和局部湍流度分布比较均匀时,对提高换热器的传热综合性能有利,传热温差和流体输送功可以得到比较有效的利用,可促使传热综合性能的提高。此外,以场协同理论为指导,扭带的插入改善了速度场与温度梯度场的协同性,也证明了自支撑矩形通道内插入扭带能起到强化传热的作用。
     对自支撑矩形管内插入扭带的流阻与传热性能进行了实验研究,比较分析了在不同Re数下不同扭带插入不同矩形管时的性能。结果表明:Nu数和阻力系数都随着扭率的减小而增大;并且对于某一种扭带,其Nu数随着Re数的增大而增大,阻力系数随着Re数的增大而减小。以传热综合性能评价因子作为目标函数,最优结构匹配参数为:扭带扭率y =3.5,槽间距s=190mm。
The shell-and-tube heat exchanger is widely used in petrolic and chemical industry. It has good leak-proof quality and can withstand the high pressure. However , the usage of tube metal material is large resulted from the thick heat transfer tube wall (the thick of 2~3.5mm). As a result of raising price of tube material, the whole cost of shell-and tube heat exchanger is getting higher. Compared with shell-and-tube heat exchanger, the plate metal as heat transfer element in plate heat exchanger is thinner (the thick of 0.5~1mm). Unfortunately, the plate heat exchanger has a poor quality in leak-proof. Integration the advantages of shell-and-tube and plate heat exchangers respectively, the rectangle tube bundle heat exchanger is presented in this paper.
     Rectangle converging-diverging(RCD) tubes and twisted leaf constitute heat transfer elements of the rectangle tube bundle heat exchanger. The thickness of RCD tube is small. The twisted leaf can be inserted into tube, meanwhile, can support tube bundles externally. So the tube side and shell side are enhanced by the twisted leaf. Local heat transfer and flow resistance characteristics of RCD tube inserted with twisted leaf are investigated by experiment and numerical simulation. The local Nusselt number ( Nu ) and friction factor decreases as the distance to twisted leaf increases, respectively. Combining heat transfer with flow resistance characteristics, the RCD tube inserted with twisted leaf is better than the rectangle smooth tube and RCD tube. Under the guidance of field synergy principle, the distribution of velocity and temperature fields is analyzed. Twisted leaf can produce swirl flow, and the heat transfer enhancement with twisted leaf is the improvement of synergy between velocity and temperature fields.
     Though the rectangle tube bundle heat exchanger has good propriety of heat transfer enhancement, the experimental results show that the plate of rectangle tube creates destabilizing bucking deformation when the pressure of shell side increases. The rectangle tube bundle heat exchanger with self-support of tube bundle is proposed, which is investigated about the heat transfer and flow resistance by experiment. The relational expression of heat transfer coefficient and velocity has been obtained. The pressure of shell side is higher than that of tube side under the same Reynold number ( Re ) because shell side is supported by twisted leaf.
     The configuration optimization is studied through orthogonal numerical simulation for self-support of tube bundle inserted with twisted leaf. The results show that it is beneficial to improve the performance by increasing twist angle and decreasing twisted leaf pitch. Furthermore, compared with twisted leaf, the heat transfer efficiency of twisted tape is much better.
     Based on the relation between the distribution of thermal resistance and turbulent intensity and heat transfer efficiency in self-support of tube bundle with different inserts, a new method of enhancing heat transfer is proposed. The distributions of thermal resistance in viscous sub-layer, buffer region and turbulent core region and local turbulent intensity are compared between the three types including self-support of rectangle tube bundle, inserted with twisted tape and twisted leaf. When the twisted tape is inserted ,the thermal resistance of viscous sub-layer decreased significantly and the thermal resistance distribution become uniform, compared to without-any-insert and with- twisted-leaf-insert. The distribution of local turbulent intensity in self-support of rectangle tube bundle with twisted tape and twisted leaf both change gently. It overcomes the phenomenon, the local turbulent intensity too high or too low. Based on the relation between the distributions of thermal resistance and turbulent intensity and heat transfer efficiency, a new method of enhancing heat transfer is proposed to make the distributions of thermal resistance and turbulent intensity uniform to improve energy efficiency. Besides, the synergy of velocity field and temperature gradient field with twisted tape is improved and heat transfer can be enhanced.
