内置折边扭带管内混合气体对流凝结换热与阻力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当今“节能减排”大环境下如何高效利用天然气的热能引起行业重视,烟气冷凝技术就是国内外研究热点之一。考虑工程背景和烟气冷凝技术特点,采用管内插入物来强化圆管内烟气对流凝结换热是备受关注的强化传热技术。本文以数值模拟、理论分析和实验研究等方法,对圆管内置折边扭带单相对流和对流凝结换热的传热与流动性能进行了较为深入的研究,获得的主要成果如下:
     提出了适合耐腐蚀的新型不锈钢折边扭带作为圆管内插入物,相比常规螺旋扭带具有成型容易、结构稳定、扭带表面无裂纹、满足抗腐蚀性要求等优点,解决扭带的稳固性和持久性。该折边扭带在高扭曲比、低雷诺数下,对管内混合气体的单相对流换热和对流凝结换热均具有显著强化作用。
     建立了低雷诺数下内置扭带管单相对流传热和流动三维数值模型,模型中采用三维隐式求解器,控制方程采用有限体积法进行离散,压力速度耦合采用SIMPLE法。湍流模型采用三种k-ε湍流模型和RSM模型进行对比,采用壁面函数法来考虑近壁面流动和低雷诺数影响。绘制不同网格节点数,进行了模型有效性和网格独立性分析,适合低旋流、低雷诺数流动的Realizable湍流模型和增强壁面函数与实验结果良好符合.
     经对螺旋扭带和折边扭带数值模拟对比,低雷诺数下扭带对传热强化显著,且折边扭带传热性能高于螺旋扭带,折边扭带阻力系数高于螺旋扭带阻力系数,且随扭曲比变化较大。高扭曲比下,折边扭带传热和流动性能比优于螺旋扭带。与螺旋扭带相比,折边扭带具有非对称的速度和切向速度分布,在折边长度内断面速度和切向速度呈现先增速后减速或相反的现象,加强了主流气体的混合,强化了换热。
     影响单相对流传热与流动性能的折边扭带主要结构参数是折边角度、折边长度和扭带与管壁间隙等。高雷诺数下不同折边角度扭带传热和流动性能趋向一致,低雷诺数下性能随折边角度增大而增大。折边角度引起传热强化的原因是切向速度和湍流强度增强。折边长度对传热影响不大,但对阻力系数影响较大,应选择折边长度大于扭带宽度的扭带以降低压力降。在相同进口质量流量条件下,增加扭带与管壁间隙后传热和阻力呈现先减少后增加,但传热与流动性能比随间隙增加而降低。其原因是间隙增大主流气流速度减少而引起传热和阻力降低,但随着间隙增大穿越扭带间隙气流速度增大,强化了扭带端部传热增强和阻力增加。具有不同折边长度和角度而扭曲比相同的扭带,传热和流动性能基本一致。
     建立了内置扭带管对流换热实验台,进行了以空气为介质、低雷诺数下对流传热与流动性能实验,实验与数值模拟的传热性能与阻力系数偏差均在±5%之内,验证了所建单相对流换热数值模型的可靠性,实验得到不同壁面温度、空气流量下内置折边扭带管对流换热系数和阻力系数关联式。
     通过对含少量不凝气体和不凝气体占多数的水蒸汽凝结换热对比研究分析,本研究水蒸汽含量在15-25%的混合气体对流凝结换热中对流换热和凝结换热相当,需考虑液膜状态和气体侧对流换热对凝结换热的影响。建立了简化的层流膜状凝结模型及水平内置扭带管内混合气体对流凝结换热的物理模型。根据实验观察,不同扭带结构参数下液膜的状态对对流凝结影响主要表现在:液膜的积存影响气流的流动,特别是扭带端部的液膜,阻碍气流穿越扭带端部。扭曲比越小液膜积聚越多,液膜滞留时间越长,特别是与扭带旋转方向与重力方向相对侧管壁;在低雷诺数下液膜主要靠重力控制,在高雷诺数下主要受气液界面切应力控制。液膜引起阻力增加主要是管内壁液膜所引起,因此采用凝结状态管表面阻力系数与单相流管表面阻力系数比来表征液膜粗糙度对传热和流动影响。
     在简化液膜模型的基础上,分别采用衰减因子法、扩散层理论模型和传质导率模型分析凝结换热机理,并根据内置扭带管内混合气体对流凝结特点提出各自准则方程。衰减因子法中提出以水蒸汽含量、气体流动和扭带扭曲比的关联式。扩散层模型中利用传热与传质类比得到混合气体侧有效传热系数,并引入新准则数Ln来表示混合气体露点、进口温度和壁面温度对凝结换热的影响。传质导率模型中主要考虑了液膜粗糙度和水蒸汽凝结引起的抽吸作用,以及扭带扭曲比、扭带间隙的影响。实验结果表明:传质导率模型误差较小,能较全面反映混合气体在扭带管内的对流凝结换热特性。
     建立了混合气体在内置扭带管内对流凝结换热试验测试系统,试验研究了水蒸汽含量、壁面温度、混合气体流速、进口温度等对对流凝结换热和流动性能影响。水蒸汽含量和壁面温度对凝结换热量影响显著,但对阻力系数影响不大。提高流速有利于对流凝结换热,但降低了单位气体的水蒸汽凝结量。一定范围内增加进口温度,也促进对流凝结换热。同时还实验研究了扭曲比和扭带与管壁间隙对混合气体对流凝结换热的影响,其主要是影响冷凝液的状态。低扭曲比下旋流增强,强化单相对流换热,对流凝结换热时引起液膜增厚、滞留时间长,导致凝结换热降低和阻力增加。考虑冷凝液的排泄,应选择高扭曲比扭带扭带与管壁间隙除了影响气流穿越扭带端部强化扭带端部传热外,间隙大则冷凝液膜不易积存,穿越气流也有利于冷凝液排泄。高雷诺数下应选择较大间隙,低雷诺数下可选择较小扭带间隙。
     以空气和水蒸汽二元混合气体作为介质,建立混合气体在内置扭带管内对流凝结的三维数值模拟模型。混合物中物性是组分和温度的函数。并采用扩散层层流底层的传质理论建立水蒸汽在壁面凝结模型,编制水蒸汽凝结引起的质量源项、能量源项和组分源项,模拟分析了混合气体的组分传递和凝结特性。分析对比传热传质模型和凝结模型下对流传热、凝结和阻力性能,差别原因是沿管长水蒸汽凝结引起流速和物性变化造成的。在恒定进口速度条件下,模拟分析扭带与管壁间隙对对流凝结换热影响。间隙增大,对流换热先增加后减低,凝结换热先增加后基本恒定,阻力系数先增加后减少。实验和模拟结果表明,间隙为lmm扭带传热和流动性能最佳。也模拟分析了壁面温度、水蒸汽含量和进口温度三个重要运行因素对混合气体对流凝结换热的影响。
     总之,通过本文对内置折边扭带管内混合气体单相对流和对流凝结换热的规律进行了研究,分析扭带结构参数和混合气体运行参数对对流凝结传热与流动的影响,对该类型烟气冷凝换热器设计优化具有深广的应用价值,为进一步数值模拟和试验研究提供理论基础。
Natural gas flue gas condensing technology was brought to the forefront to lower energy consumption and to reduce pollutants discharge. Considering project background, circular tube with tape inserts was used to enhance convection-condensation heat transfer for flue gas. Numerical simulation, mechanism analysis and experiment research was used to study convection and convection-condensation thermal-hydraulic performance of mixture with vapor in circular tube with edgefold-twisted-tape (ETT) inserts. The study laid the foundations of deep research to flue gas condensing heat exchanger and brought out theories in supporting of designing and applying this heat exchanger. The major works of this paper are as follows:
     Base on tape insert research, a new type twist tape was put forward. The ETT inserts produced with thinner ferrite stainless steel that can resist flue condensation corrosion. Comparing with classical spiral twisted tape (STT) inserts, main performance are easy make, structure strongly stability and durability, and no surface crack. Under higher twist ratio and transition flow conditions, ETT inserts has a strongly enhancement for gas convection and convection-condensation in tube.
     3D numerical simulation model was introduced to simulate air thermal-hydraulic performance in tube with ETT inserts under constant tube wall temperature and transition flow conditions. The numerical simulation was carried out using FLUENT that uses the finite volume method to solve governing equation. Implicit solver and SIMPLE pressure-velocity coupling algorithm were selected. A careful check for the grid-independence of the numerical solutions has been made to ensure the accuracy and validity of the numerical results. Comparing with Standard k-ε, RNG k-εand Realizable k-εand RSM turbulent model and three near wall treatment, simulation result of Realizable k-εand enhance wall function for lower swirl and low Re were satisfied with experiment result.
     Comparing STT and ETT inserts, ETT inserts thermal-hydraulic performance is superior to STT inserts under low Re and higher twist ratio conditions. The enhancement reasons are higher tangential velocity and main flow velocity profile. Tube with ETT inserts has a asymmetry velocity magnitude and tangential velocity profile, periodic change within an edgefold length, is first increases and later decreases in one side, or first velocity decreases and later increases in other side. Such velocity change intense gas mixing.
     It is found that main factors effecting heat transfer of ETT inserts are twist ratio and gap width between the tube and inserts. Twist ratio parameters include twist angle, edgefold length and twist width. Thermal-hydraulic performance under higher Re tends direction same, performance under lower Re increase as twist angle increase. Enhancement reasons for twist angle are higher tangential velocity and higher turbulent intensity. Edgefold length has little effect on heat transfer, but has strong effect on friction factor. From lower pressure drop, edgefold length should bigger than twist width. At the same inlet mass flux, heat transfer and pressure drop first decreases and later increases when gap between tube wall and twist increases. First main flow velocity decrease as gap increase that decrease heat transfer and pressure drop. Second, velocity between gap increases as gap increases that enhance heat transfer near twist tip. Performance of same twist ratio ETT inserts with different edgefold length and twist angle has same thermal-hydraulic performance ratio.
     An experimental system was set up to measure air convection heat transfer and pressure drop under constant wall temperature, experiment result are reasonable in agreement with simulation result within±5%, so numerical simulation model is valid for air convection heat transfer and pressure drop. Convective heat transfer coefficient and friction factor correlations were fitted under different wall temperature and inlet mass flux.
     Under vapor volume fraction within 0.15 to 0.25, convection heat transfer has the equal order of condensation heat transfer, so effect of condensation film and mixture must be considered; a simplified laminar condensation film model was build. Through experiment, condensation film decrease heat transfer area. Lower twist ratio, higher condensation film was colleted and longer condensation film resident. Under lower Re condensation film was controlled by gravity, was controlled by shearing force under higher Re. Friction factor was induced by condensation film on tube wall, so tube wall friction factor ratio under condensation and convection condition can indicate film roughness.
     Degradation factor method, diffusion layer method and mass transfer conductance method were used to analyze condensation mechanism. According vapor condensation in tube with ETT inserts, Correlation with degradation factor method is function of vapor volume fraction and Reynolds and twist ratio. Bases on heat and mass transfer, mixture effective heat transfer coefficient was derived, a new dimension parameter Ln was put forward to consider effect of vapor volume fraction and inlet temperature and wall temperature. In mass transfer conductance method, film roughness and suction effect by condensation was introduced, and also effect of twist ratio and gap between tube and tape inserts.
     An experimental system was set up to convection-condensation heat transfer and pressure drop for mixture with vapor. Wide investigation were made to study effect of vapor fraction and wall temperature and inlet temperature, and also twist ratio and gap between tube and wall. Under convection condition, heat enhanced by intensive swirl velocity of low twist ratio inserts. Under convection-condensation conditions, film thickness becomes thicker and resident time become longer by intensive swirl flow, so condensation heat transfer was decreased and pressure drop was increased. Higher gap can enhance flow velocity through gap and condensation film can be discharged easily.