     Flow resistance and heat transfer characteristics of self-support of rectangle tube bundle inserted with twisted tape, which vary in twist ratio, have been investigated experimentally with different Re and tube bundle. The results show that both Nu and friction factor increase when twist ratio decreases. And Nu increases and friction factor decrease as Re increases for the same twisted tape. The self-support of rectangle tube bundle inserted with twisted tape, twist ratio of 3.5 and groove spacing of 190mm, achieves the best performance in the experiment.
引文
[1]杜祥琬.中国能源的问题和可持续发展战略[J].决策咨询通讯, 2007,1: 1-7
    [2]崔海亭,彭培英.强化传热新技术及其应用[M].北京:化学工业出版社, 2006: 1-2
    [3]顾维藻,马重芳,神家锐,等.强化传热[M].北京:科学出版社, 1991: 1-2
    [4] Bergles A.E.. ExHFT for fourth generation heat transfer technology [J]. Experimental Thermal and Fluid Science, 2002, 26(2-4): 335-344
    [5] Gao X., Sunden B.. Heat transfer and press drop measurements in rib-roughed rectangular ducts [J]. Experimental Thermal and Fluid Science, 2001, 24: 25-34
    [6] Chen J., Muller-Steinhagen H., Duffy G. G.. Heat transfer for enhancement in dimpled tubes [J]. Applied Thermal Engineering , 2001, 21: 535-547
    [7] Sara O.N.. Performance analysis of rectangular ducts with staggered square pin fins [J]. Energy Conversion and Management, 2003, 44: 1787-1803
    [8] Eason R. M., Bayazitoglu Y., Miade A.. Enhancement of heat transfer in square helical ducts [J]. Int. J. Heat Mass Transfer, 1994, 37(14): 2077-2087
    [9] Bergles A. E., Lee R.A, Mikic B.B.. Heat transfer in rough tubes with tape-generated swirl flow [J]. ASME Journal of Heat Transfer, 1969, 91: 443-450
    [10] Jain A., Biswas G., Maurya D.. Winglet-type vortices generations with common-flow configuration for fin-tube heat exchangers [J]. Numerical Heat Transfer, Part A Applications, 2003, 43(2): 201-219
    [11] Jocobi A. M., Shah R.K.. Heat transfer surface enhancement through the use of longitudinal vortices: a review of recent progress [J]. Experimental Thermal and Fluid Science, 1995, 11: 295-309
    [12] Fiebig M.. Embedded vortices in internal flow: heat transfer and pressure loss enhancement [J]. International Journal of Heat and Fluid Flow, 1995, 16: 376-388
    [13]高小涛.管内复合强化传热技术及机理分析[J].热能动力工程, 1998, 13(78): 418-420
    [14]段希利,王选盈,王刚,等.超声振动对换热管内传热和压降影响[J].石油化工设备, 2004, 33(1): 1-4
    [15]彭欣,周乃君,叶贵波,等.螺旋肋片管省煤器在锅炉节能技术改造中的应用[J].有色冶金节能, 2003, 20(2): 3-6
    [16]过增元,黄素逸.场协同原理与强化传热新技术[M].北京:中国电力出版社,2004: 1-4
    [17] Guo Z.Y., Li D.Y., Wang B. X.. A novel concept for convective heat transfer enhancement [J]. Int. J. Heat Mass Transfer, 1998,41(14):2221-2225
    [18]过增元.对流换热的物理机制及其控制:速度场与热流场的协同[J].科学通报, 2000, 45(19): 2118-2122
    [19]过增元,庆文红.对流换热的物理机制分析及其控制[J].工程热物理学报, 2003, 24(4): 652-654
    [20]孟继安.基于场协同理论的纵向涡强化换热技术及其应用[D].北京:清华大学, 2003
    [21]孟继安,陈敬泽,李志信,等.管内对流换热的场协同分析及换热强化[J].工程热物理学报, 2003, 24(4): 652-654
    [22] Meng J.A., Liang X.G., Li Z.X.. Field synergy optimization and enhanced heat transfer by multi-longitudinal vortexes flow in tube [J]. International Journal of Heat and Mass Transfer, 2005(48): 3331-3337