     Neglecting film thickness,3D numerical simulation model was introduced for convection-condensation of binary mixture of air and vapor in tube with ETT inserts. A wall condensation model was set up with diffusion layer theory, mass source and energy source and species source were programmed with UDF. Mixture Physical Properties are function of composition and temperature. Comparing heat and mass transfer model and condensation model, difference of thermal-hydraulic performance are owing to velocity decrease and physical properties change by condensation. At the same inlet velocity condition, convection heat flux and friction factor increase first and decrease after as gap increase, but condensation heat flux increase first and then retain constantly. The effects of changes to inlet vapor volume fraction, and wall temperature, and inlet mixture temperature are presented and discussed.
     In this paper, convection-condensation thermal-hydraulic performance are presented, especially effect factor are ETT inserts structure and mixture parameter. It has huge applied value in flue condensing heat exchanger design optimization. Basis is supplied to further numerical simulation and experiment study.
引文
[1]车得福.冷凝式锅炉及其系统.机械工业出版社,2002.
    [2]王丽.冷凝式燃气热水器换热器的研究[D].同济大学,2006
    [3]高东明,史晓军.冷凝式空气加热器回收燃天然气锅炉排烟余热的分析[J].工业锅炉.2005,6:1-6.
    [4]付林,田贯三,隋军,江亿.吸收式热泵在燃气采暖冷凝热回收中的应用[J].太阳能学报.2003,24(5):620-624.
    [5]贾力,孙金栋,李孝萍.分离冷凝型天然气锅炉的研究与应用[J].节能技术.2001,19(2):2-4.
    [6]李慧君,王树众,张斌等.冷凝式燃气锅炉烟气余热回收可行性经济分析[J].工业锅炉.2003,2:1-5.
    [7]张新桥.冷凝式燃气热风炉的应用研究[D].南华大学,2006,5
    [8]耿克成,田贯三,付林等.天然气烟气冷凝热效率计算及影响因素分析[J].煤气与热力.2004,24(8):427-431
    [9]潘新新,魏敦崧.冷凝式燃气热水器的腐蚀防护[J].煤气与热力.2005,25(8):11-15
    [10]王随林,刘贵昌,温治等.新型防腐镀膜烟气冷凝换热器换热实验研究[J].暖通空调.2005,35(2):71-74.
    [11]林宗虎,汪军,李瑞阳,崔国民.强化传热技术.化学工业出版社,2007
    [12]钱颂文,朱东生,李庆领等.管式换热器强化传热技术.化学工业出版社,2002
    [13]张琳,钱红卫,俞秀民等.内置旋转扭带换热管的传热强化机理[J].机械工程学报,2007,43(1):139-144.
    [14]董承康,陶正文,王新等.扭转带强化传热实验研究与应用评价[J].工程热物理学报,2002,23(1):77-80.
    [15]张华,周强泰.管内扭带传热与流动阻力的实验研究[J].物理测试,2005,23(5):15-18
    [16]王泽宁,周强泰.不同宽度扭带传热与阻力特性试验研究[J].热能动力工程.1996,11(3):134-139
    [17]康志伟,桂兰,高丽丽.管内插入扭带的强化传热数值模拟[J].工程热物理学报,2008,29)7):1211-1214.
    [18]孙东亮,王良壁.含扭曲带管内流动与传热的数值模拟[J].化工学报.2004,55(9):1422-1427
    [19]张琳,钱红卫,宣益民等.自转螺旋扭带管内三维流动与传热数值模拟[J].化工学报,2005,56(9):
    [20]王军,林华,袁志数.扭带插入件强化圆管内换热的计算方法[J].节能技术.2001,19(4):24-25.
    [21]Mazen M. Abu-Khader, Further understanding of twisted tape inserts effects as tube insert for heat transfer enhancement[J], Heat and Mass Transfer 43(2006) 123-134
    [22]Lishan You. Computational modeling of laminar swirl flows and heat transfer in circular tubes with twisted-tape insrts[D]. University of Cincinnati,2002
    [23]Noothong W., Esiamsa-ard S., Promvonge P. Effect of twisted-tape inserts on heat transfer in a tube[J], The 2nd joint international conference on sustainable energy and environment (SEE 2006)",21-23 November 2006, Bangkok, Thailand
    [24]AI-Fahed S, Chakroun W. Effect of tube-tape clearance on heat transfer for fully developed turbulent flow in a horizontal isothermal tube[J]. International Journal of Heat and Fluid Flow, Volume 17, Issue 2, April 1996, Pages 173-178
    [25]Promvonge P., Eiansa-Ard S. Heat transfer behaviors in a tube with combined conical-ring and twisted-tape insert[J].International Communications in Heat and Mass Transfer,2007 34(7):849-859
    [26]Ahmed M., Deju L., M, Sarkar A.R., Islam S.M.N. heat transfer in turbulent flow through a circular tube with twisted tape inserts[J].Proceedings of the international conference on mechanical engineering 2005 (ICME2005) 28-30 December 2005, Dhaka, Bangladesh
    [27]Saha S.K., Dutta A., Dhal S.K. Friction and heat transfer characteristics of laminar swirl flow through a circular tube fitted with regularly spaced twisted tape insert [J]. International Journal of Heat and Mass Transfer 44(2001) 4211-4223
    [28]Eiamsa-ard S. and Pongjet P. Enhancement of heat transfer in a tube with regularly-spaced helical tape swirl generators [J]. Solar Energy,2005 78(4):483-494
    [29]Eiamasa-ard S., Chinaruk T, Pongjet P. Experimental investigation of heat transfer and flow friction in a circular tube fitted with regularly spaced twisted tape elements[J]. International Communication in Heat and Mass Transfer 33(2006) 1225-1233
    [30]Eiamsa-ard S., Wongcharee K., Sripattanapipat S.3-D Numerical simulation of swirling flow and convective heat transfer in a circular tube induced by means of loose-fit twisted tapes[J]. International Communication in Heat and Mass Transfer 2009
    [31]Eiamasa-ard S., Chinaruk T. Petpices Eiamsa-ard, Pongjet Promvonge, convective heat transfer in a circular tube with short-length twisted tape insert[J]. International Communication in Heat and Mass Transfer,36(2009),366-371
    [32]Masoud R, Sayed R. S., Ammar A. A. Experimental and CFD studies on heat transfer and friction factor characteristics of a tube equipped with modified twisted tape inserts[J]. Chemical Engineering and Processing 48(2009) 762-770
    [33]Krishna S.R, Pathipada G., Sivashanmugam P. heat transfer and pressure drop studies in a circular tube fitted with straight full twist, Experimental thermal and fluid science 33(2009) 431-438
    [34]Yu-Wei Chiu, Jiin-Yuh Jang,3D numerical and experimental analysis for thermal-hydraulic characteristics of air flow inside a circular tube with different tube inserts, applied thermal engineering 29(2009) 250-258
    [35]Zhi-Min Lin,Dong-Liang Sun, Liang-Bi Wang, The relationship between absolute vorticity flux along the main flow and convection heat transfer in a tube inserting a twisted tape, heat mass transfer,2009
    [36]Sivashanmugam P. and Suresh S., Experimental studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with helical screw-tape inserts, Applied Thermal Engineering,200626 (16):1990-1997
    [37]Sivashanmugam P. and Suresh S., Experimental studies on heat transfer and friction factor characteristics of turbulent flow through a circular tube fitted with helical screw-tape inserts, Applied Thermal Engineering,200746 (16):1292-1298
    [38]Sivashanmugam P., Suresh S. Experimental studies on heat transfer and friction factor characteristics of turbulent flow through a circular tube fitted with regularly spaced helical screw-tape inserts, applied thermal engineering 27(2007) 1311-1319
    [39]Sarma P.K., Subramanyam T., Kishore P.S., Rao V. D, Kaka S. A new method to predict convective heat transfer in a tube with twisted tape inserts for turbulent flow, international journal of thermal science 41 (2002) 955-960
    [40]Paisarn Naphon, Heat transfer and pressure drop in the horizontal double pipes with and without twisted tape insert, international communication in heat and mass transfer 33 (2006) 166-173
    [41]Sarma P.K., Subramanyam T., Kishorea P.S., RaoV. Dharma, Kakac Sadik. Laminar convective heat transfer with twisted tape inserts in a tube, International Journal of Thermal Sciences 42 (2003) 821-828
    [42]Smith Eiamsa-ard, Somsak Pethkool, Chinaruk Thianpong, Turbulent flow heat transfer and pressure loss in a double pipe heat exchanger with louvered strip inserts, International Communications in Heat and Mass Transfer 35 (2008) 120-129
    [43]Akhavan-Behabadi M.A., Salimpour V.A.,Pazouki. Pressure drop increase of forced convective condensation inside horizontal coiled wire inserted tubes, International Communications in Heat and Mass Transfer 35 (2008) 1220-1226
    [44]Chinaruk Thianpong, Petpices Eiamsa-ard, Khwanchit Wongcharee, Compound heat transfer enhancement of a dimpled tube with a twisted tape swirl generator, International Communications in Heat and Mass Transfer,2009 36 698-704
    [45]Bharadwaj P., Khondge A.D., Date A.W.. Heat transfer and pressure drop in a spirally grooved tube with twisted tape insert. International Journal of Heat and Mass Transfer.2009,52:1938-1944
    [46]章熙民,任泽霈.传热学(第四版).中国建筑工业出版社,2001
    [47]潘继红,田茂诚.管壳式换热器分析与计算.科学传版社,1996
    [48]史美中,王中铮.热交换器原理与设计(第二版).东南大学出版社,1996
    [49]吴慧英,束昉.管内强化对流换热的热力经济性分析[J].热能动力工程.1999,14(2):106-109
    [50]陈维汉.管内流动换热过程的性能综合分析[J].华中科技大学学报.2001,29(1):18-21
    [51]李会雄,周芳德,陈学俊.管内湍流旋流的数值计算[J].应用力学学报.1994,11(2):19-25.
    [52]潘卫国,聂雪军,雷俊智等.对管内湍流边界层结构与流动阻力特性的数值研究[J].计算力学学报.2001,18(4):393-396
    [53]谷和平,叶国祥,徐南平等.运用模型模拟计算膜管内的二维湍流流动[J].南京工业大学学报.2004,26(1):28-32
    [54]刘重阳,于芳,徐让书.CFD网格误差分析的一个算例[J].沈阳航空工业学院学报.2006,23(4):21-24
    [55]王福军.计算流体动力学分析-CFD软件原理与应用.清华大学出版社,2004
    [56]韩占中,王敬,兰小平.FLUENT流体工程仿真计算实例与应用.北京理工大学出版社,2004.6
    [57]陶文铨.数值传热学(第2版).西安交通大学出版社,2001
    [58]吕崇德,姜学智.热工参数测量与处理.清华大学出版社,1980
    [59]田胜元,萧昌嵘.实验设计与数据处理.中国建筑工业出版社,1988.
    [60]熊孟清,刘咸定,林宗虎.含不凝气体的蒸汽冷凝换热的计算方法[J].西安建筑科技大学学报.1996,28(6):307-310.
    [61]熊孟清,林宗虎,刘咸定.含不凝气体的蒸汽冷凝换热系数的关联式[J].热能动力工程.1997,12(6):377-382.