    [23] Tao W. Q., He Y. L., Liu X., et al. A unified theory for enhancing single phase transport phenomena [A]. Imayishi. Proceeding of 2001 IAMS International Seminar on Material for Use in Lithium Batteries and Transport Phenomena in Materials Processing [C]. Kasuga: Kyushu University, 2001: 77-90
    [24] Tao W. Q., He Y. L., Wang Q. W., et al. A unified analysis on enhancing single phase convective heat transfer with field synergy principle [J]. Int. J. Heat Mass Transfer, 2002, 45: 4871-4879
    [25]王娴,宋富强.场协同在椭圆型流动中的数值验证[J].工程热物理学报, 2002, 23(1): 59-62
    [26]王杨君.管壳式换热器中自旋流的强化传热研究[D].广州:华南理工大学, 2005
    [27]周水洪.衰减性自旋流强化传热的机理分析及优化[D].广州:华南理工大学, 2007
    [28]洪蒙纳.缩放管内带衰减性自旋流的复合强化传热研究[D].广州:华南理工大学, 2008
    [29]郭平生,韩光泽,张妮,等.超声波场强化解吸速率的机理及场协同分析[J]. 2006, 20(2): 300-305
    [30]杨立军.磁场作用下的对流换热及其场协同分析[D].北京:清华大学,2003
    [31]施明恒,王海.离心力场作用下对流换热场协同理论的实验验证[J].上海理工大学学报, 2003, 25(4): 346-349
    [32]王发刚,李瑞阳,郁鸿凌,等.电场强化乙酸乙酯自然对流和沸腾换热的实验研究[J].化工学报, 2003, 54(9): 1119-1222
    [33]兰州石油机械研究所.换热器(中)[M].烃加工出版社, 1998: 26-64
    [34]李军.多种强化传热管的强化传热性能与流阻性能研究[D].广州:华南理工大学, 2000
    [35]邓先和,叶树滋.新型换热器在硫酸转化系统中的应用[J].硫酸工业, 1996, 6: 19-23
    [36]陆应生,关建郁,陈慕玲,等.整圆槽孔折流栅板和缩放管在氮肥氮氢气压缩机级间冷却器中的应用[J].化肥工业, 2001, 28(1): 29-30
    [37]邓先和,赵晓曦,张亚君.轴流式双壳程缩放管管式换热器的工业应用试验[J].石油炼制与化工, 2001, 33(2): 11-14
    [38]邱夏陶,刘树清.螺旋槽管换热器的实验研究[J].钢铁, 1996, 31(增刊): 109-112
    [39]叶侨燕,谭盈科,邓颂九.螺旋槽管管内流阻和传热特性的研究[J].高校化学工程学报, 1987, 2: 57-61
    [40]李占峰,杨学忠.螺旋槽管管内湍流流动与换热的三维数值模拟[J].制冷技术, 36(11): 56-60
    [41] Zimparov V. D.. Enhancement of heat transfer by a combination of three-start spirally corrugated tubes with a twisted tape[J]. Int. J. Heat Mass Transfer, 2001, 44: 551-574
    [42] Zimparov V. D., Vulchanov N. L., Delov L. B.. Heat transfer and friction characteristics of spirally corrugated tubes for power plant condensers― 1. Experimental investigation and performance evaluation [J]. Int. J. Heat Mass Transfer, 1991, 34(9): 2187-2197
    [43]陆国栋,周强泰,俞小莉.空气横掠顺列螺旋槽管管束的试验研究[J].热力发电, 2005, (9):32-35
    [44]周强泰,赵伶伶,王泽宁,等.螺旋槽管强化传热研究及其在锅炉中的应用[J].东南大学学报(自然科学版), 2005, 35(1): 1-6
    [45]李治滨.螺旋槽管强化传热原理及在石化装置上的应用前景[J].石油化工设备技术, 2002, 23(2): 8-10
    [46]高学农,邹华春,王瑞阳,等.高扭曲比螺旋扁管的管内传热及流阻性能[J].华南理工大学学报(自然科学版), 2008, 36(11): 17-21
    [47]陆应生,陈慕玲,潘宁忠,等.强化传热元件与高效换热器研究进展[J].化工进展, 1998, 1: 46-48
    [48]黄德斌,邓先和,王杨君,等.螺旋椭圆扁管强化传热研究[J].石油化工设备, 2003, 32(3): 1-3
    [49]张杏祥,桑芝富.螺旋扭扁管强化传热与阻力性能的模拟分析[J].化工机械, 2006, 33(1): 24-28
    [50]卿德藩,邹家柱.螺旋扁管冷凝器强化传热评价与应用[J].流体机械. 2007, 35(1): 79-81
    [51]李春兰.新型高效螺旋扁管换热器的设计与应[J].化工机械. 2005, 32(3): 162-165
    [52] Sarma P. K., Subramanyam T., Kishore P. S., et al. Laminar convective heat transfer with twisted tape inserts in a tube[J]. International Journal of Thermal Sciences, 2003, 42:821-828
    [53] Sarma P. K., Subramanyam T., Kishore P. S., et al. A new method to predict convective heat transfer in a tube with twisted tape inserts for turbulent flow[J]. International Journal of Thermal Sciences, 2002, 41: 955-960
    [54] Sarma P. K., Kishore P.S., Dharma Rao V., et al. A combined approach to predict friction coefficients and convective heat transfer characteristics in A tube with twisted tape inserts for a wide range of Re and Pr [J]. International Journal of Thermal Sciences, 2005, 44: 393-398
    [55] Zimparov Ventsislav. Enhancement of heat transfer by a combination of a single-start spirally corrugated tubes with a twisted tape[J]. Experimental Thermal and Fluid Science, 2002, 25: 535-546
    [56] Chinaruk Thianpong, Petpices Eiamsa-ard, Khwanchit Wongcharee, et al. Compound heat transfer enhancement of a dimpled tube with a twisted tape swirl generator [J]. International Communications in Heat and Mass Transfer . 2009, 36: 698-704
    [57] Usui H., Sano Y., Iwashita K., et al. Enhancement of heat transfer by a combination of an internally grooved rough tube and a twisted tape [J]. International Chemical Engineering, 1986, 26(1): 97-104
    [58] Pongjet Promvonge. Thermal augmentation in circular tube with twisted tape and wire coil turbulators [J]. Energy Conversion and Management, 2008, 49: 2949-2955
    [59] Promvonge P., Eiamsa-ard S.. Heat transfer behaviors in a tube with combined conical-ring and twisted-tape insert. International Communications in Heat and Mass Transfer, 2007, 34: 849-859
    [60] Chang S. w.. Heat transfer of orthogonal-mode reciprocating tube fitted with twisted-tape [J]. Journal of Experimental Heat Transfer, 2000,13: 61-86
    [61] Chang S. w.. Heat transfer of parallel-mode reciprocating tube flow with twisted-tape insert for piston cooling application [J]. ASME Journal of Gas Turbine and Power, 2001, 123:146-156
    [62] Chang S. w., Zheng Y.. Enhanced heat transfer with swirl duct under rolling and pitching environment [J]. Journal of Ship Research, 2002, 46(3): 149-166
    [63] Agarwal S. K., Raja R. M.. Heat transfer augmentation for the flow of a viscous liquid in circular tubes using twisted tape inserts [J]. Int. J. Heat Mass Transfer, 1996, 39(17): 3547-3557
    [64] Kumar A., Agarwal K. N., Lal S. N., et al. Condensation enhancement of R-22 by twisted-tape inserts inside a horizontal tube [J]. ASHRAE Transactions, 2005, 111(1): 18-25
    [65] Kumar A., Prasad B. N., Lal S. N.. Investigation of twisted tape inserted solar water heaters-heat transfer , friction factor and thermal performance results [J]. Renewable Energy, 2000, 19: 379-398
    [66] Smith Eiamsa-ard, Promvonge Pongjet. Performance assessment in a heat exchanger tube with alternate clockwise and counter-clockwise twisted-tape inserts[J]. International Journal of Heat and Mass Transfer, 2010, 53: 1364-1372
    [67] Shyy Woer Chang, Yih Jena Jan, Jin Shuen Liou. Turbulent heat transfer and pressure drop in tube fitted with serrated twisted tape[J]. International Journal of Thermal Sciences, 2007, 46: 506-518
    [68] Shyy Woer Chang, Arthur William Lees, Hsien-Tsung Chang. Influence of spiky twisted tape insert on thermal fluid performances of tubular air-water bubbly flow[J]. International Journal of Thermal Sciences, 2009, 48: 2341-2354