    [62]唐桂华,庄正宁,王建伟,陶文铨.不凝气体存在时水平单管外膜状凝结换热的数值模拟[J].西安交通大学学报.2000,34(11):31-35
    [63]黄志光,汪荣顺,顾安忠.不凝结气体水平管外凝结传热分析[J].上海市制冷学会2005年 学术年会论文集.
    [64]庄于舟.含不凝气的蒸汽冷凝的传热计算与换热器设计[J].化工设备设计,1999,36(6):8-12.
    [65]袁世平.含有不凝气体的蒸汽凝结现象的研究[D].中国原子能科学研究院,2001.
    [66]文杰,梁木子,张会武,程先华.含有不可凝结气体的蒸汽壁面冷凝的数值模拟[J].上海交通大学学报.2009,43(2):299-304
    [67]崔小逖,李鑫钢,张志恒,隋红.倾斜通道内气液逆流直接接触冷凝传热的二维CFD模拟[J].化工进展.2009,28:383-383
    [68]蒋翔,朱冬生,吴治将,李元希,汪南.立式蒸发式冷凝器传热传质的CFD模拟[J].高校化学工程学报.2009,23(4):567-573
    [69]Colburn A.P., Hougen O.A. Design of cooler condensers for mixture of vapors with noncondensing gas. Industrial and engineering chemistry.1934(26):1178-1182.
    [70]Sparrow E.M., Lin S.H. Condensation heat transfer in the presence of noncondensable gas. Journal of heat transfer,1964(86):430-437.
    [71]Minkowwycz W.Jm,Sparrow E.M.. Condensation heat transfer in the presence of noncondensable gas, interfacial resistance, superheating, variable properties, and diffusion. International Journal of heat and mass transfer.1966(9):1125-1144.
    [72]Kinney R.B., Sparrow E.M.. Turbulent flow, heat transfer and mass transfer in a tube with surface suction. Journal of heat transfer.1970(92):117-25
    [73]C.Y. Wang, C.J. Tu. Effects of non-condensable gas on laminar film condensation in a vertical tube. Int. J. Heat Mass Transfer.1988(31):2339-2345.
    [74]Borishansky V.M., olkov D.I. V, Ivashchenko N.I.. Effects of non-condensable gas content on heat transfer in steam condensation in a vertical tube, Heat Transfer Soviet. Research. 1977(9)2:35-42.
    [75]Kageyama T., Peterson P.F., Schrock V.E.. Diffusion layer modeling for condensation in vertical tubes with non-condensable gases, Nucleate. Engineering Design,1993(141): 289-302.
    [76]Vierow K.M., Schrock V.E.. Condensation in a natural circulation loop with noncondensable gases:Part I-heat transfer, Proc. of the International. Conference. on multiphase Flow, pp:183-186.
    [77]Peterson P.F., Schrock V.E., Kageyama T. Diffusion layer theory for turbulent vapor condensation with non-condensable gases, ASME J. Heat Transfer 115(1993) 998-1003
    [78]Siddique M., Golay M.W., Kazimi M.S.Local heat transfer coefficients for forced-convection condensation of steam in a vertical tube in the presence of a non-condensable gas, Nucleate. Technology.1993(102):386-402.
    [79]Siddique M., Golay M.W., Kazimi M.S. Theoretical modeling of forced convection condensation of steam in a vertical tube in the presence of a non-condensable gas, Nucleate Technology.1994(106):202-214
    [80]Kuhn S.Z., Schrock V.E., Peterson P.F.An investigation of condensation from steam-gas mixtures flowing downward inside a vertical tube, Nucleate Engineering. Design. 1997(177):53-69.
    [81]kuhn S.Z, Investigation of heat transfer from condensing steam-gas mixtures and turbulent films flowing downward inside a vertical tube. PhD
    [82]Hasanein H.A., Kazimi M.S., Golay M.W. Forced convection in-tube steam condensation in the presence of non-condensable gases, Int. J. Heat Mass Transfer 39 (1996) 2625-2639.
    [83]Park H.S., No H.C.. A condensation experiment in the presence of noncondensable in a vertical tube of a passive containment cooling system and its assessment with RELAP%/MOD3.2. Nuclear Technology.1999(127):160-169.
    [84]Park S.K., Kim M.H., Yoo K.J. Effect of a wavy interface on steam-air condensation on a vertical surface. International Journal of Multiphase flow,1997 23(6):1031-1042
    [85]Lee K.Y., Kim M.H. Effect of an interfacial shear stress on steam condensation in the presence of a noncondensable gas in a vertical tube. International Journal of heat and mass transfer.2008(51):5333-5343.
    [86]Martin J.M.. Comparison of film condensation models in presence of non-condensable gases implemented in a CFD code. Heat Mass Transfer (2005)41:961-976
    [87]王立国.含大量不凝气的蒸汽冷凝传热实验研究[D].天津大学化工学院,2005
    [88]高学农,杨国君,叶国兴.空气-水蒸气经扰流圈的冷凝传热强化[J].工程热物理学报,2001,22(5):615-617.
    [89]贾力,彭晓峰.混合气体管内对流凝结传热研究[J].北京国际热科学与工程会议论文.工业加热,20025。
    [90]贾力,彭晓峰,孙金栋,李孝萍.具有凝结的混合气体传热理论研究[J].热科学与技术.2002(1)1:15-19。
    [91]L.Jia, X.F. PENQ J.D. SUN, X.P. LI. Theoretical analysis on heat transfer in flue gas with vapor condensation. Journal of thermal science and technology,2002 1(1):15-19.
    [92]L.Jia, X.F. Peng, Y.Yan, Effect of water vapor condensation on the convection heat transfer of wet flue gas in a vertical tube. International journal of heat and mass transfer 44(2001):4257-4265
    [93]笪耀东,车德福,庄正宁等.高水分烟气对流冷凝换热模拟实验研究[J].工业锅炉,2003,12-16.