    [69]赵海全,林清宇,易凯,等.换热管内置塑料扭带强化传热性能的研究[J].轻工机械, 2009, 27(3): 18-20
    [70]刘桂英,彭德其,俞秀民,等.旋流轴承强化的自动清洗塑料扭带技术[J].化学工业与工程, 2005, 22(1): 73-76
    [71] Saha S. K., Gaitonde U. N., Date A. W.. Heat transfer and pressure dropcharacteristics of laminar flow in a circular tube fitted with regularly spaced twisted-tape elements [J]. Experimental Thermal and Fluid Science, 1989, 2(3): 310-322
    [72] Saha S. K., Gaitonde U. N., Date A. W.. Heat transfer and pressure drop characteristics of turbulent flow in a circular tube fitted with regularly spaced twisted-tape elements [J]. Experimental Thermal and Fluid Science, 1990, 3(6): 632-640
    [73] Saha S. K., Dutta A., Dhal S. K.. Friction and heat transfer characteristics of laminar swirl flow through a circular tube fitted with regularly spaced twisted-tape elements [J]. International Journal of Heat and Mass Transfer, 2001, 44: 4211-4223
    [74] Zhang Y. M., Lee C. P.. Heat transfer and friction characteristics of turbulent flow in circular tubes with twisted-tape inserts and axial interrupted ribs [J]. Journal of Enhanced Heat Transfer ,1997, 4(4): 297-308
    [75] Zhang Y. M., Azad G. M., Han J. C.. Turbulent heat transfer enhancement and surface heating effect in square channels with wavy and twisted tape inserts with interrupted ribs [J]. Journal of Enhanced Heat Transfer, 2000,7(1): 35-49
    [76]秦叔经,叶文邦.换热器[M].北京:化学工业出版社,2002 1-3
    [77]曾舟华,钱颂文,岑汉钊,等.管壳式换热器壳程弓形隔板传热死区流体介质滞留现象研究[J].制冷, 1995, 52(3): 10-14
    [78]喻九阳,王泽武,冯兴奎.单弓形隔板开孔试验研究[J].石油化工设备, 2004,33(2): 4-6
    [79] Lutcha J., Nemcansky J.. Performance improvement of tubular heat exchangers by helical baffles [J]. Chemical Engineering Research and Dsign, 1990, 68(3): 263-270
    [80] Stehlik P., Nemcansky J., Kral D., et al. Comparison of correction factors of shell-and-tube heat exchangers with segmental or helical baffles [J]. Heat Transfer Engineering, 1994, 15(1):55-65
    [81] Kral D., Stehlik P.,Van Der Pleog, et al. Helical baffles in shell-and-tube heat exchangers, part 1: Experimental verification [J]. Heat Transfer Engineering, 1996, 17(1): 93-101
    [82]王玉琴,宋天民,张国福,等.螺旋折流板管壳式换热器壳程传热性能及压降的研究[J].节能技术, 2008, 26(152): 502-504
    [83]王艳云,李志安,刘红禹,等.螺旋形和单弓形折流板换热器的工程应用比较[J].炼油技术与工程, 2008, 38(8): 33-35
    [84] Deng X. H., Deng S. J.. Investigation of heat transfer enhancement of roughened tube bundles supported by ring or rod supports [J]. Heat Transfer Engineering, 1998, 19(2): 21-27
    [85]邓先和,邓颂九.管间支撑物的结构对横纹管管束传热强化性能的影响[J],化工学报, 1992, 43(1): 62-68
    [86]邓先和,陈详明,张志孝.空心环管壳式换热器工业化应用回顾[J].有色冶炼, 2001, 6(3): 4-5
    [87]郑潮方.空心环缩放管管壳式换热器生产应用[J].化工装备, 2007, 3: 19-23
    [88]汪卫东,赵景波.空心环缩放管式换热器在金隆铜业公司的应用[J].硫酸工业, 2002, (2): 40-42
    [89]邓先和,张亚君,潘朝群.旋流网板支撑管束的管壳式换热器及其强化传热方法[P].中国专利, CN1587882, 2004
    [90]周水洪,邓先和,李志武.旋流网板换热器强化传热机理分析[J].硫酸工业, 2006(6): 16-19
    [91]王杨君,邓先和,李志武,等.旋流片支撑管束的传热与流阻性能[J].化工学报. 2007, 58(1): 21-26
    [92]董其伍,刘敏珊,苏立建.管壳式换热器研究进展[J].内蒙古石油化工, 2006, (1): 1-4
    [93]董其伍,张垚.换热器[M].北京:化学工业出版社, 2008: 5-9
    [94]傅玉颖.板式换热器在食品工业中的应用特点及维护[J].食品工业科技, 2001, 22(6): 76-78
    [95]郑慧莹.板式换热器在火电组热力系统中的应用研究[D].北京:华北电力大学, 2008