    [94]D.F.Che, YD. Da Z.N. Zhuang, Heat and mass transfer characteristics of simulated high moisture flue gases, Heat Mass Transfer (2005) 41:250-256
    [95]Y.B Liang,D.F Che,Y.B.Kang, Effect of vapor condensation on forced convection heat transfer of moistened gas. Heat Mass Transfer (2007) 43:677-686
    [96]庄正宁,李江荣,车德福等.加湿热空气对流冷凝换热冷凝液量的实验研究[J].热能动力工程,2005,20(1):69-73
    [97]朱恂,李刚,廖强等.水平三维肋管外含不凝气体的水蒸汽凝结换热的实验研究[J].动力工程,2006(26)5:694-699
    [98]郭亮,柯道友.中等雷诺数下高水分烟气横流圆管对流换热实验研究.工程热物理学报[J],2001(22)增刊)。
    [99]王一平,卢艳华,朱丽等.太阳能烟囱发电和海水淡化综合系统的间壁冷凝换热模型[J].太阳能学报,2008,29(4):428-432.
    [100]朱冬生,张景卫,吴治将等.板式蒸发式冷凝器两相降膜流动CFD模拟及传热研究[J].华南理工大学学报(自然科学版).2008,36(7):6-11.
    [101]余徽,朱家骅,杜怀明等.高湿度工业废气冷凝脱湿模型研究与数值模拟[J].化工学报.2005,56(8):1389-1396
    [102]Park S.K., Kim M.H., Yoo K.J. Effects of a wavy interface on steam-air condensation on a vertical surface. International Journal of Multiphase flow.1997,23(6):1031-1042.
    [103]Panday P.K.. Two-dimensional turbulent film condensation of vapors flowing inside a vertical tube and between parallel plates:a numerical approach[J]. International Journal of Refrigeration.2003 (26):492-503.
    [104]Desrayaud G., Lauriat G. Heat and mass transfer analogy for condensation of humid air in a vertical channel, Heat Mass Transfer 37 (2001) 67-76.
    [105]Terekhov V.I., Terekhov V.V. Sharov K.A. Heat and mass transfer during steam condensation from humid air, IFZh 71 (1998) 788-794.
    [106]Terekhov V.I., Patrikeev V.N. Forced convection heat and mass transfer from pressurized humid air in the channel, Rus. J. Eng. Thermo-phys.1999,9 (1-2):1-18.
    [107]Volchkov E.P., Terekhov V.V., Terekhov V.I. A numerical study of boundary layer heat and mass transfer in a forced flow of humid air with surface steam condensation, Int. J. Heat Mass Transfer 47 (2004) 1473-1481.
    [108]Rao V. D, Krishna V. M, Sharma K.V., Sarma P.K. A theoretical study on convective condensation of water vapor from humid air in turbulent flow in a vertical duct. ASME Journal of Heat Transfer 129(2007):1627-1637
    [109]Rao V. D, Krishna V. M, Sharma K.V, Rao P.V.J. M. Convective condensation of vapor in the presence of noncondensable gas of high concentration in laminar flow in a vertical pipe. International Journal of Heat and Mass Transfer.51(2008)6090-6101.
    [110]Krishnaswamy, Wang H.S., Rose J.W. Condensation from gas-vapor mixture in small non-circular tubes, proceedings of fifth international coference on enhanced, compact and ultra-compact heat exchangers:science, engineering and technology, Hoboken, NJ,USA, September 2005
    [111]Zhu A.M, Wang S.C, Sun J.X, Xie L.X. Effects of high fractional noncondensable gas on condensation in the dewvaporation desalination process. Desalination.2007 (214):128-137.
    [112]Zhu A.M., Wang S.C., Wang Z., Liu Q.L. Mathematical simulation of steam condensation with high fractional noncondensable gas in the dewvaporation desalination process. Desalination 2009(243):145-158.
    [113]Groff M.K., Orimiston S.J., Soliman H.M.. Numerical solution of film condensation from turbulent flow of vapor-gas mixtures in vertical tubes [J]. International Journal of Heat and Mass transfer.2007,50:3899-3912
    [114]Chen C.K., Lin Y.T. Turbulent film condensation in the presence of noncondensable gases over a horizontal tube[J]. International Journal of Thermal Science. 2009(48):1777-1785.
    [115]Benelmir R., Mokraoui S., Souayed A.. Numerical analysis of filmwise condensation in a plate fin-and-tube heat exchanger in presence of noncondensable gas [J]. Heat Mass Transfer.2009,45:1561-1573
    [116]Dalkilic S., Wongwises S. Intensive literature review of condensation inside smooth and enhanced tubes. International Journal of heat and mass transfer.2009(52):3409-3426.
    [117]Wu T.J., Vierow K.. Local heat transfer measurement of steam/air mixtures in horizontal condenser tubes. Int J.of Heat and Mass transfer,2006(46):2491-2501.
    [118]Thome J.R. Condensation in plain horizontal tubes:recent advances in modeling of heat transfer to pure fluids and mixtures. Journal of the Braz.Society of mechanical science and engineering.2005 (23) 1:23-30
    [119]Carpenter E.F., Colburn A.P. The effect of vapor velocity on condensation inside tubes, in: Proceedings of the General Discussion on Heat Transfer, ASME,1951, pp.20-26
    [120]Lanzl I., Mayinger F. and Nolte G. Partial condensation from stream-air mixtures in horizontal tube heat exchangers. Condensation and condenser design. ASME 1993.
    [121]Kang H.C., Kim M.H. Characteristic of film condensation of supersaturated steam-air mixture on a flat plate. Internati on journal of multiphase flow.1999(25):1601-1618.
    [122]Siow E.C., Ormiston S.J.,Soliman H.M. A two-phase model for laminar film condensation from steam-air mixtures in vertical parallel-plate channels, Heat Mass Transfer 40 (2004) 365-375.
    [123]E.C. Siow. Numerical solution of a two-phase model for laminar film condensation of vapor-gas mixture in channels. Master(2001):The University of Manitoba, Winnipeg, Monitoba,Canada.
    [124]随海明.水蒸汽在垂直管内冷凝换热的实验研究[D].哈尔滨工程大学,2007
    [125]Munoz-Cobo J.L., Herranz L., Sancho J., Tkachenko I., Verdu G.. Turbulent vapor condensation with non-condensable gases in vertical tubes, Int. J. Heat Mass Transfer 39 (1996)3249-3260.
    [126]H.C.No, H.S. Park.Non-iterative condensation modeling for steam condensation with non-condensable gas in a vertical tube, Int. J. Heat Mass Transfer 45 (2002) 845-854.
    [127]N.K. Maheshwari, D. Saha, R.K. Sinha, M. Aritomi, Investigation on condensation in presence of a non condensable gas for a wide range of Reynolds number, Nucleate. Engineering. Design.2004(227) 219-238.
    [128]Oh S., Revankar S.T..Experimental and theoretical investigation of film condensation with non-condensable gas, Int. J. Heat Mass Transfer 49 (2006) 2523-2534.
    [129]Hu H.G. Simulation of two-phase flow and heat transfer in condensers. PhD(2008): Faculty of graduate studies the university of western Ontario London, Ontario
    [130]Lee K.Y., Kim M.H.. Effect of an interfacial shear stress on steam condensation in the presence of a noncondensable gas in a vertical tube. International Journal of Heat and Mass Transfer 51 (2008) 5333-5343
    [131]Maheshwari K., Vijayan P.K. and Saha D.. Effect of noncondensable gas on Steam Condensation in Passive containment cooling tube
    [132]Kim S.J., No H.C., Turbulent film condensation of high pressure steam in a vertical tube, Int. J. Heat Mass Transfer 43 (2000) 4031-4042
    [133]Ming Zhang. A new equivalent Reynolds number model for vapor shear-controlled condensation insides smooth and mcro-fin tubes. Doctor dissertation, Pennsylvania state University,1998
    [134]Yu G.. Developments of a CFD codes for computational simulations and flow physicals annular/stratified film condensation flows. Doctor dissertation, Michigan Technological University 1999.
    [135]Oh S. Experimental and analytical study of the effects of noncondensable gas in a passive condenser system. Doctor dissertation, Purdue University,2004.
    [136]Karkoszka K..Mechanistic modeling of water vapor condensation in presence of non-condensable gases. Doctor dissertation, School of engineering sciences department of physics Div. of Nuclear reactor technology Stockholm,2007.
    [1]CHIU Yu-wei, JANG Jiin-yuh,3D numerical and experimental analysis for thermal-hydraulic characteristics of air flow inside a circular tube with different tube inserts [J]. Applied Thermal Engineering,2009,29(2-3):250-258
    [2]RAHIMI M., SHABANIAN S.R., ALASAIRAFI A.A., Experimental and CFD studies on heat transfer and friction factor characteristics of a tube equipped with modified twisted tape inserts [J], Chemical Engineering and Processing, 2009,48(3):762-770
    [3]ZHANG Hua, ZHOU Qiang-tai, Experimental investigation on heat transfer and flow resistance characteristics of smooth round tubes with twisted-tape inserts [J]. Physical Examination and Testing,2005,23(5):15-18 (in chinese).
    [4]KLACZAK A., Heat transfer and pressure drop in tubes with short tabulators [J], Heat and Mass Transfer,1996, 31(6):399-401
    [5]EIAMASA-ARD S., THIANPONG C., PETPICES E., et al. Convective heat transfer in a circular tube with short-length twisted tape insert [J], International Communication in Heat and Mass Transfer,2009,36(4):365-371.
    [6]EIAMSA-ARD S., THIANPONG C., PROMVONGE P. Experimental investigation of heat transfer and flow friction in a circular tube fitted with regularly spaced twisted tape elements [J], International Communications in Heat and Mass Transfer,2006,33(10):1225-1233.
    [7]SAHA S.K., DUTTA A., DHAL S.K. Friction and heat transfer characteristics of laminar swirl flow through a circular tube fitted with regularly spaced twisted tape insert [J], International Journal of Heat and Mass Transfer,2001, 44(22):4211-4223.
    [8]EIAMSA-ARD S., PETHKOOL S., THIANPONG S. Turbulent flow heat transfer and pressure loss in a double pipe heat exchanger with louvered strip inserts, International Communications in Heat and Mass Transfer,2008,35 (2): 120-129.
    [9]AHMED M., DEJU L., SARKAR M.A.R. et al. Heat transfer in turbulent flow through a circular tube with twisted tape inserts [c], Proceedings of the international conference on mechanical engineering, Dhaka, Bangladesh 2005, ICME05-TH-08.
    [10]FAHED S.A., CHAKROUN W. Effect of tube-tape clearance on heat transfer for fully developed turbulent flow in a horizontal isothermal tube [J], International Journal of Heat and Fluid Flow,1996,17(2):173-178
    [11]DATE A.W. Prediction of fully developed flow in a tube containing a twisted tape [J], International Journal of Heat and Mass Transfer,1974,17 (8):845-859.
    [12]EIAMSA-ARD S., WONGCHAREE K., SRIPATTANAPIPAT S.3-D Numerical simulation of swirling flow and convective heat transfer in a circular tube induced by means of loose-fit twisted tapes [J], International Communication in Heat and Mass Transfer,2009,36(9):947-955.
    [13]SAMA P.K., SUBRAMANYAM T., KISHORE P.S. et al. A new method to predict convective heat transfer in a tube with twisted tape inserts for turbulent flow [J], International Journal of Thermal Science,2002,41 (10):955-960.
    [14]SIVASHANMUGAN P., SURESH S. Experimental studies on heat transfer and friction factor characteristics of turbulent flow through a circular tube fitted with helical screw-tape inserts [J], Applied Thermal Engineering,2007, 46(16):1292-1298.