    [96]郭建,唐志伟,马重芳.板式换热器在空调余热回收系统中的传热应用[J].节能, 2004, (11): 17-18
    [97]张冠敏.复合波纹板式换热器强化传热机理及传热特性研究[J].济南:山东大学, 2006
    [98] Stasiek J., Collings M.W., Ciofalo M., et al. Investigation of flow and heat transfer in corrugated passages-Ⅰ. Experimental results[J]. Int. J. Heat Mass Transfer, 1996,39(1):149-164
    [99] Mir-Akbar Hessami. Thermo-hydraulic performance of Cross-corrugated plate heat exchangers[J]. Department of Mechanical Engineering. 1996, 6: 116-123
    [100] H.M.Metwally, R.M.Manglik.Enhanced heat transfer due to curvature-induced lateral vortices in laminar flows in sinusoidal corrugated-plate channels[J]. International Journal of Heat and Mass Transfer, 2004, (47): 2283-2292
    [101] Yasar Islamoglu, Cem Parmaksizoglu. The effect of channel height on the enchanced heat transfer characteristics in a corrugated heat exchanger channel[J]. Applied Thermal Engineering. 2003, 23(1): 979-987
    [102] Sparrow E.M.. Effect of interwall spacing and fluid flow inlet conditions on a corrugated-wall heat exchanger[J]. Int. J. Heat Mass Transfer, 1983, 26(7): 993-1005
    [103] Yang L. C., Asako Y., Yamaguchi, et al. Numerical prediction of transitional characteristics of flow and heat transfer in a corrugated duct[J]. Transactions of the ASME, Journal of Heat Transfer, 1997, 119:62-69
    [104] Mohammod Z. H., Sadrul Islam. Fully developed flow structure and heat transfer in sine-shaped wavy channels[J]. International Communications in Heat and Mass Transfer, 2004, 31(6): 887-896
    [105] Habib M. A., Ikram UI-Haq, Said H. M.. Calculation of turbulent flow and heat transfer in periodically converging-diverging channels[J]. Computers and Fluids, 1998, 27(1): 95-120
    [106] Ciofalo M., Stasiek J., Collins M.W.. Investigation of flow and heat transfer in corrugated passages-Ⅱ[J].Numerical simulation. Int.J. Heat Mass Transfer, 1996, 39(1): 165-192
    [107]宋兆煌,周文学,党战伟.用于板式换热器的橡胶密封垫片[J].石油化工设备. 2003, 32(3): 43-44
    [110]吴道娣.非电量测量技术[M].西安:西安交通大学出版社,1990: 48-53
    [111] Sadik Kakac, Ramesh K.Shah, Win Aung. Handbook of single phase convective heat transfer [M]. New York: John Wiley & Sons, 1987: 4.61-4.62, 4.76-4.79
    [112] Holman J.P.. Heat Transfer[M]. 9th edtion. Beijing: China Machine Press, 2005: 25-33, 248, 511-518
    [113]吴慧英,程惠尔,周强泰.管内自由衰减旋流阻力与换热的衰减特性[J].上海交通大学学报, 1999, 33(3): 323-325
    [114] Webb R.L., Eckert E.R.G. Application of rough surfaces to heat exchanger design [J]. International Journal of Heat and Mass Transfer, 1972, 15: 1647-1658.
    [115]杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社, 1998: 346-348
    [116]刘文卿.实验设计[M].北京:清华大学出版社, 2005: 64
    [117]黄维军.气侧传热界面粗糙肋形的结构优化研究[D].广州:华南理工大学, 2006
    [118]周光坰,严宗毅,许世雄,等.流体力学(第二版)[M].北京:高等教育出版社, 2000: 157-161
    [119]蔡树棠,刘宇陆.湍流理论[M].上海:上海交通大学出版社, 1993: 149
    [120]梁在潮.工程湍流[M].武汉:华中理工大学出版社, 1999: 42-44
    [121] Kays W.M., Crawford M.E.. Convective heat and mass transfer[M]. 2nd edtion. New York: McGraw-Hill Book Company, 1980: 159-160

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700