    [15]MAZEN M., KHADER A. Further understanding of twisted tape inserts effects as tube insert for heat transfer enhancement [J], Heat and Mass Transfer,2006,43(2):123-134.
    [16]SIVASHANMUGAM P., SURESH S. Experimental studies on heat transfer and friction factor characteristics of turbulent flow through a circular tube fitted with regularly spaced helical screw-tape inserts [J], Applied Thermal Engineering,2007,27(8-9):1311-1319
    [17]JIN Zhi-hao, WANG Guan-qing, LIU Jie et al. Numerical simulation of fluid flow characteristics in wavy plates [J], Journal of Hydrodynamics,2004,19(1):26-30 (in Chinese).
    [18]WU Mei-wei, ZHANG Zao-sun. Numerical research on the structure in turbulent pipe flow [J], Journal of Hydrodynamics,2002,17(3):324-333 (in Chinese).
    [19]TANG Zhi-wei, YAN Gui-lan, GAO Li-li. Numerical simulation of heat transfer enhancement for twisted inserts in tubes [J], Journal of Engineering Thermophysics,2008,29(7):1211-1214 (in Chinese).
    [20]SUN Dong-Iiang, WANG Liang-bi, Numerical simulation of fluid flow and heat transfer in tube inserting twisted-tape [J], Journal Chemical Industry and Engineering,2004,55(9):1422-1427 (in Chinese).
    [21]ZHANG Lin, QIAN Wei-hong,3D numerical simulation of flow and heat transfer in self-rotating twisted-tape-inserted tube [J], Journal Chemical Industry and Engineering,2005,56(9):1633-1638 (in Chinese).
    [22]ZENG Zhuo-xiong, A new turbulence modulation in second-order moment two-phase model and its application to horizontal channel [J], Journal of Hydrodynamics,2008,20(3):331-338.
    [23]ZHANG Ming-liang, SHEN Yong-ming, Three-dimensional simulation of meandering river based on 3-d RNG k-ε turbulence model [J], Journal of Hydrodynamics,2008,20(4):116-125.
    [24]LU Chang-gen, CAO Wei-dong, QIAN Jian-hua, A study on numerical method of Navier-Stokes equation and non-linear evolution of the coherent structures in a laminar boundary layer[J], Journal of Hydrodynamics, 2006,18(3):372-377.
    [25]SARMA P.K., KISHORE P.S., RAO V.D. et al. A combined approach to predict friction coefficients and convective heat transfer characteristics in a tube with twisted tape inserts for a wide range of Re and Pr [J], International Journal of Thermal Science,2005,44(4):393-398.
    1. Wen L.,Liang M.Z.,Zhang H.W.,Cheng X.H. Numerical simulation of steam condensation in vertical tube with the presence of non-condensable gas. Journal of Shanghaijiaotong Univervisity.2009,43(2):299-303.
    2. Ivo K.,Miroslav B., Borut. M,Ivan B. Modeling of containment atmosphere mixing and stratification experiment using a CFD approach. Nuclear Engineering and Design.2006,23:1682-1692.
    3. Martin-Fuertes F., Fernandez J.A., Benitez. Comparison of film condensation models in presence of non-condensable gas implemented in a CFD code. Heat Mass Transfer.2005,41:961-976
    4. Volchkov, E.P., Terekhov V. V., Terekhov, V.I. A numerical study of boundary-layer heat and mass transfer in a forced flow of humid air with surface steam condensation. International Journal of heat and mass transfer.2004,47:1473-1481.
    5. Shripad T., Revankar, Doug P. Laminar film condensation in a vertical in the presence of noncondensable gas. Applied Mathematical Modeling.2005,29:341-359.
    6. Krzysztof K. Mechanistic modeling of water vapor condensation in presence of noncondensable gases. School of Engineering Science, Stockholm,2007
    7. Groff M.K., Orimiston S.J., Soliman H.M. Numerical solution of film condensation from turbulent flow of vapor-gas mixtures in vertical tubes. International Journal of Heat and Mass Transfer.2007,30:3899-3912.
    8. Chen C.K., Lin Y.T. Turbulent film condensation in the presence of non-condensable gases over a horizontal tube. International Journal of Thermal Sciences.2009,48:1777-1785.
    9. Seungmin O. Turbulent heat and mass transfer in a vertical condenser tube.2003 Fall semester ME605 convective heat and mass transfer project report.
    10. Riad B., Salim M., Ali S. Numerical analysis of film wise condensation in a plate fin-and-tube heat exchanger in presence of non-condensable gas. Heat Mass Transfer.2009,45:1561-1573.
    11. Rao V.D., Krishna V.M., Sharma K.V.,Rao P.V.J.M. Convective condensation of vapor in the presence of a non-condensable gas of high concentration in a laminar flow in a vertical pipe. International Journal of Heat and Mass Transfer.2008,51:6090-6101.
    12. YU H., Zhu J.H., Du H.M., Xia S.L., Guan G. P. Modeling and simulation of condensation and dehumidifying of high humidity industrial exhaust gases. Journal of Chemical Industry and Engineering (China).2005,56(8):1389-1386
    13. Chen Y.P., Wu J.F., Shi M.H., Zhang C.B., Xiao C.M. Three dimension simulation for steady annular condensation in rectangular microchannels. Journal of Chemical Industry and Engineering (China).2005,59(8):1923-1929
    14. Siow E.C., Orimiston S.J., Soliman H.M. A two-phase model for laminar film condensation from steam-air mixtures in vertical parallel-plate channels. Heat and Mass Transfer.2004,40:365-375.
    15. CUI Y. Z., Tian M.C. Three-dimension Numerical Simulation On Thermal-Hydraulic Performance in A Circular Tube with Edgefold-Twisted-Tape Inserts.
    16. Peterson P.F., Schrock V.E., Kageyama T. Diffusion layer theory for turbulent vapor condensation with non-condensable gases, ASME J. Heat Transfer 115(1993) 998-100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700